Total variation distance between a jump-equation and its Gaussian approximation - Archive ouverte HAL
Article Dans Une Revue Stochastics and Partial Differential Equations: Analysis and Computations Année : 2022

Total variation distance between a jump-equation and its Gaussian approximation

Vlad Bally
  • Fonction : Auteur
  • PersonId : 950772
Yifeng Qin
  • Fonction : Auteur
  • PersonId : 753089
  • IdHAL : yifeng-qin

Résumé

We deal with stochastic differential equations with jumps. In order to obtain an accurate approximation scheme, it is usual to replace the "small jumps" by a Brownian motion. In this paper, we prove that for every fixed time $t$, the approximate random variable $X^\varepsilon_t$ converges to the original random variable $X_t$ in total variation distance and we estimate the error. We also give an estimate of the distance between the densities of the laws of the two random variables. These are done by using some integration by parts techniques in Malliavin calculus.
Fichier principal
Vignette du fichier
Totalvariation (1).pdf (518.36 Ko) Télécharger le fichier
Totalvariation.pdf (518.36 Ko) Télécharger le fichier
structure.tex (6.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03351643 , version 1 (22-09-2021)
hal-03351643 , version 2 (23-03-2022)
hal-03351643 , version 3 (25-10-2022)

Identifiants

Citer

Vlad Bally, Yifeng Qin. Total variation distance between a jump-equation and its Gaussian approximation. Stochastics and Partial Differential Equations: Analysis and Computations, 2022, ⟨10.1007/s40072-022-00270-w⟩. ⟨hal-03351643v3⟩
200 Consultations
173 Téléchargements

Altmetric

Partager

More