KAB: A new k-anonymity approach based on black hole algorithm - Archive ouverte HAL
Article Dans Une Revue Journal of King Saud University - Computer and Information Sciences Année : 2021

KAB: A new k-anonymity approach based on black hole algorithm

Lynda Kacha
  • Fonction : Auteur
  • PersonId : 1111815
Abdelhafid Zitouni
  • Fonction : Auteur

Résumé

K-anonymity is the most widely used approach to privacy preserving microdata which is mainly based on generalization. Although generalization-based k-anonymity approaches can achieve the privacy protection objective, they suffer from information loss. Clustering-based approaches have been successfully adapted for k-anonymization as they enhance the data quality, however, the computational complexity of finding an optimal solution has shown as NP-hard. Nature-inspired optimization algorithms are effective in finding solutions to complex problems. We propose, in this paper, a novel algorithm based on a simple nature-inspired metaheuristic called Black Hole Algorithm (BHA), to address such limitations. Experiments on real data set show that data utility has been improved by our approach compared to k-anonymity, BHA-based k-anonymity and clustering-based k-anonymity approaches.
Fichier principal
Vignette du fichier
2021_Kacha_JKSUCIS_KAB.pdf (1.5 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03359517 , version 1 (30-09-2021)

Licence

Identifiants

Citer

Mahieddine Djoudi, Lynda Kacha, Abdelhafid Zitouni. KAB: A new k-anonymity approach based on black hole algorithm. Journal of King Saud University - Computer and Information Sciences, 2021, https://www.sciencedirect.com/science/article/pii/S1319157821001002. ⟨10.1016/j.jksuci.2021.04.014⟩. ⟨hal-03359517⟩
155 Consultations
159 Téléchargements

Altmetric

Partager

More