2.6% cm –2 Single-Pass CO 2 -to-CO Conversion Using Ni Single Atoms Supported on Ultra-Thin Carbon Nanosheets in a Flow Electrolyzer - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue ACS Catalysis Année : 2021

2.6% cm –2 Single-Pass CO 2 -to-CO Conversion Using Ni Single Atoms Supported on Ultra-Thin Carbon Nanosheets in a Flow Electrolyzer

Yang Zhang
Kun Qi
Franck Godiard
  • Fonction : Auteur
Erwan Oliviero
Xiaoqiang Cui
Ying Wang
  • Fonction : Auteur
Yupeng Zhang
Damien Voiry

Résumé

The CO2 reduction reaction using a renewable energy source is a promising strategy for its utilization. Such a technology however requires the development of catalysts with optimized activity and selectivity that can be integrated into the device architectures. Flow electrolyzers have recently been proposed for facilitating the electrochemical CO2 reduction reaction thanks to their unique ability to perform electroreduction at high reaction rates via the creation of three-phase interface. While some examples of flow electrolyzers for the conversion of CO2 has recently been reported, the influence of the CO2 and electrolyte streams on the overall catalytic mechanism is remained ambiguous. Here, we synthesized single-atom nickel on two-dimensional nitrogen-doped carbon nanosheets (SA Ni-NC) for the CO2-to-CO conversion. Taking advantage of this model catalyst, we explored the correlation between the applied potential and the feeds in both
Fichier principal
Vignette du fichier
V3-ACS Catalysis-Manuscript_HAL.pdf (1.4 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03364487 , version 1 (04-10-2021)

Identifiants

Citer

Yang Zhang, Kun Qi, Ji Li, Bonito A Karamoko, Luc Lajaunie, et al.. 2.6% cm –2 Single-Pass CO 2 -to-CO Conversion Using Ni Single Atoms Supported on Ultra-Thin Carbon Nanosheets in a Flow Electrolyzer. ACS Catalysis, 2021, 11 (20), pp.12701-12711. ⟨10.1021/acscatal.1c03231⟩. ⟨hal-03364487⟩
61 Consultations
177 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More