AN EMPIRICAL STUDY OF END-TO-END SIMULTANEOUS SPEECH TRANSLATION DECODING STRATEGIES - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

AN EMPIRICAL STUDY OF END-TO-END SIMULTANEOUS SPEECH TRANSLATION DECODING STRATEGIES

Résumé

This paper proposes a decoding strategy for end-to-end simultaneous speech translation. We leverage end-to-end models trained in offline mode and conduct an empirical study for two language pairs (English-to-German and English-to-Portuguese). We also investigate different output token granularities including characters and Byte Pair Encoding (BPE) units. The results show that the proposed decoding approach allows to control BLEU/Average Lagging trade-off along different latency regimes. Our best decoding settings achieve comparable results with a strong cascade model evaluated on the simultaneous translation track of IWSLT 2020 shared task.
Fichier principal
Vignette du fichier
2103.03233.pdf (319.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03372480 , version 1 (10-10-2021)

Identifiants

Citer

Ha Nguyen, Yannick Estève, Laurent Besacier. AN EMPIRICAL STUDY OF END-TO-END SIMULTANEOUS SPEECH TRANSLATION DECODING STRATEGIES. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021), Jun 2021, Toronto, Canada. ⟨10.1109/ICASSP39728.2021.9414276⟩. ⟨hal-03372480⟩
59 Consultations
73 Téléchargements

Altmetric

Partager

More