KAB: A new k-anonymity approach based on black hole algorithm
Résumé
K-anonymity is the most widely used approach to privacy preserving microdata which is mainly based on generalization. Although generalization-based k-anonymity approaches can achieve the privacy protection objective, they suffer from information loss. Clustering-based approaches have been successfully adapted for k-anonymization as they enhance the data quality, however, the computational complexity of finding an optimal solution has shown as NP-hard. Nature-inspired optimization algorithms are effective in finding solutions to complex problems. We propose, in this paper, a novel algorithm based on a simple nature-inspired metaheuristic called Black Hole Algorithm (BHA), to address such limitations. Experiments on real data set show that data utility has been improved by our approach compared to k-anonymity, BHA-based k-anonymity and clustering-based k-anonymity approaches.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|