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Abstract
We deal with stochastic differential equations with jumps. In order to obtain an accurate approximation

scheme, it is usual to replace the "small jumps" by a Brownian motion. In this paper, we prove that for
every fixed time t, the approximate random variable Xε

t converges to the original random variable Xt in
total variation distance and we estimate the error. We also give an estimate of the distance between the
densities of the laws of the two random variables. These are done by using some integration by parts
techniques in Malliavin calculus.
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1 Introduction
In this paper we consider the stochastic differential equation with jumps

Xt = x+

∫ t

0

∫
(0,1]

c(s, z,Xs−)Nµ(ds, dz)

where Nµ is a Poisson random measure on (0, 1] with compensator µ(dz)ds and c is a coefficient which
verifies strong regularity hypotheses (see Hypotheses 2.1-2.4 in Section 2.1). The typical example that
we have in mind is µ(dz) = dz

z1+ρ 1{z∈(0,1]}, with ρ ∈ [0, 1), so this is a truncated stable process - however,
throughout the paper, we keep the general framework in which µ is a measure which has infinite mass
around zero. Our aim is to replace the "small jumps" by a space-time Brownian motion:

Xε
t = x+

∫ t

0

∫
{z>ε}

c(s, z,Xε
s−)Nµ(ds, dz) (1)

+

∫ t

0

bε(s,X
ε
s )ds+

∫ t

0

∫
(0,ε]

c(s, z,Xε
s )Wµ(ds, dz),

where Wµ(ds, dz) is a space-time Brownian motion (in the sense of Walsh [36]) with covariance µ(dz)ds,
x ∈ R, and the coefficient bε is defined by

bε(s, x) =

∫
(0,ε]

c(s, z, x)µ(dz).

The interest of such approximations appears in various frameworks.
Our main motivation comes from numerical computations. If µ(E) <∞ then there are a finite number

of jumps in any compact interval of time, so Xt may be represented by means of a compound Poisson
process which may be explicitly simulated. But if µ(E) = ∞ this is not possible anymore (except in very
particular situations - see Talay and Protter [34] for example), and the "small jumps" should be truncated
to revert to the case of a finite measure. This procedure is rather rough and gives large errors. In order to
improve the approximation scheme, one may replace the "small jumps", namely those smaller than ε, by
a stochastic integral with respect to Wµ(ds, dz). Note that the Poisson measure dNµ is not compensated,
which is why the drift corresponding to bε appears. This idea goes back to Asmussen and Rosinski [3].
In the case of SDE′s driven by a Lévy process, Fournier [16] gives a precise estimate of the error and
compares the approximation obtained just by truncating the small jumps to the one obtained by adding a
Gaussian noise as in (1). An enlightening discussion on the complexity of the two methods is also given.
However, in that paper, the strong error is considered, while in our paper we discuss the weak error.
A second motivation comes from modelization problems in chemistry and biology: we are concerned by

reactions which are naturally modelled by means of jump processes containing two regimes: one is very
rapid but the jumps are small, and another is much slower and the jumps are larger – see for example
[1], [2], [4], [13], [28], [29]. In this case the regime corresponding to the rapid scale may be modelled by a
stochastic integral with respect to a Gaussian process and the slow regime by a compound Poisson process.
It may also be reasonable to consider an intermediary regime and this would be modelled by a drift term.
A third motivation is given by a class of statistical problems (see [11], [15] and references therein), where

a stochastic process is observed at various times and it should be decided whether its increments are due
to small jumps or to a Gaussian component. In this framework it is important to estimate the error in total
variation sense. The authors explain that, if the error in total variation between the laws of Xt and of Xε

t

goes to zero, then there is no way to construct a test which decides if the noise comes from small jumps
or from the Brownian motion. So, asymptotically, the two models contain the same information.
Let us now discuss briefly our results and the relation to previously available estimates. IfLt (respectively

Lεt ) represents the infinitesimal operator of Xt (respectively of Xε
t ) then a development in Taylor series of

order two gives
‖(Lt − Lεt )f‖∞ ≤ C ‖f‖3,∞

∫
(0,ε]

|ĉ(z)|3 µ(dz),
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where ĉ(z) := sup
s≤T

sup
x∈R
|c(s, z, x)| and ‖f‖3,∞ :=

∑
0≤i≤3

‖f (i)‖∞. Then a Trotter-Kato type argument yields

sup
s≤T
‖(Pt − P εt )f‖∞ ≤ C ‖f‖3,∞

∫
(0,ε]

|ĉ(z)|3 µ(dz)

where Pt (respectively of P εt ) represents the semigroup of Xt (respectively of Xε
t ).

The drawback of the above estimate is that the bound on the error involves ‖f‖3,∞, so it only applies
to smooth test functions. The main contribution of our paper is to replace ‖f‖3,∞ by ‖f‖∞, so as to prove
convergence in total variation distance. This is done under non-degeneracy and regularity assumptions
on the coefficient c. Moreover, under these hypotheses, we prove that P(Xt(x) ∈ dy) = pt(x, y)dy and
P(Xε

t (x) ∈ dy) = pεt (x, y)dy with smooth densities y 7→ pt(x, y) and y 7→ pεt (x, y). And, for every k and
every δ > 0, we obtain ∥∥∂kypt − ∂kypεt∥∥∞ ≤ Ck,δ(∫

(0,ε]

|ĉ(z)|3 µ(dz)
)1−δ

.

This proves that pεt converges to pt in distribution norms as ε→ 0.
Our approach uses a strategy based on integration by parts (an abstract Malliavin calculus) developed

in [6].
The paper is organized as follows. In Section 2, we give the main results and in Section 3, we recall

the integration by parts technique introduced in [6] and used here. In Section 4, we use these results
in the framework of stochastic equations with jumps and we prove the main result (Theorem 2.2). The
Appendix contains technical estimates concerning Sobolev norms in Malliavin sense.

2 Main results

2.1 The basic equation and the hypotheses
A time horizon T > 0 will be fixed throughout the paper. As already mentioned, we deal with the

one-dimensional jump equation

Xt = x+

∫ t

0

∫
(0,1]

c(s, z,Xs−)Nµ(ds, dz), (2)

where Nµ is a Poisson point measure with intensity N̂µ(ds, dz) = µ(dz)ds, and µ is a positive σ-finite
measure on (0, 1], t ∈ [0, T ].
For technical reasons which will be discussed in Section 4, we introduce the following change of vari-

ables. Let θ : (0, 1] → [1,∞) be the function defined by θ(z) = 1
z , and let ν(dz) := µ ◦ θ−1(dz). Then

ν is a positive σ-finite measure on [1,∞). Consider a Poisson point measure Nν(ds, dz) with intensity
N̂ν(ds, dz) = ν(dz)ds. One may then check that for every t ∈ [0, T ], Xt has the same law as X̂t, with
(X̂t)t∈[0,T ] the solution of

X̂t = x+

∫ t

0

∫
[1,∞)

c̃(s, z, X̂s−)Nν(ds, dz), (3)

where c̃(s, z, x) := c(s, 1
z , x).

Since this paper deals with the laws of the solution to (2),it is equivalent to consider the equation (3).
We formulate our hypotheses in terms of c̃ and ν (instead of c and µ).

Hypothesis 2.1 (Regularity with parameter q∗) The map (s, z) 7→ c̃(s, z, x) is continuous, and there
exists a non-negative and decreasing function c̄ : [1,∞) → R+ and a constant q∗ ∈ N such that for every
indices β1, β2, with β1 ≤ q∗ and β2 ≤ q∗, we have

sup
s∈[0,T ]

sup
x∈R

(|c̃(s, z, x)|+ |∂β2
z ∂β1

x c̃(s, z, x)|) ≤ c̄(z), ∀z ∈ [1,∞),
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with ∫
[1,∞)

|c̄(z)|pν(dz) =: c̄p <∞, ∀p ≥ 1. (4)

Remark. Wewill use several times the following consequence of (4) and of Burkholder’s inequality (see for
example the Theorem 2.11 in [26]): We assume that Φ(s, z, ω) and ϕ(s, ω) are two non-negative functions
such that

|Φ(s, z, ω)| ≤ c̄(z)ϕ(s, ω).

Then for any p ≥ 2,

E
∣∣∣ ∫ T

0

∫
[1,∞)

Φ(s, z, ω)Nν(ds, dz)
∣∣∣p ≤ C × Cp E ∫ T

0

|ϕ(s, ω)|pds, (5)

where Cp = max{(c̄2)
p
2 , c̄p, (c̄1)p} and C is a constant depending on p and T .

Proof. By compensating Nν , using Burkholder’s inequality and (4), we have

E|
∫ T

0

∫
[1,∞)

Φ(s, z, ω)Nν(ds, dz)|p ≤ C(E|
∫ T

0

∫
[1,∞)

Φ(s, z, ω)Ñν(ds, dz)|p + E|
∫ T

0

∫
[1,∞)

Φ(s, z, ω)ν(dz)ds|p)

≤ C(E
∫ T

0

(

∫
[1,∞)

|Φ(s, z, ω)|2ν(dz))
p
2 ds+ E

∫ T

0

∫
[1,∞)

|Φ(s, z, ω)|pν(dz)ds+ E
∫ T

0

|
∫

[1,∞)

Φ(s, z, ω)ν(dz)|pds)

≤ C × CpE
∫ T

0

|ϕ(s, ω)|pds.

Hypothesis 2.2 There exists a non-negative function c̆ : [1,∞)→ R+ such that
∫

[1,∞)
|c̆(z)|pν(dz) =: c̆p <

∞, ∀p ≥ 1, and ∣∣∣ ∂xc̃(s, z, x)

1 + ∂xc̃(s, z, x)

∣∣∣ ≤ c̆(z), ∀s ∈ [0, T ], x ∈ R, z ∈ [1,∞).

To avoid overburdening notation, since both hypotheses 2.1 and 2.2 apply, we will take c̆(z) = c̄(z).

Hypothesis 2.3 (Ellipticity) There exists a non-negative function c : [1,∞) → R+ such that for every
s ∈ [0, T ], x ∈ R, z ∈ [1,∞),

|∂z c̃(s, z, x)|2 ≥ c(z) and |c̃(s, z, x)|2 ≥ c(z).

Hypothesis 2.4 (Sector condition) This is a supplementary hypothesis concerning the measure ν. Two
version of this hypothesis will be used; we state them separately below. Let Ik = [k, k + 1), k ∈ N and
mk = ν(Ik).
(a) Strong sector condition: We say that the strong sector condition is satisfied if there exist constants
ε∗ > 0 and α1 ≥ α0 > α2 > 0, such that

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)

ε∗
z1−α1

dz for all k ∈ N, (6)

c(z) ≥ e−z
α2 for all z ≥ 1 and,∫ ∞

1

|c̄(z)|p

z1−α0
dz < ∞ for all p ≥ 1. (7)

Notice that if (6) is true for some α1, then it is also true for any α ≤ α1. So (6) also implies

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)εkdz, with εk =

ε∗
(k + 1)1−α ,
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for any α ≤ α1.
(b) Weak sector condition: We say that the weak sector condition holds if there exist constants ε∗ > 0
and α > 0, such that for every k ∈ N, we have

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)

ε∗
z
dz for all k ∈ N, (8)

c(z) ≥ 1

zα
for all z ≥ 1 and,∫ ∞

1

|c̄(z)|p

z
dz < ∞ for all p ≥ 1. (9)

We notice that (8) also implies 1Ik(z)ν(dz)
mk
≥ 1Ik(z)εkdz with εk = ε∗

k+1 .

Remark. Notice that hypotheses 2.1, 2.2 and 2.3 are analogous to those in [10] (2− 7, 2− 26, 2− 24).

Henceforth, we will suppose that hypotheses 2.1-2.3 hold, as well as either 2.4(a) or 2.4(b).

2.2 Approximation
We come back now to equation (2). The goal of this paper is to replace the small jumps in (2) by a drift

and a Brownian motion. In equation (2), the Poisson point measure Nµ is not compensated, so the first
step is to introduce a drift (see bε below) which represents the compensator. Afterwards, we introduce a
space-time Brownian motionWµ in order to replace the "compensated small jumps":

Xε
t = x+

∫ t

0

∫
{z>ε}

c(s, z,Xε
s−)Nµ(ds, dz)

+

∫ t

0

bε(s,X
ε
s )ds+

∫ t

0

∫
(0,ε]

c(s, z,Xε
s )Wµ(dz, ds), (10)

where

bε(s, x) =

∫
(0,ε]

c(s, z, x)µ(dz)

andWµ is a space-time Brownian motion with covariance measure µ(dz)ds, which is independent of Nµ.
Let us discuss this equation. We notice that we keep the "big jumps" with z > ε but we eliminate the

"small jumps" with z ≤ ε.We replace the "small jumps" by the drift with coefficient bε and by the stochastic
integral with coefficient c. This stochastic integral is driven by the so called space-time Brownian motion
Wµ, as introduced by Walsh in [36]. The existence and uniqueness of the solution to this equation (10) are
also given by Kunita (see [26], [27]).
We recall that we work on a fixed interval of time [0, T ]. We now precise the filtration that we consider.

Let

FWt = σ(Wµ(ϕ1[0,t]) : ϕ ∈ L2((0, 1]× [0, T ], µ× Leb)),
FNt = σ(Nµ(ϕ1[0,t]) : ϕ ∈ L1((0, 1]× [0, T ], µ× Leb)),

Ft = FWt
∨
FNt , (11)

where Leb denotes the Lebesgue measure and

Wµ(ϕ) =

∫ T

0

∫
(0,1]

ϕ(s, z)Wµ(ds, dz), Nµ(ϕ) =

∫ T

0

∫
(0,1]

ϕ(s, z)Nµ(ds, dz).

So, Xε
t is Ft−measurable and Xt is FNt −measurable.

We denote

L2(W ) = {F ∈ FWT : E|F |2 <∞}, L2(N) = {G ∈ FNT : E|G|2 <∞}. (12)
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Remark. Let Φ be an adapted and piecewise constant process, that is

Φ(s, z, ω) =

n∑
i=1

m∑
j=1

Φi,j(ω)1[si,si+1)(s)1Bj (z),

where 0 ≤ s1 < · · · < sn, i = 1, · · · , n, Bj ∈ B((0, 1]), j = 1, · · · ,m, are disjoint sets. Suppose that Φi,j
are FWsi −measurable for all j = 1, · · · ,m, and sup

i,j
E|Φi,j |2 <∞. Then for every G ∈ L2(N), we have

E
[
G×

∫ T

0

∫
(0,1]

Φ(s, z, ω)Wµ(ds, dz)
]

= 0. (13)

Proof. Since Wµ([si, si+1) × Bj) is centered and independent of Φi,j and of G, for all i = 1, · · · , n, j =
1, · · · ,m, it follows that E[GΦi,jWµ([si, si+1) × Bj)] = 0. Then it extends by linearity, and so (13) is
true.

Now we write the infinitesimal operator of Xs and Xε
s , respectively: For φ ∈ C3

b (R) (the space of
functions with continuous and bounded derivatives up to order 3),

Lsφ(x) =

∫
(0,1]

(φ(x+ c(s, z, x))− φ(x))µ(dz) and

Lεsφ(x) =

∫
{z>ε}

(φ(x+ c(s, z, x))− φ(x))µ(dz) + φ′(x)bε(s, x) + 1
2φ
′′(x)aε(s, x), (14)

where
aε(s, x) =

∫
(0,ε]

|c(s, z, x)|2µ(dz).

Using Taylor’s formula of order 2, we find

Lsφ(x) =

∫
{z>ε}

(φ(x+ c(s, z, x))− φ(x))µ(dz) + φ′(x)bε(s, x) + 1
2φ
′′(x)aε(s, x) +Rs(x),

where

|Rs(x)| ≤ 1
6‖φ‖3,∞

∫
(0,ε]

|c(s, z, x)|3µ(dz),

with ‖φ‖l,∞ :=
∑

0≤i≤l
‖φ(i)‖∞, the sum of all the uniform norms of the derivatives of function φ up to

order l. In conclusion, we find

‖(Ls − Lεs)φ‖∞ = ‖Rs‖∞ ≤
1
6 ‖φ‖3,∞ η3(ε), (15)

with
ηp(ε) =

∫
(0,ε]

|c̄(1/z)|p µ(dz) =

∫
[ε−1,∞)

|c̄(z)|p ν(dz), p ≥ 1. (16)

Then, we can give an estimate of the distance between the semigroups. We use the standard semigroup
notation, which we remind below. Let [Xt(s, x)]t≥s and [Xε

t (s, x)]t≥s be the solutions to (2) and (10), re-
spectively, starting at time s from point x. Denote byPs,tφ(x) = Eφ(Xt(s, x)) andP εs,tφ(x) = Eφ(Xε

t (s, x)).
Also, set Pt := P0,t and P εt := P ε0,t.

Lemma 2.1. There exists a constant C depending on T such that for φ ∈ C3
b (R) and 0 ≤ t ≤ T , we have

‖Ptφ− P εt φ‖∞ ≤ C ‖φ‖3,∞ η3(ε). (17)
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Proof. Step 1 Trotter-Kato method: We know from Kunita [27] (Theorem 4.5.1) that we have the Kol-
mogorov forward and backward equations:

∂tPs,tφ(x) = Ps,tLtφ(x), ∂tP
ε
s,tφ(x) = P εs,tL

ε
tφ(x); (18)

∂sPs,tφ(x) = −LsPs,tφ(x), ∂sP
ε
s,tφ(x) = −LεsP εs,tφ(x). (19)

Then using Newton-Leibniz’s formula and (18), (19),

P εt φ(x)− Ptφ(x) =

∫ t

0

∂s(P
ε
0,sPs,t)φ(x)ds =

∫ t

0

(P ε0,s(L
ε
s − Ls)Ps,t)φ(x)ds.

It follows that

‖Ptφ− P εt φ‖∞ ≤
∫ t

0

∥∥P ε0,s(Lεs − Ls)Ps,tφ∥∥∞ ds

≤
∫ t

0

‖(Lεs − Ls)Ps,tφ‖∞ ds

≤ 1
6 η3(ε)

∫ t

0

‖Ps,tφ‖3,∞ ds. (20)

Step 2 (propagation of regularity) In [27], Kunita has shown in Theorem 3.4.1 and Theorem 3.4.2
the regularity of the flow associated with the jump-diffusion. So in our case, we have

‖Ps,tφ‖3,∞ ≤ sup
x∈R

(E|φ(Xt(s, x))|+ E|∂xφ(Xt(s, x))|+ E|∂2
xφ(Xt(s, x))|+ E|∂3

xφ(Xt(s, x))|)

≤ ‖φ‖3,∞ sup
x∈R

E[1 + 3|∂xXt(s, x)|+ 3|∂2
xXt(s, x)|+ |∂3

xXt(s, x)|] ≤ C ‖φ‖3,∞ . (21)

Substituting (21) into (20), we obtain (17).

Remark. A similar result has been obtained in [21] (Theorem 4.7). Besides, one may also consider an
approximate equation obtained just by discarding the small jumps:

X̃ε
t = x+

∫ t

0

∫
{z>ε}

c(s, z, X̃ε
s−)Nµ(ds, dz).

Then, if L̃εs is the infinitesimal operator of X̃ε
s , we have ‖(Ls − L̃εs)φ‖∞ ≤ ‖φ‖1,∞η1(ε). So the same

reasoning as above gives ∥∥Ptφ− P̃ εt φ∥∥∞ ≤ C ‖φ‖1,∞ × η1(ε)→ 0. (22)
The gain in (17) is that we have η3(ε) instead of η1(ε) in (22), which means that we have a faster speed

of convergence.

2.3 The main theorem
We are finally ready to state the main results of this paper. Denote by dTV (F,G) the total variation

distance between the laws of two random variables F and G.

Theorem 2.2. Assume that Hypotheses 2.1, 2.2. and 2.3 hold with q∗ ≥ 3
δ + 1 for some δ > 0.

(a) If in addition we assume Hypothesis 2.4 (a), then there exists a constant C depending on δ and T such
that

dTV (Xt, X
ε
t ) ≤ Cη3(ε)1−δ. (23)

Under the above hypotheses, the laws of Xt and Xε
t are absolutely continuous with respect to the Lebesgue

measure, with smooth densities pXt(x) and pXεt (x). Moreover, if l is an index such that q∗ ≥ 3+l
δ + 1, then

there exists a constant C depending on δ, T and l such that

‖pXt − pXεt ‖l,∞ ≤ Cη3(ε)1−δ. (24)
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(b) If in addition we assume Hypothesis 2.4 (b), then there exists a constant C depending on δ and T such
that for every t ∈ [0, T ] with t > 8α( 3

δ−1)

ε∗
(with ε∗ and α given in Hypothesis 2.4 (b)), we have

dTV (Xt, X
ε
t ) ≤ Cη3(ε)1−δ. (25)

For any index l and for t > 8α(3l+2)
ε∗

, both the laws ofXt andXε
t have l-times differentiable densities pXt(x)

and pXεt (x). Assume moreover that q∗ ≥ 3+l
δ + 1. Then there exists a constant C depending on δ ,T and l

such that for t > max{ 8α
ε∗

( 3+l
δ − 1), 8α(3l+2)

ε∗
}, we have

‖pXt − pXεt ‖l,∞ ≤ Cη3(ε)1−δ. (26)

The proof of this theorem is left to Section 4.4.

Remark. Some recent results concerning the weak approximation of the SDE with jumps are also given in
[14], [22], [23] for example. But they do not concern the convergence in total variation distance.

2.4 A typical example
For t ∈ [0, T ], we consider the following SDE driven by a Lévy process:

Xt = x+

∫ t

0

σ(Xs−)dZs, (27)

where (Zt)t∈[0,T ] is a Lévy process of Lévy triplet (0, 0, µ), with µ(dz) = 1(0,1](z)
dz
z1+ρ , 0 ≤ ρ < 1.

We approximate (27) by

Xε
t = x+

∫ t

0

σ(Xε
s−)dZεs + b(ε)

∫ t

0

σ(Xε
s )ds+ c(ε)

∫ t

0

σ(Xε
s )dBs, (28)

where (Zεt )t∈[0,T ] is a Lévy process of Lévy triplet (0, 0,1{z>ε}µ(dz)), (Bt)t∈[0,T ] is a standard Brownian
motion independent of (Zεt )t∈[0,T ], and

b(ε) =

∫
(0,ε]

zµ(dz), c(ε) =

√∫
(0,ε]

z2µ(dz).

Then we have the following theorem.

Theorem 2.3. We assume that σ ∈ C∞b (R), 0 < σ ≤ σ(x) ≤ σ̄ and −1 < a ≤ σ′(x) ≤ σ̄, ∀x ∈ R, for some
universal constants σ̄, σ, a, where σ′ is the differential of σ in x. Then for any δ > 0, there is a constant C > 0
such that for any t ∈ [0, T ],

dTV (Xt, X
ε
t ) ≤ Cε3−ρ−δ.

Moreover, the laws of Xt and Xε
t have smooth densities pXt(x) and pXεt (x) respectively. And for any index l

and any δ > 0, there exists a constant C > 0 such that

‖pXt − pXεt ‖l,∞ ≤ Cε
3−ρ−δ.

Proof. We notice that

Zt =

∫ t

0

∫
(0,1]

zNµ(ds, dz),

whereNµ is a Poisson point measure with intensity µ(dz)ds. Then (27) coincides with (2) with c(s, z, x) =
σ(x)z, and (28) coincides with (10) with c(s, z, x) = σ(x)z, bε(s, x) = b(ε)σ(x), and

∫
{z≤ε} zWµ(ds, dz) =

c(ε)dBs.
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Let θ : (0, 1]→ [1,∞) be a function defined by θ(z) = 1
z . By a change of variables,

c̃(s, z, x) = c(s,
1

z
, x) = σ(x)× 1

z
, ν(dz) = µ ◦ θ−1(dz) = 1[1,∞)(z)

dz

z1−ρ .

One can easily check that Hypothesis 2.1 is verified (for every q∗ ∈ N) with c̄(z) = σ̄ × 1
z and∫ ∞

1

|c̄(z)|pν(dz) =

∫ ∞
1

σ̄p

zp+1−ρ dz <∞, ∀p ≥ 1.

We recall that Ik = [k, k + 1), k ∈ N and mk = ν(Ik). Then for sufficiently large z, we have

min{|∂z c̃(s, z, x)|2, |c̃(s, z, x)|2} ≥ σ2 × 1

z4
≥ e−z

α2
,

with some 0 < α2 < 1. We also have

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)

1

2
dz ≥ 1Ik(z)

1

2

dz

z1−α0
,

with some α0 ∈ (α2, 1). Moreover, since for any p ≥ 1, p+ 1− α0 > 1, we have∫ ∞
1

|c̄(z)|p

z1−α0
dz = σ̄

∫ ∞
1

1

zp+1−α0
dz <∞.

So Hypothesis 2.3 and Hypothesis 2.4 (a) are satisfied. Finally,

∣∣ ∂xc̃(s, z, x)

1 + ∂xc̃(s, z, x)

∣∣ ≤ σ̄ × 1
z

1 + a× 1
z

≤ max{ 1

1 + a
, 1} × σ̄ × 1

z
,

so Hypothesis 2.2 is satisfied as well. Then we can apply Theorem 2.2(a) for the equation (27) and (28).
Since

η3(ε) =

∫
(0,ε]

σ̄3 × z3µ(dz) =
σ̄3

3− ρ
ε3−ρ,

we obtain the estimates from Theorem 2.3.

3 Abstract integration by parts framework
In order to obtain the main theorem (Theorem 2.2), we will apply some techniques of Malliavin calcu-

lus. So firstly, we give the abstract integration by parts framework introduced in [6]. This is a variant of
the integration by parts framework given in [10].

We consider a probability space (Ω,F ,P), and a subset S ⊂
∞⋂
p=1

Lp(Ω;R) such that for every φ ∈ C∞p (Rd)

and every F ∈ Sd, we have φ(F ) ∈ S (with C∞p the space of smooth functions which, together with all
the derivatives, have polynomial growth). A typical example of S is the space of simple functionals, as in
the standard Malliavin calculus. Another example is the space of "Malliavin smooth functionals".
Given a separable Hilbert spaceH, we assume that we have a derivative operator D : S →

∞⋂
p=1

Lp(Ω;H)

which is a linear application which satisfies
a)

DhF := 〈DF, h〉H ∈ S, for any h ∈ H, (29)

b) Chain Rule: For every φ ∈ C∞p (Rd) and F = (F1, · · · , Fd) ∈ Sd, we have
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Dφ(F ) =

d∑
i=1

∂iφ(F )DFi, (30)

SinceDhF ∈ S, wemay define by iteration the derivative operator of higher orderDq : S →
∞⋂
p=1

Lp(Ω;H⊗q)

which verifies 〈DqF,⊗qi=1hi〉H⊗q = DhqDhq−1 · · ·Dh1F . We also denoteDq
h1,··· ,hqF := DhqDhq−1 · · ·Dh1F .

Then, Dq
h1,··· ,hqF = DhqD

q−1
h1,··· ,hq−1

F (q ≥ 2).
For F = (F1, · · · , Fd̃) ∈ S d̃, we define σF = (σi,jF )i,j=1,··· ,d̃ to be the Malliavin covariance matrix with

σi,jF = 〈DFi, DFj〉H and we denote

Σp(F ) = E(1/ detσF )p. (31)

For d̃ = 1, which is the case that we discuss in this paper, detσF = σF = 〈DF,DF 〉H. We say that F is
non-degenerated if Σp(F ) <∞, ∀p ≥ 1.
We also assume that we have an Ornstein-Uhlenbeck operator L : S → S which is a linear operator

satisfying the following duality formula:
Duality: For every F,G ∈ S,

E〈DF,DG〉H = E(FLG) = E(GLF ). (32)

As an immediate consequence of the duality formula, we know that L : S ⊂ L2(Ω)→ L2(Ω) is closable.

Definition 3.1. If Dq : S ⊂ L2(Ω) → L2(Ω;H⊗q), ∀q ≥ 1, are closable, then the triplet (S, D, L) will be
called an IbP (Integration by Parts) framework.

Now, we introduce the Sobolev norms. For any l ≥ 1, F ∈ S,

|F |1,l =

l∑
q=1

|DqF |H⊗q , |F |l = |F |+ |F |1,l . (33)

We remark that |F |0 = |F | and |F |1,l = 0 for l = 0. For F = (F1, · · · , Fd) ∈ Sd, we set

|F |1,l =

d∑
i=1

|Fi|1,l , |F |l =

d∑
i=1

|Fi|l .

Moreover, we associate the following norms. For any l, p ≥ 1,

‖F‖l,p = (E |F |pl )
1/p, ‖F‖p = (E |F |p)1/p,

‖F‖L,l,p = ‖F‖l,p + ‖LF‖l−2,p . (34)

We denote by Dl,p the closure of S with respect to the norm ‖◦‖L,l,p :

Dl,p = S‖◦‖L,l,p , (35)

and

D∞ =

∞⋂
l=1

∞⋂
p=1

Dl,p, Hl = Dl,2.

For an IbP framework (S, D, L), we now extend the operators from S to D∞. For F ∈ D∞, p ≥ 2, there
exists a sequence Fn ∈ S such that ‖F − Fn‖p → 0, ‖Fm − Fn‖q,p → 0 and ‖LFm − LFn‖q−2,p → 0. Since
Dq and L are closable, we can define

DqF = lim
n→∞

DqFn in Lp(Ω;H⊗q), LF = lim
n→∞

LFn in Lp(Ω). (36)

We still associate the same norms introduced above for F ∈ D∞.
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Lemma 3.1. The triplet (D∞, D, L) is an IbP framework.

Proof. Here we just show that D verifies (29): For F ∈ D∞ and h ∈ H, we have 〈DF, h〉H ∈ D∞.
In fact, for any k ≥ 1, p ≥ 2, any F ∈ Dk+1,p, there is a sequence Fn ∈ S such that ‖Fn − F‖k+1,p → 0.

Then for any u1, · · · , uk ∈ Lp(Ω;H), h ∈ H, any n,m ∈ N,

E〈Dk(〈DFm, h〉H − 〈DFn, h〉H), u1 ⊗ · · · ⊗ uk〉
p
2

H⊗k = E|DukDuk−1
· · ·Du1〈D(Fm − Fn), h〉H|

p
2

= E|DukDuk−1
· · ·Du1

Dh(Fm − Fn)|
p
2 = E|〈Dk+1(Fm − Fn), h⊗ u1 ⊗ · · · ⊗ uk〉H⊗(k+1) |

p
2

≤ E|Dk+1(Fm − Fn)|
p
2

H⊗(k+1) |h⊗ u1 ⊗ · · · ⊗ uk|
p
2

H⊗(k+1) → 0,

which yields that E|Dk(〈DFm, h〉H − 〈DFn, h〉H)|pH⊗k → 0. Therefore, 〈DF, h〉H ∈ Dk,p and (29) is veri-
fied.

The following lemma is useful in order to control the Sobolev norms ‖F‖L,l,q.

Lemma 3.2. We fix p ≥ 2, l ≥ 2. Let F ∈ L1(Ω) and let Fn ∈ S, n ∈ N such that

i) E |Fn − F | → 0,

ii) sup
n
‖Fn‖L,l,p ≤ Kl,p <∞.

Then for every 1 ≤ p̄ < p, we have F ∈ Dl,p̄ and ‖F‖L,l,p̄ ≤ Kl,p̄ .

Proof. The Hilbert space Hl = Dl,2 equipped with the scalar product

〈U, V 〉L,l,2 :=

l∑
q=1

E〈DqU,DqV 〉H⊗q + E|UV |

+

l−2∑
q=1

E〈DqLU,DqLV 〉H⊗q + E|LU × LV |

is the space of the functionals which are l−times differentiable in L2 sense. By ii), for p ≥ 2, ‖Fn‖L,l,2 ≤
‖Fn‖L,l,p ≤ Kl,p. Then, applying Banach Alaoglu’s theorem, there exists a functional G ∈ Hl and a
subsequence (we still denote it by n), such that Fn → G weakly in the Hilbert space Hl. This means
that for every Q ∈ Hl, 〈Fn, Q〉L,l,2 → 〈G,Q〉L,l,2. Therefore, by Mazur’s theorem, we can construct some
convex combination

Gn =

mn∑
i=n

λni × Fi ∈ S

with λni ≥ 0, i = n, ....,mn and
mn∑
i=n

λni = 1, such that

‖Gn −G‖L,l,2 → 0.

In particular we have
E |Gn −G| ≤ ‖Gn −G‖L,l,2 → 0.

Also, we notice that by i),

E |Gn − F | ≤
mn∑
i=n

λni × E |Fi − F | → 0.

So we conclude that F = G ∈ Hl. Thus, we have

E(|Gn − F |2l ) + E(|LGn − LF |2l−2) ≤ ‖Gn − F‖2L,l,2 → 0.
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By passing to a subsequence, we have |Gn − F |l + |LGn − LF |l−2 → 0 almost surely. Now, for every
p̄ ∈ [1, p), we denote Yn := |Gn|p̄l + |LGn|p̄l−2 and Y := |F |p̄l + |LF |p̄l−2. Then, Yn → Y almost surely, and
for any q̃ ∈ [p̄, p],

E|Gn|q̃l + E|LGn|q̃l−2 ≤ ‖Gn‖q̃L,l,q̃ =

∥∥∥∥∥
mn∑
i=n

λni × Fi

∥∥∥∥∥
q̃

L,l,q̃

≤ (

mn∑
i=n

λni × ‖Fi‖L,l,q̃)
q̃

≤ (sup
i
‖Fi‖L,l,q̃ ×

mn∑
i=n

λni )q̃ = sup
i
‖Fi‖q̃L,l,q̃ ≤ K

q̃
l,q̃.

So (Yn)n∈N is uniformly integrable, and we have

‖F‖p̄L,l,p̄ = E(|F |p̄l ) + E(|LF |p̄l−2) = E(Y ) = lim
n→∞

E(Yn) ≤ K p̄
l,p̄,

3.1 Main consequences: Convergence in total variation distance
We will use the abstract framework in [6] for the IbP framework (D∞, D, L), with D and L defined in

(36). Using Malliavin type arguments, [6] proves the following results. The first result, concerning the
density, is classical:

Lemma 3.3. Let F ∈ D∞. If Σ6p+4(F ) <∞, then the law of random variable F has a density pF (x) which
is p−times differentiable.

In the following, we define the distances between random variables F,G : Ω→ R:

dk(F,G) = sup{|E(f(F ))− E(f(G))| :
∑

0≤i≤k

∥∥∥f (i)
∥∥∥
∞
≤ 1}

For k = 1, this is the Fortet Mourier distance (which is a variant of the Wasserstein distance), while for
k = 0, this is the total variation distance and we denote it by dTV . Now we present the second result
concerning the total variation distance:

Lemma 3.4. We fix some index l, some r ∈ N and some δ > 0. We define p1 = 2(r( 1
δ − 1) + 2), p2 =

max{6l+ 4, 2( r+lδ − r+ 2)}, q1 ≥ r( 1
δ −1) + 4, q2 ≥ r+l

δ − r+ 4. Let F,G ∈ D∞. Then one may find C ∈ R+

, p ∈ N (depending on r and δ) such that

i) dTV (F,G) ≤ C(1 + Σp1
(F ) + Σp1

(G) + ‖F‖L,q1,p + ‖G‖L,q1,p)× dr(F,G)1−δ, (37)

and
ii) ‖pF − pG‖l,∞ ≤ C(1 + Σp2

(F ) + Σp2
(G) + ‖F‖L,q2,p + ‖G‖L,q2,p)× dr(F,G)1−δ, (38)

where pF (x) and pG(x) denote the density functions of F and G respectively.

Comment The significance of this lemma is the following. Suppose that one has already obtained an
estimate of a "smooth" distance dr between two random vectors F and G (in our case r = 3 in (17)).
But we would like to control the total variation distance between them. In order to do this, one employs
some integration by parts techniques which are developed in [6] and conclude the following. We need
to assume that both F and G are "smooth" in the sense that ‖F‖L,q,p + ‖G‖L,q,p < ∞ for sufficiently
large q, p. Moreover, we need some non degeneracy condition: both F and G are non-degenerated, that
is Σp(F ) + Σp(G) <∞, with p large enough. Then (37) asserts that one may control dTV by dr, and the
control is quasi optimal: we loose just a power δ > 0 which we may take as small as we want. And (38)
says that we may also control the distance between the derivatives of density functions by dr.
Then we can get the following corollary.
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Corollary 3.4.1. We fix some index l, some r ∈ N and some δ > 0.We define p1, p2, q1, q2 as in Lemma 3.4.
Let FM ∈ D∞,M ∈ N such that for every p ≥ 1,

sup
M

(‖FM‖L,q1,p + Σp1
(FM )) ≤ Qq1,p,p1

<∞,

withQq1,p,p1 a constant not dependent onM . Consider moreover some random variableF such that dr(F, FM )→
0. Then there exists a constant C > 0 such that

i) dTV (F, FM ) ≤ Cdr(F, FM )1−δ.

Moreover, if sup
M

(‖FM‖L,q2,p + Σp2
(FM )) ≤ Qq2,p,p2

<∞, the law of F is absolutely continuous with smooth

density pF and one has
ii) ‖pF − pFM ‖l,∞ ≤ Cdr(F, FM )1−δ.

Proof. We take C to be a constant depending on p, p1, q1, r and δ which can change from one line to
another. By Lemma 3.4, for everyM < M ′, one has

dTV (FM , FM ′) ≤ Cdr(FM , FM ′)1−δ ≤ C[dr(FM , F )1−δ + dr(F, FM ′)
1−δ]. (39)

So (FM )M∈N is a Cauchy sequence in dTV . It follows that it has a limit G. But since dr(FM , F ) → 0, it
follows that F = G. Passing to the limitM ′ →∞ in (39), we get

dTV (FM , F ) ≤ Cdr(FM , F )1−δ.

The proof of ii) is analogous.

4 Malliavin calculus and stochastic differential equations with jumps
In this section we present the integration by parts framework that will be used in the following. To

begin we give a quick informal presentation of our strategy. We will work with the solution of the equation
(10), but, for technical reasons, we make the change of variable z 7→ 1

z so the equation of interest is now
the equation (49). We use the notation from that section. The intensity measure for our random measure
is 1[1,M)(z)ν(dz)ds and this is a finite measure. Then the corresponding Poisson Point measure Nν may
be represented by means of a compound Poisson process. For some technical reasons, we produce the
representation on each set {z ∈ Ik = [k, k + 1)}, k ∈ N, so the equation (49) reads

X̂M
t = x+

∫ t

0

M−1∑
k=1

∫
{z∈Ik}

c̃(s, z, X̂M
s−)Nν(ds, dz)

+

∫ t

0

bM (s, X̂M
s )ds+

∫ t

0

∫
{z≥M}

c̃(s, z, X̂M
s )Wν(ds, dz)

= x+

M−1∑
k=1

Jkt∑
i=1

c̃(T ki , Z
k
i , X̂

M
Tki −

)

+

∫ t

0

bM (s, X̂M
s )ds+

∫ t

0

∫
{z≥M}

c̃(s, z, X̂M
s )Wν(ds, dz).

Here T ki , k, i ∈ N are the jump times of the Poisson process (Jkt )t∈[0,T ] of parameter ν(Ik), and Zki , k, i ∈ N
are independent random variables of law 1Ik(z)ν(dz)

ν(Ik) , which are independent of Jk as well. We will work
conditionally to T ki , k, i ∈ N, so the randomness in the system comes from Wν on one hand and from
Zki , k, i ∈ N on the other hand. Concerning Wν we will use the standard Malliavin calculus (which fits in

13



the framework presented in Section 3). But we will also use this integration by parts calculus with respect
to the amplitude of the jumps given by Zki , k, i ∈ N.We present this kind of calculus now.
Suppose for a moment (just for simplicity) the law of Zki is absolutely continuous with respect to the

Lebesgue measure and has a smooth density hk(z) which has compact support. We also assume that the
logarithm of the density lnhk is smooth. Then we look to X̂M

t as to a functional F (Z1
1 , ..., Z

M−1
Jkt

) and we
define the derivative operators

DZ
k,iF =

∂

∂zki
F (Z1

1 , ..., Z
M−1
Jkt

),

and
LZF = −

∑
k,i

DZ
k,iD

Z
k,iF +DZ

k,iF × ∂z lnh(Zki ).

And we check that these operators verify the conditions in Section 3. Since we want to use integration by
parts with respect to both Wν and Zki , k, i ∈ N, we will consider the derivative operator D = (DW , DZ)
and the operator L = (LW , LZ) where DW and LW are the derivative and Ornstein Uhlenbeck operators
from the standard Malliavin calculus for Gaussian random variables. With these operators at hand we
check the hypotheses of Lemma 3.4 and of Corollary 3.4.1, and these are the results which allow as to
prove our Theorem 2.2.
Roughly speaking this is our strategy. But there is one more point: the hypotheses we raise for the law

of Zki that it has a smooth density with compact support and has a smooth logarithm density, is rather
strong and we want to weaken it. This is the aim of the "splitting method". This amounts to produce three
independent random variables V ki , Uki and ξki such that Zki has the same law as ξki V ki +(1− ξki )Uki with ξki
a Bernoulli random variable and V ki a random variable with good properties. So we split Zki in two parts,
V ki and Uki . We may do it in such a way that V ki has the law ψk(v)dv with ψk ∈ C∞c (R) (see Section 4.1
for the precise procedure). And we perform the Malliavin calculus with respect to V ki instead of Zki (we
work conditionally to ξki and Uki which appear as constants).

4.1 The splitting method

We consider a Poisson point measure Nν(ds, dz) with compensator N̂ν(ds, dz) = ν(dz)ds on the state
space [1,∞). We will make use of the noise z ∈ [1,∞) in order to apply the results from the previous
section. We recall that Ik = [k, k + 1) and mk = ν(Ik), and we suppose that for every k, there exists
εk > 0, such that

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)εk × dz. (40)

Remark. Under Hypothesis 2.4 (a), the splitting condition (40) is satisfied with εk = ε∗
(k+1)1−α , for any

α ≤ α1. If instead we assume Hypothesis 2.4 (b), (40) is also satisfied, with εk = ε∗
k+1 .

When (40) is satisfied, we are able to use the "splitting method" as follows. To begin we define the
functions

a(y) = 1− 1

1− (4y − 1)2
for y ∈ [ 1

4 ,
1
2 ) (41)

ψ(y) = 1{|y|≤ 1
4}

+ 1{ 1
4<|y|≤

1
2}
ea(|y|). (42)

We notice that ψ ∈ C∞c (R) and that its support is included in [− 1
2 ,

1
2 ]. We also notice that for every q, p ∈ N

the function y 7→ |a(q)(y)|pψ(y) is continuous and has support included in [− 1
2 ,

1
2 ], so it is bounded: one

may find Cq,p such that ∣∣a(q)(y)
∣∣pψ(y) ≤ Cq,p ∀y ∈ R. (43)

We denote
ψk(y) = ψ(y − (k + 1

2 )), θk(y) := ∂y lnψk(y). (44)
By (43) (which is uniform with respect to y), we have

sup
k

∣∣(lnψk)(q)(y)
∣∣pψk(y) ≤ Cq,p ∀y ∈ R. (45)
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We denote

m(ψ) =

∫ 1/2

−1/2

ψ(y)dy. (46)

We consider a sequence of independent random variables Zk such that

Zk ∼ 1Ik(z)
1

mk
ν(dz).

This is the sequence of random variables which are involved in the representation of themeasureNν(ds, dz)
as long as z ∈ [1,∞) is concerned. We notice that, according to our hypothesis (40),

P(Zk ∈ dz) = 1Ik(z)
ν(dz)

mk
≥ 1Ik(z)εk × dz.

Then we construct some independent random variables V k, Uk, ξk with laws

P(V k ∈ dz) =
1

m(ψ)
ψ(z − (k +

1

2
))dz

P(Uk ∈ dz) =
1

1− εkm(ψ)
(P(Zk ∈ dz)− εkψ(z − (k +

1

2
))dz) (47)

P(ξk = 1) = εkm(ψ), P(ξk = 0) = 1− εkm(ψ).

We choose εk < 1/m(ψ) so that 1− εkm(ψ) > 0. Using (40), one may check that P(Uk ∈ dz) is a positive
measure and has mass one. So it is a probability measure. And finally one can easily check the identity of
laws:

Zk ∼ ξkV k + (1− ξk)Uk. (48)

In the following, we will work directly with Zk = ξkV k + (1 − ξk)Uk. This is possible because all the
results that we discuss here concern the law of the random variables, and the law remains unchanged.

The Poisson point measure Nν can be written as the following sum:

Nν(ds, dz) =

∞∑
k=1

1Ik(z)Nν(ds, dz) =

∞∑
k=1

Nνk(ds, dz),

where νk(dz) = 1Ik(z)ν(dz) and Nνk is a Poisson point measure with intensity νk(dz)ds.
The Poisson point measureNνk can be represented by means of compound Poisson processes as follows.

For each k ∈ N, we denote by T ki , i ∈ N the jump times of a Poisson process (Jkt )t∈[0,T ] of parameter
mk, and we consider a sequence of independent random variables Zki ∼ 1Ik(z)ν(dz)

mk
, i ∈ N, which are

independent of Jk as well. Then, for any t > 0 and A ∈ B([k, k + 1)), Nνk([0, t] × A) =
Jkt∑
i=1

1A(Zki ). And

for each k, i ∈ N, we will split Zki as Zki = ξki V
k
i + (1− ξki )Uki .

Remark. The law of Zki could be very irregular and it is not possible to make integration by parts based
on it. So we construct the V ki , which has all the good regularity properties in order to make Malliavin
calculus. This is the idea of the splitting method. The splitting method presented here is analogous to
the one in [10]. Therein, Bichteler, Gravereau and Jacod deal with 2 kinds of independent Poisson point
measures. One is very regular, and smooth enough to make Malliavin calculus on it (in our paper, V ki play
the same role). The other one can be arbitrary, and it may be very irregular (in our paper, it corresponds
to Uki ). But the difference is that instead of splitting the Poisson point measure, we split the random
variables, and so this method can also be applied in a large class of different problems. For example, Bally,
Caramellino and Poly use the splitting method to show the convergence in total variation distance in the
central limit theorem in [5]. Other possible approaches to the Malliavin calculus for jump processes are
given in the papers [24], [25], [35], [37] and the book [19] for example.
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4.2 Malliavin calculus for Poisson point measures and space-time Brownian mo-
tions

In this section we present the IbP framework on a space where we have the Poisson point measure
Nν presented in the previous section and moreover we have a space-time Brownian motion Wν(ds, dz)
with covariance measure ν(dz)ds, which is independent of Nν . We recall that in Section 2.2 we have
introduced the random variables Wν(ϕ), Nν(ϕ) and the filtrations (FWt )t∈[0,T ], (FNt )t∈[0,T ], and we de-
note Ft = FWt

∨
FNt . We present now the Malliavin calculus. We recall the random variables T ki , and

Zki = ξki V
k
i + (1 − ξki )Uki introduced in the previous section and we take G = σ(Uki , ξ

k
i , T

k
i : k, i ∈

N) to be the σ−algebra associated to the noise from Uki , ξ
k
i , T

k
i , k, i ∈ N. These are the noises which

will not be involved in the Malliavin calculus. We denote by CG,p the space of the functions f : Ω ×
Rm′×m×Rn → R such that f is FT−measurable, and for each ω, the function (v1

1 , ..., v
m
m′ , w1, · · · , wn) 7→

f(ω, v1
1 , ..., v

m
m′ , w1, · · · , wn) belongs to C∞p (Rm′×m×Rn), and for each (v1

1 , ..., v
m
m′ , w1, · · · , wn), the func-

tion ω 7→ f(ω, v1
1 , ..., v

m
m′ , w1, · · · , wn) is G-measurable. Then we define the space of simple functionals

S = {F = f(ω, (V ki )1≤i≤m′
1≤k≤m

, (Wν(ϕj))
n
j=1) : f ∈ CG,p, ϕ1, · · · , ϕn ∈ L2([1,∞)×[0, T ], ν×Leb),m′,m, n ∈ N}.

On the space S we define the derivative operators

DZ
(k0,i0)F = 1{k0≤m}1{i0≤m′}ξ

k0
i0

∂f

∂vk0
i0

(ω, (V ki )1≤i≤m′
1≤k≤m

, (Wν(ϕj))
n
j=1), k0, i0 ∈ N

DW
(s,z)F =

n∑
r=1

∂f

∂wr
(ω, (V ki )1≤i≤m′

1≤k≤m
, (Wν(ϕj))

n
j=1)ϕr(s, z), (s, z) ∈ [0, T ]× [1,∞).

We regard DZF as an element of the Hilbert space l2 (the space of the sequences h = (hki )k,i∈N with
|h|2l2 =

∑∞
k=1

∑∞
i=1 |hki |2 <∞) and DWF as an element of the Hilbert space L2([1,∞)× [0, T ], ν × Leb).

Then
DF := (DZF,DWF ) ∈ l2 ⊗ L2([1,∞)× [0, T ], ν × Leb).

We also denote DZ,WF = DF and H = l2 ⊗ L2([1,∞)× [0, T ], ν × Leb). And we have

〈DF,DG〉H =

∞∑
k=1

∞∑
i=1

DZ
(k,i)F ×D

Z
(k,i)G+

∫
[0,T ]×[1,∞)

DW
(s,z)F ×D

W
(s,z)G ν(dz)ds.

Moreover, we define the derivatives of order q ∈ N recursively:

DZ,W,q
(k1,i1)···(kq,iq),(s1,z1)···(sq,zq)F := DZ,W

(kq,iq),(sq,zq)
DZ,W

(kq−1,iq−1),(sq−1,zq−1) · · ·D
Z,W
(k1,i1),(s1,z1)F,

and we denote DqF = DZ,W,qF . We also denote DZ,q (respectively DW,q) as the derivative DZ (respec-
tively DW ) of order q.
We recall the function θk defined in (44) and we define the Ornstein-Uhlenbeck operators LZ , LW and

L = LZ + LW (which verify the duality relation), with

LZF = −
m∑
k=1

m′∑
i=1

(DZ
(k,i)D

Z
(k,i)F + ξki D

Z
(k,i)F × θk(V ki )),

LWF =

n∑
r=1

∂f

∂wr
(ω, (V ki )1≤i≤m′

1≤k≤m
, (Wν(ϕj))

n
j=1)Wν(ϕr)

−
n∑

l,r=1

∂2f

∂wl∂wr
(ω, (V ki )1≤i≤m′

1≤k≤m
, (Wν(ϕj))

n
j=1)〈ϕl, ϕr〉L2([1,∞)×[0,T ],ν×Leb).

One can check that the triplet (S, D, L) is consistent with the IbP framework given in Section 3. The
proof is left to Appendix 5.3.
In the following, we will close the operator Dq and L, so we will use the IbP framework (D∞, D, L)

associated to (S, D, L) in Lemma 3.1.
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4.3 Malliavin calculus applied to stochastic differential equations with jumps
Now we will use the IbP framework presented in Section 4.2 for the equation (10).
Let θ : (0, 1] → [1,∞) be a function such that θ(z) = 1

z . By a change of variables, instead of dealing
with equation (10), it is equivalent to consider the following equation.

X̂M
t = x+

∫ t

0

∫
[1,M)

c̃(s, z, X̂M
s−)Nν(ds, dz)

+

∫ t

0

bM (s, X̂M
s )ds+

∫ t

0

∫
{z≥M}

c̃(s, z, X̂M
s )Wν(ds, dz), (49)

whereM = 1
ε , ν(dz) = µ ◦ θ−1(dz), c̃(s, z, x) = c(s, 1

z , x),

bM (s, x) =

∫
{z≥M}

c̃(s, z, x)ν(dz), (50)

andWν is the space-time Brownian motion with covariance measure ν(dz)ds. One can check that X̂M
t has

the same law as Xε
t .

Here we give two lemmas, concerning the Malliavin-Sobolev norms and the Malliavin covariance. We
recall that ε∗ and α are introduced in Hypothesis 2.4 (b), and q∗ is introduced in Hypothesis 2.1.

Lemma 4.1. Assuming Hypothesis 2.1 with q∗ ≥ 2 and Hypothesis 2.4 (either 2.4(a) or 2.4(b)), we have
X̂M
t ∈ D∞, and for all p ≥ 1, 2 ≤ l ≤ q∗, there exists a constant Cl,p(T ) depending on l, p, x and T , such

that sup
M
‖X̂M

t ‖L,l,p ≤ Cl,p(T ).

Lemma 4.2. Assume that Hypothesis 2.1 with q∗ ≥ 1 and Hypothesis 2.2, 2.3 hold true.
a) If we also assume Hypothesis 2.4 (a), then for every p ≥ 1, t ∈ [0, T ], we have

sup
M

E(1/σX̂Mt
)p ≤ Cp, (51)

with Cp a constant only depending on p and T .
b) If we assume Hypothesis 2.4 (b), then for every p ≥ 1, t ∈ [0, T ] such that t > 4pα

ε∗
, we have

sup
M

E(1/σX̂Mt
)p ≤ Cp.

The proofs of these lemmas are rather technical and are postponed for the Appendix (Section 5.1 and
5.2).

4.4 Proof of the main result (Theorem 2.2)
Proof. (a) By Lemma 4.1 and Lemma 4.2 a), we know that for any δ > 0, for any p, p1 ≥ 1, 2 ≤ q ≤ q∗,
with q∗ ≥ 3

δ + 1, there exists a constant Cq,p,p1(T ) such that for anyM ≥ 1, t ∈ [0, T ], we have

Σp1(X̂M
t ) + ‖X̂M

t ‖L,q,p ≤ Cq,p,p1(T ).

By Lemma 2.1, we know that

d3(X̂t, X̂
M
t ) = d3(Xt, X

ε
t ) ≤ Cη3(ε).

Then applying Corollary 3.4.1 i) for r = 3, we have

dTV (Xt, X
ε
t ) = dTV (X̂t, X̂

M
t ) ≤ Cd3(X̂t, X̂

M
t )1−δ ≤ Cδη3(ε)1−δ.

17



So we obtain (23). The proof of (24) is obtained by Corollary 3.4.1 ii), since q∗ ≥ 3+l
δ + 1.

(b) The proof is almost the same. If t > 8α( 3
δ−1)

ε∗
, then by Lemma 4.2 b), Σp1(X̂M

t ) <∞ for p1 = 2( 3
δ − 1).

So Corollary 3.4.1 i) still holds, and we can obtain (25). For

t > max{8α

ε∗
(
3 + l

δ
− 1),

8α(3l + 2)

ε∗
},

by Lemma 4.2 b), Σp2(X̂M
t ) <∞ for p2 = max{2( 3+l

δ − 1), 6l+ 4}. So Corollary 3.4.1 ii) still holds, and
we obtain (26).

5 Appendix

5.1 Proof of Lemma 4.1
In the following, we will only work with the measure ν supported on [1,∞) and with the processes

(X̂t)t∈[0,T ] and (X̂M
t )t∈[0,T ]. So in order to simplify the notation, from now on we denote X̂t = Xt and

X̂M
t = XM

t . We remark that M = 1
ε is generally not an integer, but for simplicity, we assume in the

following thatM is an integer.
Here is the idea of the proof. Since XM

t is not a simple functional, we construct first the Euler scheme
(Xn,M

t )t∈[0,T ] in subsection 5.1.1 and check that Xn,M
t → XM

t in L1 when n → ∞. We will prove that
E|Xn,M

t |pl and E|LXn,M
t |pl are bounded (uniformly in n,M) in subsection 5.1.3. Then based on Lemma

3.2, we obtain that XM
t ∈ D∞ and the norms ‖XM

t ‖L,l,p are bounded (uniformly inM).

5.1.1 Construction of the Euler scheme

We take a time-partition Pnt = {rj = jt
n , j = 0, · · · , n} and a space-partition P̃nM = {zj = M + j

n , j =
0, 1, · · · }. We denote τn(r) = rj when r ∈ [rj , rj+1), and denote γn(z) = zj when z ∈ [zj , zj+1). Let

Xn,M
t = x+

∫ t

0

∫
[1,M)

c̃(τn(r), z,Xn,M
τn(r)−)Nν(dr, dz)

+

∫ t

0

bM (τn(r), Xn,M
τn(r))dr +

∫ t

0

∫
{z≥M}

c̃(τn(r), γn(z), Xn,M
τn(r))Wν(dr, dz). (52)

Then we can obtain the following lemma.

Lemma 5.1. Assume that the Hypothesis 2.1 holds true with q∗ ≥ 1. Then for any p ≥ 1,M ≥ 1, we have
E|Xn,M

t −XM
t |p → 0 as n→∞.

Proof. We first notice that since c̄(z) (in Hypothesis 2.1) is decreasing, sup
n∈N

c̄(γn(z)) ≤ c̄(γ1(z)). So

∫ ∞
1

sup
n∈N
|c̄(γn(z))|2ν(dz) ≤

∫ ∞
1

|c̄(γ1(z))|2ν(dz) ≤ |c̄(1)|2ν[1, 2] +

∫ ∞
1

|c̄(z)|2ν(dz) ≤ C <∞. (53)

Then by the Lebesgue dominated convergence theorem, (53) implies that

lim
n→∞

sup
x∈R

∫ T

0

∫
[1,∞)

|c̃(s, z, x)− c̃(τn(s), γn(z), x)|2ν(dz)ds = 0, (54)

and

sup
n∈N

sup
x∈R

∫ T

0

∫
[1,∞)

|c̃(τn(s), γn(z), x)|2ν(dz)ds ≤ C. (55)
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In the following proof, Cp(T ) will be a constant depending on p and T which may be changed from line
to line. For p ≥ 2, we write E|Xn,M

t −XM
t |p ≤ Cp(T )(E1 + E2 + E3), where

E1 = E|
∫ t

0

∫
[1,M)

c̃(τn(r), z,Xn,M
τn(r)−)− c̃(r, z,XM

r−)Nν(dr, dz)|p,

E2 = E|
∫ t

0

bM (τn(r), Xn,M
τn(r))− bM (r,XM

r )dr|p,

E3 = E|
∫ t

0

∫
{z≥M}

c̃(τn(r), γn(z), Xn,M
τn(r))− c̃(r, z,X

M
r )Wν(dr, dz)|p.

Then, compensating Nν and using Burkholder’s inequality (see for example the Theorem 2.11 in [26]),

E1 ≤ Cp(T )[E
∫ t

0

(

∫
[1,M)

|c̃(τn(r), z,Xn,M
τn(r)−)− c̃(r, z,XM

r−)|2ν(dz))
p
2 dr

+ E
∫ t

0

∫
[1,M)

|c̃(τn(r), z,Xn,M
τn(r)−)− c̃(r, z,XM

r−)|pν(dz)dr

+ E
∫ t

0

|
∫

[1,M)

c̃(τn(r), z,Xn,M
τn(r)−)− c̃(r, z,XM

r−)ν(dz)|pdr]

≤ Cp(T )[R1
n + ((c̄2)

p
2 + c̄p + (c̄1)p)

∫ t

0

E|Xn,M
τn(r) −X

M
r |pdr],

with

R1
n = E

∫ t

0

(

∫
[1,M)

|c̃(τn(r), z,XM
r−)− c̃(r, z,XM

r−)|2ν(dz))
p
2 dr

+ E
∫ t

0

∫
[1,M)

|c̃(τn(r), z,XM
r−)− c̃(r, z,XM

r−)|pν(dz)dr

+ E
∫ t

0

|
∫

[1,M)

c̃(τn(r), z,XM
r−)− c̃(r, z,XM

r−)ν(dz)|pdr.

Since |c̃(τn(r), z,XM
r−) − c̃(r, z,XM

r−)|p ≤ |2c̄(z)|p ∈ L1(Ω × [1,∞) × [0, T ],P × ν × Leb), we apply the
Lebesgue’s dominated convergence theorem and we obtain that R1

n → 0. Next,

E2 ≤ Cp(T )E
∫ t

0

|
∫
{z≥M}

c̃(τn(r), z,Xn,M
τn(r))− c̃(r, z,X

M
r )ν(dz)|pdr

≤ Cp(T )[R2
n + (c̄1)p

∫ t

0

E|Xn,M
τn(r) −X

M
r |pdr],

with
R2
n = E

∫ t

0

|
∫
{z≥M}

c̃(τn(r), z,XM
r )− c̃(r, z,XM

r )ν(dz)|pdr → 0.

Finally, using Burkholder’s inequality,

E3 ≤ Cp(T )E|
∫ t

0

∫
{z≥M}

|c̃(τn(r), γn(z), Xn,M
τn(r))− c̃(r, z,X

M
r )|2ν(dz)|

p
2 dr

≤ Cp(T )[R3
n + (c̄2)

p
2

∫ t

0

E|Xn,M
τn(r) −X

M
r |pdr],
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where (by (54)),

R3
n = E|

∫ t

0

∫
{z≥M}

|c̃(τn(r), γn(z), XM
r )− c̃(r, z,XM

r )|2ν(dz)|
p
2 dr → 0.

Therefore, E|Xn,M
t −XM

t |p ≤ Cp(T )[Rn +
∫ t

0
E|Xn,M

τn(r) −X
M
r |pdr], with Rn = R1

n + R2
n + R3

n → 0 as
n→∞. One can easily check that E|Xn,M

t −Xn,M
τn(t)|

p → 0. Also there exists a constant Cp(T ) depending
on p and T such that for any n,M ∈ N and any t ∈ [0, T ], E|Xn,M

t |p ≤ Cp(T ) (see (71) for details).
Then, by the dominated convergence theorem, these yield

∫ t
0
E|Xn,M

r − Xn,M
τn(r)|

pdr → 0. So we have
E|Xn,M

t − XM
t |p ≤ Cp(T )[R̃n +

∫ t
0
E|Xn,M

r − XM
r |pdr], with R̃n → 0 as n → ∞. We conclude by using

Gronwall’s lemma.

Remark. Some results on the convergence of the Euler scheme of a jump-diffusion can be found for example
in [32], [34]. The special thing in our paper is that we deal with the space-time Brownian motion instead
of the classical Brownian motion, and this is why we need to assume (54).
Now we represent the jump’s part of (Xn,M

t )t∈[0,T ] by means of compound Poisson processes. We recall
that for each k ∈ N, we denote by T ki , i ∈ N the jump times of a Poisson process (Jkt )t∈[0,T ] of parameter
mk, and we consider a sequence of independent random variables Zki ∼ 1Ik(z)ν(dz)

mk
, i ∈ N, which are

independent of Jk as well. Then we write

Xn,M
t = x+

∫ t

0

M−1∑
k=1

∫
{z∈Ik}

c̃(τn(r), z,Xn.M
τn(r)−)Nν(dr, dz)

+

∫ t

0

bM (τn(r), Xn,M
τn(r))dr +

∫ t

0

∫
{z≥M}

c̃(τn(r), γn(z), Xn,M
τn(r))Wν(dr, dz)

= x+

M−1∑
k=1

Jkt∑
i=1

c̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)

+

∫ t

0

bM (τn(r), Xn,M
τn(r))dr +

∫ t

0

∫
{z≥M}

c̃(τn(r), γn(z), Xn,M
τn(r))Wν(dr, dz). (56)

So for every t ∈ [0, T ], Xn,M
t is a simple functional.

5.1.2 Preliminary estimates

In order to estimate the Sobolev norms of the Euler scheme, we need the following preliminary lemmas.

Lemma 5.2. We fixM ≥ 1. Let y : Ω× [0, T ]× [M,∞)→ R be a function which is piecewise constant with
respect to both t and z. We assume that yt(z) is progressively measurable with respect to Ft (defined in (11)),
yt(z) ∈ S, and E(

∫ t
0

∫
{z≥M} |yr(z)|

2
ν(dz)dr) < ∞. We denote It(y) =

∫ t
0

∫
{z≥M} yr(z)Wν(dr, dz). Then

for any l ≥ 1, p ≥ 2, there exists a constant Cl,p(T ) such that

a) E|It(y)|pl ≤ Cl,p(T )E
∫ t

0

(

∫
{z≥M}

|yr(z)|2l ν(dz))
p
2 dr,

b) E|LIt(y)|pl ≤ Cl,p(T )[E
∫ t

0

(

∫
{z≥M}

|Lyr(z)|2l ν(dz))
p
2 dr + E

∫ t

0

(

∫
{z≥M}

|yr(z)|2l ν(dz))
p
2 dr].

Proof. Proof of a): Let Cl,p(T ) be a constant depending on l, p and T which may change from one line to
another. For any l ≥ 1, we take lW ≥ 0 and lZ ≥ 0 such that 0 < lW + lZ ≤ l.
It is easy to check that

DZ,lZ
(k1,i1)···(klZ ,ilZ )It(y) =

∫ t

0

∫
{z≥M}

DZ,lZ
(k1,i1)···(klZ ,ilZ )yr(z)Wν(dr, dz).
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And by recurrence, one can show that

DW,lW
(s1,z1)···(slW ,zlW )It(y) =

∫ t

0

∫
{z≥M}

DW,lW
(s1,z1)···(slW ,zlW )yr(z)Wν(dr, dz) +

lW∑
j=1

DW,lW−1

̂(sj ,zj)
lW−1ysj (zj)1sj≤t,

with
̂(sj , zj)

lW−1
:= (s1, z1) · · · (sj−1, zj−1)(sj+1, zj+1) · · · (slW , zlW ).

We denote

ȳr(z)(k1, i1, · · · , klZ , ilZ ) := DZ,lZ
(k1,i1)···(klZ ,ilZ )yr(z), ȳlZr (z) := DZ,lZyr(z) ∈ l⊗lZ2 .

Then DZ,lZ It(y) = It(ȳ
lZ ), and

DW,lW
(s1,z1)···(slW ,zlW )D

Z,lZ
(k1,i1)···(klZ ,ilZ )It(y) =

∫ t

0

∫
{z≥M}

DW,lW
(s1,z1)···(slW ,zlW )ȳr(z)(k1, i1, · · · , klZ , ilZ )Wν(dr, dz)

+

lW∑
j=1

DW,lW−1

̂(sj ,zj)
lW−1 ȳsj (zj)(k1, i1, · · · , klZ , ilZ )1sj≤t.

Let HlZ ,lW ,T = l⊗lZ2 ⊗ L2([0, T ]× [M,∞), Leb× ν)⊗lW .We have

|DW,lWDZ,lZ It(y)|2Hl,l̄,T =

∫
[0,T ]lW

∫
[M,∞)lW

|DW,lW
(s1,z1)···(slW ,zlW )It(ȳ

lZ )|2
l
⊗lZ
2

ν(dz1)ds1 · · · ν(dzlW )dslW

≤ 2|
∫ t

0

∫
{z≥M}

DW,lW ȳlZr (z)Wν(dr, dz)|2HlZ,lW ,T
+ lW 2lW

∫ t

0

∫
{z≥M}

|DW,lW−1ȳlZr (z)|2HlZ,lW−1,T
ν(dz)dr.

Using Burkholder’s inequality for Hilbert-space-valued martingales (see [30] for example), we have

E|DW,lWDZ,lZ It(y)|pHlZ,lW ,T
≤ Cl,p(T )[E

∫ t

0

(

∫
{z≥M}

|DW,lWDZ,lZyr(z)|2HlZ,lW ,T
ν(dz))

p
2 dr

+ E
∫ t

0

(

∫
{z≥M}

|DW,lW−1DZ,lZyr(z)|2HlZ,lW−1,T
ν(dz))

p
2 dr]. (57)

We recall that for F ∈ D∞, we have |DW,lWDZ,lZF |HlZ,lW ,T
≤ |F |lZ+lW (see the definition in (33)).

Then (57) gives

E|It(y)|p1,l ≤ Cl,p(T )
∑

lZ+lW≤l

E|DW,lWDZ,lZ It(y)|pHlZ,lW ,T
≤ Cl,p(T )E

∫ t

0

(

∫
{z≥M}

|yr(z)|2l ν(dz))
p
2 dr. (58)

Finally, using Burkholder’s inequality, we have

E|It(y)|p ≤ Cl,p(T )E
∫ t

0

(

∫
{z≥M}

|yr(z)|2ν(dz))
p
2 dr. (59)

So a) is proved.

Proof of b): We first show that

LIt(y) = It(Ly) + It(y). (60)

We denote

Itk(fk) = k!

∫ t

0

∫ s1

0

· · ·
∫ sk−1

0

∫
[M,+∞)k

fk(s1, · · · , sk, z1, · · · , zk)Wν(dsk, dzk) · · ·Wν(ds1, dz1)
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the multiple stochastic integral for a deterministic function fk, which is square integrable with respect to
(ν(dz)ds)⊗k and is symmetric with respect to the time variation (s1, · · · , sk) for each fixed (z1, · · · , zk).
Notice that LZItk(fk) = 0 and LW Itk(fk) = kItk(fk). So, LItk(fk) = kItk(fk). Then by the duality relation
(32),

E(Itk(fk)L(It(y))) = E(It(y)× LItk(fk)) = kE(It(y)× Itk(fk)). (61)

On the other hand, using the isometry property and the duality relation,

E(Itk(fk)× It(Ly)) = kE
∫ t

0

∫
{z≥M}

Irk−1(fk(r, z, ·))Lyr(z)ν(dz)dr

= k

∫ t

0

∫
{z≥M}

E[yr(z)× LIrk−1(fk(r, z, ·))]ν(dz)dr = k(k − 1)E
∫ t

0

∫
{z≥M}

yr(z)I
r
k−1(fk(r, z, ·))ν(dz)dr

= k(k − 1)E(It(y)×
∫ t

0

∫
{z≥M}

Irk−1(fk(r, z, ·))Wν(dr, dz))

= (k − 1)E(It(y)× Itk(fk)).

Combining this with (61), we get

E(Itk(fk)(It(y) + It(Ly))) = kE(Itk(fk)It(y)) = E[Itk(fk)× LIt(y)]. (62)

Since every element inL2(W ) (defined by (12)) can be represented as the direct sum ofmultiple stochas-
tic integrals, we have for any F ∈ L2(W ),

E[FLIt(y)] = E[F (It(Ly) + It(y))]. (63)

For G ∈ L2(N), one has LWG = 0 and LZG ∈ L2(N). Then by using duality and (13),

E[GLIt(y)] = E[It(y)LG] = E[It(y)LZG] = 0,

and by (13),
E[G(It(Ly) + It(y))] = 0.

So,

E[GLIt(y)] = E[G(It(Ly) + It(y))]. (64)

Combining (63) and (64), for any G̃ ∈ L2(W )⊗L2(N), we have E[G̃LIt(y)] = E[G̃(It(Ly)+It(y))], which
proves (60).
Then, by Lemma 5.2 a),

E|LIt(y)|pl ≤ 2p−1(E|
∫ t

0

∫
{z≥M}

Lyr(z)Wν(dr, dz)|pl + E|
∫ t

0

∫
{z≥M}

yr(z)Wν(dr, dz)|pl )

≤ Cl,p(T )[E
∫ t

0

(

∫
{z≥M}

|Lyr(z)|2l ν(dz))
p
2 dr + E

∫ t

0

(

∫
{z≥M}

|yr(z)|2l ν(dz))
p
2 dr].

We will also need the following lemma from [7] (Lemma 8 and Lemma 10), which is a consequence of
the chain rule for Dq and L.

Lemma 5.3. Let F ∈ Sd. For every l ∈ N, if φ : Rd → R is a Cl(Rd) function (l−times differentiable
function), then

a) |φ(F )|1,l ≤ |∇φ(F )||F |1,l + Cl sup
2≤|β|≤l

|∂βφ(F )||F |l1,l−1.
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If φ ∈ Cl+2(Rd), then

b) |Lφ(F )|l ≤ |∇φ(F )||LF |l + Cl sup
2≤|β|≤l+2

|∂βφ(F )|(1 + |F |l+2
l+1)(1 + |LF |l−1).

For l = 0, we have
c) |Lφ(F )| ≤ |∇φ(F )||LF |+ sup

|β|=2

|∂βφ(F )||F |21,1.

We finish this section with a first estimate concerning the operator L.

Lemma 5.4. Under the Hypothesis 2.4 (either 2.4(a) or 2.4(b)), for every p ≥ 2, p̃ ≥ 1, l ≥ 0, there exists a
constant Cl,p,p̃(T ) such that

sup
M∈N

E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|LZki |
p̃
l )
p ≤ Cl,p,p̃(T ). (65)

Proof. We notice that (with ψk given in (44)), LZki = ξki (lnψk)′(V ki ) and DW,lLZki = 0. Moreover,

DZ,l
(r1,m1)···(rl,ml)LZ

k
i =

l∏
j=1

(δrjkδmji)ξ
k
i (lnψk)(l+1)(V ki ),

with δrk the Kronecker delta, so that

|LZki |l = ξki
∑

0≤l̃≤l

|(lnψk)(l̃+1)(V ki )|. (66)

It follows that

E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|LZki |
p̃
l )
p ≤ Cl,p,p̃

∑
0≤l̃≤l

E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )ξki |(lnψk)(l̃+1)(V ki )|p̃)p.

Since c̄(Zki )ξki = c̄(V ki )ξki , we may replace Zki by V ki in the right hand side of the above estimate. This
gives

Cl,p,p̃
∑

0≤l̃≤l

E(

M−1∑
k=1

Jkt∑
i=1

c̄(V ki )ξki |(lnψk)(l̃+1)(V ki )|p̃)p = Cl,p,p̃
∑

0≤l̃≤l

E|
∫ t

0

∫
[1,M)

∫
{0,1}

c̄(v)ξ|(ln ψ̄)(l̃+1)(v)|p̃Λ(ds, dξ, dv)|p,

where ψ̄(v) :=
∞∑
k=1

1Ik(v)ψ(v− (k+ 1
2 )) and Λ is a Poisson point measure on {0, 1}× [1,∞) with compen-

sator

Λ̂(ds, dξ, dv) =

∞∑
k=1

[
ψ(v − (k + 1

2 ))

m(ψ)
1Ik(v)dv × b(v, dξ)]ds,

with b(v, dξ) the Bernoulli probability measure on {0, 1} with parameter εkm(ψ), if v ∈ Ik. Then by
compensating Λ and using Burkholder’s inequality (the same proof as for (5)),

Cl,p,p̃
∑

0≤l̃≤l

E|
∫ t

0

∫
[1,M)

∫
{0,1}

c̄(v)ξ|(ln ψ̄)(l̃+1)(v)|p̃Λ(ds, dξ, dv)|p

≤ Cl,p,p̃(T )
∑

0≤l̃≤l

[(

∫ t

0

∫
[1,M)×{0,1}

|c̄(v)|2ξ|(ln ψ̄)(l̃+1)(v)|2p̃Λ̂(ds, dξ, dv))
p
2

+

∫ t

0

∫
[1,M)×{0,1}

|c̄(v)|pξ|(ln ψ̄)(l̃+1)(v)|pp̃Λ̂(ds, dξ, dv) + |
∫ t

0

∫
[1,M)×{0,1}

c̄(v)ξ|(ln ψ̄)(l̃+1)(v)|p̃Λ̂(ds, dξ, dv)|p].(67)
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We notice that by (45),∫ t

0

∫
[1,M)×{0,1}

|c̄(v)|pξ|(ln ψ̄)(l̃+1)(v)|pp̃Λ̂(ds, dξ, dv) = t

M−1∑
k=1

∫
Ik

εkm(ψ)|c̄(v)|p|(lnψk)(l̃+1)(v)|pp̃ψk(v)

m(ψ)
dv

≤ Cl̃,p,p̃(T )

M−1∑
k=1

εk

∫
Ik

|c̄(v)|pdv.

Similar upper bounds hold for the two other terms in the right hanf side of (67), so (67) is upper bounded
by

Cl,p,p̃(T )[(

M−1∑
k=1

εk

∫
Ik

|c̄(v)|2dv)
p
2 +

M−1∑
k=1

εk

∫
Ik

|c̄(v)|pdv + (

M−1∑
k=1

εk

∫
Ik

|c̄(v)|dv)p]. (68)

If we assume the Hypothesis 2.4 (a), then we have εk = ε∗/(k + 1)1−α0 , with α0 given in (7). So the
above term is less than

Cl,p,p̃(T )[(

∫ ∞
1

|c̄(v)|2

v1−α0
dv)

p
2 +

∫ ∞
1

|c̄(v)|p

v1−α0
dv + (

∫ ∞
1

|c̄(v)|
v1−α0

dv)p],

which is upper bounded by a constant Cl,p,p̃(T ) thanks to (7). On the other hand, if we assume the
Hypothesis 2.4 (b), then εk = ε∗/(k + 1). So (68) is upper bounded by a constant Cl,p,p̃(T ) thanks to
(9).

5.1.3 Estimations of ‖Xn,M
t ‖L,l,p

In this section, our aim is to prove the following lemma.

Lemma 5.5. Under the Hypothesis 2.1 with q∗ ≥ 2 and Hypothesis 2.4 (either 2.4(a) or 2.4(b)), for all
p ≥ 2, 0 ≤ l ≤ q∗, there exists a constant Cl,p(T ) depending on l, p, x and T , such that

a) sup
n

sup
M

E|Xn,M
t |pl ≤ Cl,p(T ), (69)

and for 0 ≤ l ≤ q∗ − 2,

b) sup
n

sup
M

E|LXn,M
t |pl ≤ Cl,p(T ). (70)

Proof. In the following proof, Cl,p(T ) will be a constant which depends on l, p, x and T , and which may
change from a line to another. q∗ ≥ 2 is fixed throughout the proof.

a) We prove (69) for 0 ≤ l ≤ q∗ by recurrence on l.
Step 1 For l = 0, using Burkholder’s inequality, Hypothesis 2.1 and (55),

E|Xn,M
t |p ≤ C0,p(T )[xp + E|

∫ t

0

bM (τn(r), Xn,M
τn(r))dr|

p + E|
∫ t

0

∫
{z≥M}

c̃(τn(r), γn(z), Xn,M
τn(r))Wν(dr, dz)|p

+ E|
∫ t

0

∫
[1,M)

c̃(τn(r), z,Xn,M
τn(r)−)Nν(dr, dz)|p]

≤ C0,p(T )[1 + E
∫ t

0

|
∫
{z≥M}

c̃(τn(r), z,Xn,M
τn(r))ν(dz)|pdr

+ E
∫ t

0

(

∫
{z≥M}

|c̃(τn(r), γn(z), Xn,M
τn(r))|

2ν(dz))
p
2 dr + E

∫ t

0

(

∫
[1,M)

|c̃(τn(r), z,Xn,M
τn(r)−)|2ν(dz))

p
2 dr

+ E
∫ t

0

∫
[1,M)

|c̃(τn(r), z,Xn,M
τn(r)−)|pν(dz)dr + E

∫ t

0

|
∫

[1,M)

c̃(τn(r), z,Xn,M
τn(r)−)ν(dz)|pdr]

≤ C0,p(T ). (71)
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Step 2 Now we assume that (69) holds for l − 1, with l ≥ 1 and for every p ≥ 2, and we prove that it
holds for l and for every p ≥ 2. We write E|Xn,M

t |pl ≤ Cl,p(T )(A1 +A2 +A3), with

A1 = E|
∫ t

0

bM (τn(r), Xn,M
τn(r))dr|

p
l ,

A2 = E|
∫ t

0

∫
{z≥M}

c̃(τn(r), γn(z), Xn,M
τn(r))Wν(dr, dz)|pl ,

A3 = E|
∫ t

0

∫
[1,M)

c̃(τn(r), z,Xn,M
τn(r)−)Nν(dr, dz)|pl .

We notice that by Hypothesis 2.1, ‖bM‖l,∞ ≤ c̄1. Then using Lemma 5.3 a) and the recurrence hy-
pothesis, we get

A1 ≤ Cl,p(T )E
∫ t

0

|bM (τn(r), Xn,M
τn(r))|

p
l dr

≤ Cl,p(T )[(c̄1)p + E
∫ t

0

|∂xbM (τn(r), Xn,M
τn(r))|

p|Xn,M
τn(r)|

p
1,ldr

+ E
∫ t

0

sup
2≤|β|≤l

|∂βx bM (τn(r), Xn,M
τn(r))|

p|Xn,M
τn(r)|

lp
1,l−1dr]

≤ Cl,p(T )[1 +

∫ t

0

E|Xn,M
τn(r)|

p
l dr]. (72)

Next, we estimate A2. By Hypothesis 2.1, for every n, ‖c̃(τn(r), γn(z), ·)‖l,∞ ≤ |c̄(γn(z))|. Then using
Lemma 5.2 a), Lemma 5.3 a), (53) and the recurrence hypothesis, we get

A2 ≤ Cl,p(T )[E
∫ t

0

(

∫
{z≥M}

|c̃(τn(r), γn(z), Xn,M
τn(r))|

2
l ν(dz))

p
2 dr

≤ Cl,p(T )[E
∫ t

0

(

∫
{z≥M}

|∂xc̃(τn(r), γn(z), Xn,M
τn(r))|

2|Xn,M
τn(r)|

2
1,lν(dz))

p
2 dr

+ E
∫ t

0

(

∫
{z≥M}

sup
2≤|β|≤l

|∂βx c̃(τn(r), γn(z), Xn,M
τn(r))|

2|Xn,M
τn(r)|

2l
1,l−1ν(dz))

p
2 dr

+ E
∫ t

0

(

∫
{z≥M}

|c̃(τn(r), γn(z), Xn,M
τn(r))|

2ν(dz))
p
2 dr

≤ Cl,p(T )[1 +

∫ t

0

E|Xn,M
τn(r)|

p
l dr]. (73)

Finally we estimate A3. We notice that DZ
(r,m)Z

k
i = ξki δrkδmi, DW

(s,z)Z
k
i = 0, and for l ≥ 2,

DZ,W,l
(r1,m1)···(rl,ml),(s1,z1)···(sl,zl)Z

k
i = 0. So we have |Zki |

p
1,l = |ξki |p ≤ 1. By Lemma 5.3 a) for d = 2,

Hypothesis 2.1, for any k, i ∈ N,

|c̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|l ≤ |c̄(Zki )|

+(|∂z c̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|+ |∂xc̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|)(|Zki |1,l + |Xn,M

τn(Tki )−|1,l)

+Cl,p(T ) sup
2≤|β1+β2|≤l

(|∂β2
z ∂β1

x c̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|)(|Zki |l1,l−1 + |Xn,M

τn(Tki )−|
l
1,l−1)

≤ Cl,p(T )c̄(Zki )(1 + |Xn,M

τn(Tki )−|l + |Xn,M

τn(Tki )−|
l
l−1).
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It follows that

A3 ≤ E(

M−1∑
k=1

Jkt∑
i=1

|c̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|l)p ≤ Cl,p(T )E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )(1 + |Xn,M

τn(Tki )−|l + |Xn,M

τn(Tki )−|
l
l−1))p

= Cl,p(T )E(

∫ t

0

∫
[1,M)

c̄(z)(1 + |Xn,M
τn(r)−|l + |Xn,M

τn(r)−|
l
l−1)Nν(dr, dz))p

≤ Cl,p(T )[1 +

∫ t

0

E|Xn,M
τn(r)|

p
l dr], (74)

where the last inequality is obtained by using (5) and recurrence hypothesis. Then combining (72),(73)
and (74),

E|Xn,M
t |pl ≤ Cl,p(T )[1 +

∫ t

0

E|Xn,M
τn(r)|

p
l dr]. (75)

So E|Xn,M
τn(t)|

p
l ≤ Cl,p(T )[1 +

∫ τn(t)

0
E|Xn,M

τn(r)|
p
l dr] ≤ Cl,p(T )[1 +

∫ t
0
E|Xn,M

τn(r)|
p
l dr]. We denote temporarily

g(t) = E|Xn,M
τn(t)|

p
l , thenwe have g(t) ≤ Cl,p(T )[1+

∫ t
0
g(r)dr]. By Gronwall’s lemma, g(t) ≤ Cl,p(T )eTCl,p(T ),

which means that
E|Xn,M

τn(t)|
p
l ≤ Cl,p(T )eTCl,p(T ).

Substituting into (75), we conclude that

sup
n,M

E|Xn,M
t |pl ≤ Cl,p(T ). (76)

As a summary of the recurrence argument, we remark that the uniform bound in n,M of the operator
D for l = 0 is due to the Hypothesis 2.1, and it propagates to larger l thanks to Lemma 5.3 a).

b) Now we prove (70) for 0 ≤ l ≤ q∗ − 2, by recurrence on l.
Step 1 One has to check that (70) holds for l = 0. The proof is analogous to that in the following Step

2, but simpler. It is done by using Lemma 5.3 c), (60), Burkholder’s inequality, Hypothesis 2.1,2.4, (53),
(69) and Gronwall’s lemma. So we skip it.
Step 2 Now we assume that (70) holds for l−1, with l ≥ 1 and for any p ≥ 2 and we prove that it holds

for l and for any p ≥ 2. We write E|LXn,M
t |pl ≤ Cl,p(T )(B1 +B2 +B3), with

B1 = E|L
∫ t

0

bM (τn(r), Xn,M
τn(r))dr|

p
l ,

B2 = E|L
∫ t

0

∫
{z≥M}

c̃(τn(r), γn(z), Xn,M
τn(r))Wν(dr, dz)|pl ,

B3 = E|L
∫ t

0

∫
[1,M)

c̃(τn(r), z,Xn,M
τn(r)−)Nν(dr, dz)|pl .

Using Lemma 5.3 b), Hypothesis 2.1, the recurrence hypothesis and (69), we get

B1 ≤ Cl,p(T )E
∫ t

0

|LbM (τn(r), Xn,M
τn(r))|

p
l dr

≤ Cl,p(T )[E
∫ t

0

|∂xbM (τn(r), Xn,M
τn(r))|

p|LXn,M
τn(r)|

p
l dr

+ E
∫ t

0

sup
2≤|β|≤l+2

|∂βx bM (τn(r), Xn,M
τn(r))|

p(1 + |Xn,M
τn(r)|

(l+2)p
l+1 )(1 + |LXn,M

τn(r)|
p
l−1)dr]

≤ Cl,p(T )[1 +

∫ t

0

E|LXn,M
τn(r)|

p
l dr]. (77)
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Then by Lemma 5.2 b), we get

B2 ≤ Cl,p(T )[E
∫ t

0

(

∫
{z≥M}

|Lc̃(τn(r), γn(z), Xn,M
τn(r))|

2
l ν(dz))

p
2 dr

+ E
∫ t

0

(

∫
{z≥M}

|c̃(τn(r), γn(z), Xn,M
τn(r))|

2
l ν(dz))

p
2 dr]

:= Cl,p(T )[B2,1 +B2,2].

As a consequence of Lemma 5.3 b), we have

B2,1 ≤ Cl,p(T )[E
∫ t

0

(

∫
{z≥M}

|∂xc̃(τn(r), γn(z), Xn,M
τn(r))|

2|LXn,M
τn(r)|

2
l ν(dz))

p
2 dr

+ E
∫ t

0

(

∫
{z≥M}

sup
2≤|β|≤l+2

|∂βx c̃(τn(r), γn(z), Xn,M
τn(r))|

2(1 + |Xn,M
τn(r)|

2(l+2)
l+1 )(1 + |LXn,M

τn(r)|
2
l−1)ν(dz))

p
2 dr].

And using Lemma 5.3 a),

B2,2 ≤ Cl,p(T )[E
∫ t

0

(

∫
{z≥M}

|c̃(τn(r), γn(z), Xn,M
τn(r))|

2ν(dz))
p
2 dr

+ E
∫ t

0

(

∫
{z≥M}

|∂xc̃(τn(r), γn(z), Xn,M
τn(r))|

2|Xn,M
τn(r)|

2
1,lν(dz))

p
2 dr

+ E
∫ t

0

(

∫
{z≥M}

sup
2≤|β|≤l

|∂βx c̃(τn(r), γn(z), Xn,M
τn(r))|

2|Xn,M
τn(r)|

2l
1,l−1ν(dz))

p
2 dr].

Then by Hypothesis 2.1, (53), (69) and the recurrence hypothesis,

B2 ≤ Cl,p(T )[1 +

∫ t

0

E|LXn,M
τn(r)|

p
l dr]. (78)

Now we estimate B3. By Lemma 5.3 b) for d = 2, Hypothesis 2.1, for any k, i ∈ N,

|Lc̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|l ≤ (|∂z c̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|+ |∂xc̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|)(|LZki |l + |LXn,M

τn(Tki )−|l)

+Cl,p(T ) sup
2≤|β1+β2|≤l+2

(|∂β2
z ∂β1

x c̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|)

×(1 + |Zki |l+2
l+1 + |Xn,M

τn(Tki )−|
l+2
l+1)(1 + |LZki |l−1 + |LXn,M

τn(Tki )−|l−1)

≤ Cl,p(T )c̄(Zki )(1 + |LZki |l + |LXn,M

τn(Tki )−|l + |Xn,M

τn(Tki )−|
l+2
l+1 + |Xn,M

τn(Tki )−|
l+2
l+1 × (|LZki |l−1 + |LXn,M

τn(Tki )−|l−1)).

Then

B3 ≤ E(

M−1∑
k=1

Jkt∑
i=1

|Lc̃(τn(T ki ), Zki , X
n,M

τn(Tki )−)|l)p

≤ Cl,p(T )E|
M−1∑
k=1

Jkt∑
i=1

c̄(Zki )(1 + |LZki |l + |LXn,M

τn(Tki )−|l + |Xn,M

τn(Tki )−|
l+2
l+1

+|Xn,M

τn(Tki )−|
l+2
l+1 × (|LZki |l−1 + |LXn,M

τn(Tki )−|l−1))|p

≤ Cl,p(T )(B3,1 +B3,2 +B3,3),

where

B3,1 = E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|LXn,M

τn(Tki )−|l)
p,

27



B3,2 = E|
M−1∑
k=1

Jkt∑
i=1

c̄(Zki )(|LZki |l + |Xn,M

τn(Tki )−|
l+2
l+1 × |LZ

k
i |l−1)|p,

B3,3 = E|
M−1∑
k=1

Jkt∑
i=1

c̄(Zki )(1 + |Xn,M

τn(Tki )−|
l+2
l+1 + |Xn,M

τn(Tki )−|
l+2
l+1 × |LX

n,M

τn(Tki )−|l−1)|p.

By (5),

B3,1 = E|
∫ t

0

∫
[1,M)

c̄(z)|LXn,M
τn(r)−|lNν(dr, dz)|p

≤ Cl,p(T )

∫ t

0

E|LXn,M
τn(r)−|

p
l dr. (79)

Using Schwartz’s inequality, (5) and (69), we have

E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|Xn,M

τn(Tki )−|
l+2
l+1 × |LZ

k
i |l−1)p

≤ [E(
M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|Xn,M

τn(Tki )−|
2(l+2)
l+1 )p]

1
2 × [E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|LZki |2l−1)p]
1
2

= [E|
∫ t

0

∫
[1,M)

c̄(z)|Xn,M
τn(r)−|

2(l+2)
l+1 Nν(dr, dz)|p] 1

2 × [E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|LZki |2l−1)p]
1
2

≤ Cl,p(T )[E(

M−1∑
k=1

Jkt∑
i=1

c̄(Zki )|LZki |2l−1)p]
1
2 .

Then applying Lemma 5.4, we get
B3,2 ≤ Cl,p(T ). (80)

By (5), (69) and recurrence hypothesis, we have

B3,3 = E|
∫ t

0

∫
[1,M)

c̄(z)(1 + |Xn,M
τn(r)−|

l+2
l+1 + |Xn,M

τn(r)−|
l+2
l+1 × |LX

n,M
τn(r)−|l−1)Nν(dr, dz)|p

≤ Cl,p(T ). (81)

So by (79),(80) and (81),

B3 ≤ Cl,p(T )[1 +

∫ t

0

E|LXn,M
τn(r)−|

p
l dr]. (82)

Then combining (77),(78) and (82),

E|LXn,M
t |pl ≤ Cl,p(T )[1 +

∫ t

0

E|LXn,M
τn(r)|

p
l dr], (83)

Using Gronwall’s lemma for (83) as for (75), we conclude that

sup
n,M

E|LXn,M
t |pl ≤ Cl,p(T ). (84)

As a summary of the recurrence argument, we remark that the uniform bound in n,M of the operator
L for l = 0 is due to the Hypothesis 2.1,2.4 and Lemma 5.3 c), and it propagates to larger l thanks to
Lemma 5.3 b).

Proof of Lemma 4.1.
By Lemma 5.1 and Lemma 5.5, as a consequence of Lemma 3.2, we haveXM

t ∈ Dl,p and sup
M
‖XM

t ‖L,l,p ≤

Cl,p(T ).
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5.2 Proof of Lemma 4.2
In the following, we turn to the non-degeneracy of XM

t . We consider the approximate equation (49)

XM
t = x+

∫ t

0

∫
[1,M)

c̃(r, z,XM
r−)Nν(dr, dz) +

∫ t

0

bM (r,XM
r )dr +

∫ t

0

∫
{z≥M}

c̃(r, z,XM
r )Wν(dr, dz).

We can calculate the Malliavin derivatives of the Euler scheme and then by passing to the limit, we have

DZ
(k,i)X

M
t = 1{k≤M−1}1{i≤Jkt }ξ

k
i ∂z c̃(T

k
i , Z

k
i , X

M
Tki −

) +

∫ t

Tki

∫
[1,M)

∂xc̃(r, z,X
M
r−)DZ

(k,i)X
M
r−Nν(dr, dz)

+

∫ t

Tki

∂xbM (r,XM
r )DZ

(k,i)X
M
s dr +

∫ t

Tki

∫
{z≥M}

∂xc̃(r, z,X
M
r )DZ

(k,i)X
M
s Wν(dr, dz). (85)

DW
(s,z0)X

M
t =

∫ t

s

∫
[1,M)

∂xc̃(r, z,X
M
r−)DW

(s,z0)X
M
r−Nν(dr, dz) +

∫ t

s

∂xbM (r,XM
r )DW

(s,z0)X
M
r dr

+1{s≤t}1{z0≥M}c̃(s, z0, X
M
s ) +

∫ t

s

∫
{z≥M}

∂xc̃(r, z,X
M
r )DW

(s,z0)X
M
r Wν(dr, dz). (86)

We obtain now some explicit expressions for the Malliavin derivatives. We consider the tangent flow
(YMt )t∈[0,T ] which is the solution of the linear equation

YMt = 1+

∫ t

0

∫
[1,M)

∂xc̃(r, z,X
M
r−)YMr−Nν(dr, dz)+

∫ t

0

∂xbM (r,XM
r )YMr dr+

∫ t

0

∫
{z≥M}

∂xc̃(r, z,X
M
r )YMr Wν(dr, dz).

And using Itô’s formula, YMt = 1/YMt verifies the equation

Y
M

t = 1−
∫ t

0

∫
[1,M)

∂xc̃(r, z,X
M
r−)(1 + ∂xc̃(r, z,X

M
r−))−1Y

M

r−Nν(dr, dz)−
∫ t

0

∂xbM (r,XM
r )Y

M

r dr

−
∫ t

0

∫
{z≥M}

∂xc̃(r, z,X
M
r )Y

M

r Wν(dr, dz) +
1

2

∫ t

0

∫
{z≥M}

|∂xc̃(r, z,XM
r )|2YMr ν(dz)dr.

Applying Hypothesis 2.1 with q∗ ≥ 1 and Hypothesis 2.2, with Kp a constant only depending on p,
one also has (the proof is standard)

E(sup
s≤t

(
∣∣YMs ∣∣p +

∣∣∣YMs ∣∣∣p)) ≤ Kp <∞. (87)

Remark. Due to (4), we have

max
{∫

[1,M)

|c̄(z)|pν(dz),

∫
[M,∞)

|c̄(z)|pν(dz)
}
≤
∫

[1,∞)

|c̄(z)|pν(dz) = c̄p,

so the constant in (87) is uniform with respect toM .
Then using the uniqueness of solution to the equation (85) and (86), one obtains

DZ
(k,i)X

M
t = 1{k≤M−1}1{i≤Jkt }ξ

k
i Y

M
t Y

M

Tki −∂z c̃(T
k
i , Z

k
i , X

M
Tki −

),

DW
(s,z0)X

M
t = 1{s≤t}1{z0≥M}Y

M
t Y

M

s c̃(s, z0, X
M
s ). (88)

And the Malliavin covariance of XM
t is

σXMt =
〈
DXM

t , DXM
t

〉
H =

M−1∑
k=1

Jkt∑
i=1

|DZ
(k,i)X

M
t |2 +

∫ T

0

∫
{z≥M}

|DW
(s,z)X

M
t |2ν(dz)ds. (89)
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In the following, we denote λMt = σXMt . So the aim is to prove that for every p ≥ 1,

E(|λMt |−p) ≤ Cp. (90)

We proceed in 5 steps.
Step 1 We notice that by (88) and (89)

λMt =

M−1∑
k=1

Jkt∑
i=1

ξki |YMt |2|Y
M

Tki −|
2|∂z c̃(T ki , Zki , XM

Tki −
)|2 + |YMt |2

∫ t

0

|YMs |2
∫
{z≥M}

|c̃(s, z,XM
s )|2ν(dz)ds.

We recall the ellipticity hypothesis (Hypothesis 2.3): There exists a function c(z) such that

|∂z c̃(s, z, x)|2 ≥ c(z) and |c̃(s, z, x)|2 ≥ c(z).

In particular ∫
{z≥M}

|c̃(s, z, x)|2ν(dz) ≥
∫
{z≥M}

c(z)ν(dz),

so that

λMt ≥ Q−2
t × (

M−1∑
k=1

Jkt∑
i=1

ξki c(Z
k
i ) + t

∫
{z≥M}

c(z)ν(dz)) with Qt = inf
s≤t
|YMs Y

M

t |.

We denote

ρMt =

M−1∑
k=1

Jkt∑
i=1

ξki c(Z
k
i ), ρ̄Mt =

∞∑
k=M

Jkt∑
i=1

ξki c(Z
k
i ), αM =

∫
{z≥M}

c(z)ν(dz).

By (87), (E sup
s≤t

∣∣∣YMs Y
M

t

∣∣∣4p)1/2 ≤ C <∞, so that

E(|λMt |−p) ≤ C(E(|ρMt + tαM |−2p))
1
2 . (91)

Step 2 Let Γ(p) =
∫∞

0
sp−1e−sds. By a change of variables, we have the numerical equality

1

(ρMt + tαM )p
=

1

Γ(p)

∫ ∞
0

sp−1e−s(ρ
M
t +tαM )ds

which, by taking expectation, gives

E(
1

(ρMt + tαM )p
) =

1

Γ(p)

∫ ∞
0

sp−1E(e−s(ρ
M
t +tαM ))ds. (92)

Step 3 (splitting). In order to compute E(e−s(ρ
M
t +tαM )) we have to interpret ρMt in terms of Poisson

measures. We recall that we suppose the "splitting hypothesis" (40):

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)εkdz,

with Ik = [k, k + 1), mk = ν(Ik). We also have the function ψ and m(ψ) =
∫
R ψ(t)dt. And we use the

basic decomposition
Zki = ξki V

k
i + (1− ξki )Uki

where V ki , Uki , ξki , k, i ∈ N are some independent random variables with laws given in (47).
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For every k we consider a Poisson point measure Nk(ds, dξ, dv, du) with ξ ∈ {0, 1}, v, u ∈ [1,∞), s ∈
[0, T ] with compensator

N̂k(ds, dξ, dv, du) = M̂k(dξ, dv, du)× ds

with M̂k(dξ, dv, du) = bk(dξ)× 1Ik(v)
1

m(ψ)
ψ(v − (k +

1

2
))dv

× 1

1− εkm(ψ)
1Ik(u)(P(Zk1 ∈ du)− εkψ(u− (k +

1

2
))du).

Here bk(dξ) is the Bernoulli law of parameter εkm(ψ). The intervals Ik, k ∈ N are disjoint so the Poisson
point measures Nk, k = 1, · · · ,M − 1 are independent. Then

Jkt∑
i=1

ξki c(Z
k
i ) =

Jkt∑
i=1

ξki c(ξ
k
i V

k
i + (1− ξki )Uki ) =

∫ t

0

∫
{0,1}

∫
[1,∞)2

ξc(ξv + (1− ξ)u)Nk(ds, dξ, dv, du).

In order to get compact notation, we put together all the measures Nk, k ≤ M − 1. Since they are inde-
pendent we get a new Poisson point measure that we denote by Θ. And we have

ρMt =

M−1∑
k=1

Jkt∑
i=1

ξki c(Z
k
i ) =

∫ t

0

∫
{0,1}

∫
[1,∞)2

ξc(ξv + (1− ξ)v)Θ(ds, dξ, dv, du).

Step 4 Using Itô’s formula,

E(e−sρ
M
t ) = 1 + E

∫ t

0

∫
{0,1}

∫
[1,∞)2

(e−s(ρ
M
r−+ξc(ξv+(1−ξ)v)) − e−sρ

M
r−)Θ̂(dr, dξ, dv, du)

= 1−
∫ t

0

E(e−sρ
M
r−)dr

∫
{0,1}

∫
[1,∞)2

(1− e−sξc(ξv+(1−ξ)v))

M−1∑
k=1

M̂k(dξ, dv, du).

Solving the above equation we obtain

E(e−sρ
M
t ) = exp(−t

M−1∑
k=1

∫
{0,1}

∫
[1,∞)2

(1− e−sξc(ξv+(1−ξ)u))M̂k(dξ, dv, du)).

We compute∫
{0,1}×[1,∞)2

(1− e−sξc(ξv+(1−ξ)u))M̂k(dξ, dv, du) = εkm(ψ)

∫ k+1

k

(1− e−sc(v))
1

m(ψ)
ψ(v − (k +

1

2
))dv.

Since ψ ≥ 0 and ψ(z) = 1 if |z| ≤ 1
4 it follows that the above term is larger than

εk

∫ k+ 3
4

k+ 1
4

(1− e−sc(v))dv.

Finally this gives

E(e−sρ
M
t ) ≤ exp(−t

M−1∑
k=1

εk

∫ k+ 3
4

k+ 1
4

(1− e−sc(v))dv)

= exp(−t
∫ M

1

(1− e−sc(v))m(dv)),

with

m(dv) =

∞∑
k=1

εk1(k+ 1
4 ,k+ 3

4 )(v)dv. (93)
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In the same way, we get

E(e−sρ̄
M
t ) ≤ exp(−t

∫ ∞
M

(1− e−sc(v))m(dv)).

Notice that tαM ≥ E(ρ̄Mt ). Then using Jensen’s inequality for the convex function f(x) = e−sx, s, x > 0,
we have

e−stα
M

≤ e−sEρ̄
M
t ≤ E(e−sρ̄

M
t ) ≤ exp(−t

∫ ∞
M

(1− e−sc(v))m(dv)).

So for everyM ∈ N, we get

E(e−s(ρ
M
t +tαM )) = e−stα

M

× E(e−sρ
M
t )

≤ exp(−t
∫ ∞
M

(1− e−sc(v))m(dv))× exp(−t
∫ M

1

(1− e−sc(v))m(dv))

= exp(−t
∫ ∞

1

(1− e−sc(v))m(dv)), (94)

and the last term does not depend onM .

Now we will use the Lemma 14 from [7], which states the following.

Lemma 5.6. We consider an abstract measurable space E, a σ-finite measure η on this space and a non-
negative measurable function f : E → R+ such that

∫
E
fdη <∞. For t > 0 and p ≥ 1, we note

αf (t) =

∫
E

(1− e−tf(a))η(da) and Ipt (f) =

∫ ∞
0

sp−1e−tαf (s)ds.

We suppose that for some t > 0 and p ≥ 1,

limu→∞
1

lnu
η(f ≥ 1

u
) > p/t, (95)

then Ipt (f) <∞.

We will use the above lemma for η = m and f = c. So if we have

limu→∞
1

lnu
m(c ≥ 1

u
) =∞, (96)

then for every p ≥ 1, t > 0,M ≥ 1, (92),(94) and Lemma 5.6 give

E(
1

ρMt + tαM
)2p =

1

Γ(2p)

∫ ∞
0

s2p−1E(e−s(ρ
M
t +tαM ))ds (97)

≤ 1

Γ(2p)

∫ ∞
0

s2p−1 exp(−t
∫ ∞

1

(1− e−sc(v))m(dv))ds <∞.

Finally using (91), we conclude that if (96) holds, then

sup
M

E(λMt )−p <∞. (98)

Step 5Now the only problem left is to computem(c ≥ 1
u ). It seems difficult to discuss this in a completely

abstract framework. So we supposeHypothesis 2.4 (a): There exists a constant ε∗ > 0 and there are some
α1 > α2 > 0 such that for every k ∈ N,

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)εkdz with εk =

ε∗

(k + 1)
1−α , for any α ∈ (α2, α1], and c(z) ≥ e−z

α2
,
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Then {z : c(z) ≥ 1
u} ⊇ {z : (lnu)1/α2 ≥ z}. In particular, for k ≤ b(lnu)1/α2c − 1 := k(u), one has

Ik ⊆ {z : c(z) ≥ 1
u}. Then for u large enough, we compute

m(c ≥ 1

u
) ≥

k(u)∑
k=1

m(Ik) ≥ 1

2

k(u)∑
k=1

εk ≥
1

2
ε∗

k(u)∑
k=1

1

(k + 1)1−α ≥
1

2
ε∗

∫ (lnu)1/α2

2

1

z1−α dz

=
ε∗
2α

((lnu)α/α2 − 2α).

Since α > α2, (96) is verified and we obtain (98).

Now we consider Hypothesis 2.4 (b): We suppose that there exists a constant ε∗ > 0 and there are
some α > 0 such that for every k ∈ N,

1Ik(z)
ν(dz)

mk
≥ 1Ik(z)εkdz with εk =

ε∗
k + 1

, and c(z) ≥ 1

zα
.

Now {z : c(z) ≥ 1
u} ⊇ {z : z ≤ u1/α}. Then for u large enough,

m(c ≥ 1

u
) ≥ 1

2
ε∗

bu1/αc−1∑
k=1

1

k + 1
≥ 1

2
ε∗

∫ u1/α

2

dz

z
=

1

2
ε∗(

1

α
lnu− ln 2).

And consequently
limu→∞

1

lnu
m(c ≥ 1

u
) ≥ ε∗

2α
.

Using Lemma 5.6, this gives: if
2p

t
<
ε∗
2α

⇔ t >
4pα

ε∗

then
sup
M

E(
1

ρMt + tαM
)2p <∞,

and we have sup
M

E(λMt )−p <∞.

5.3 Some proofs concerning Section 4.2
We will prove that the triplet (S, D, L) defined in Section 4.2 is an IbP framework. Here, we only show

thatDq is closable and L verifies the duality formula (32). To do so, we introduce the divergence operator
δ. We denote the space of simple processes by

P = {u = ((ūki )1≤i≤m′
1≤k≤m

,

n∑
r=1

urϕr) : ūki , ur ∈ S, ϕr ∈ L2(R+ × R+, ν × Leb),m′,m, n ∈ N}.

For u = ((ūki )1≤i≤m′
1≤k≤m

,
∑n
r=1 urϕr) ∈ P, we denote uZ = (ūki )1≤i≤m′

1≤k≤m
and uW =

∑n
r=1 urϕr, so that

u = (uZ , uW ).
We notice that P is dense in L2(Ω;H), with H = l2 ⊗ L2(R+ × R+, ν × Leb).
Then we define the divergence operator δ : P → S by

δ(u) = δZ(uZ) + δW (uW )

with δZ(uZ) = −
m∑
k=1

m′∑
i=1

(DZ
(k,i)ū

k
i + ξki ū

k
i × θk(V ki ))

δW (uW ) =

n∑
r=1

urWν(ϕr)−
n∑
r=1

〈DWur, ϕr〉L2(R+×R+,ν×Leb).
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We will show that δ satisfies the following duality formula: For every F ∈ S, u ∈ P,

E〈DF, u〉H = EFδ(u). (99)

In fact, if we denote V̂ ki (x) the sequence (V k0
i0

)1≤i0≤m′
1≤k0≤m

after replacing V ki by x, then for anym′,m ∈ N,

E〈DZF, uZ〉l2 = E
m∑
k=1

m′∑
i=1

DZ
(k,i)F × ū

k
i

=

m∑
k=1

m′∑
i=1

Eξki ∂vki f(ω, (V k0
i0

)1≤i0≤m′
1≤k0≤m

, (Wν(ϕj))
n
j=1)ūki (ω, (V k0

i0
)1≤i0≤m′

1≤k0≤m
, (Wν(ϕj))

n
j=1)

=

m∑
k=1

m′∑
i=1

E
∫
R
ξki ∂vki f(ω, V̂ ki (x), (Wν(ϕj))

n
j=1)× ūk(ω, V̂ ki (x), (Wν(ϕj))

n
j=1)

ψk(x)

m(ψ)
dx

= −
m∑
k=1

m′∑
i=1

E
∫
R
ξki f(ω, V̂ ki (x), (Wν(ϕj))

n
j=1)× [∂vki ū

k
i (ω, V̂ ki (x), (Wν(ϕj))

n
j=1)

+ūki (ω, V̂ ki (x), (Wν(ϕj))
n
j=1)

∂xψk(x)

ψk(x)
]
ψk(x)

m(ψ)
dx

= −
m∑
k=1

m′∑
i=1

EF [DZ
(k,i)ū

k
i + ξki ū

k
i ∂x(lnψk(V ki ))] = E(FδZ(uZ)).

On the other hand, since L2(R+ × R+, ν × Leb) is a separable Hilbert space, we can assume without loss
of generality that, in the definition of simple functionals, (ϕ1, · · · , ϕm, · · · ) is the orthogonal basis of the
space L2(R+ × R+, ν × Leb).
Then with pr =

∫
R+×R+

ϕ2
r(s, z)ν(dz)ds, for any n ∈ N,

E〈DWF, uW 〉L2(R+×R+,ν×Leb) = E
∫
R+×R+

DW
(s,z)F ×

n∑
r=1

urϕr(s, z) ν(dz)ds

= E
n∑
r=1

∂wrf(ω, (V ki )1≤i≤m′
1≤k≤m

, (Wν(ϕj))
n
j=1)ur(ω, (V

k
i )1≤i≤m′

1≤k≤m
, (Wν(ϕj))

n
j=1)pr

=

n∑
r=1

E
∫
R
∂wrf(ω, (V ki )1≤i≤m′

1≤k≤m
,Wν(ϕ1), · · · ,Wν(ϕr−1), y,Wν(ϕr+1), · · · ,Wν(ϕn))

×ur(ω, (V ki )1≤i≤m′
1≤k≤m

,Wν(ϕ1), · · · ,Wν(ϕr−1), y,Wν(ϕr+1), · · · ,Wν(ϕn))
1√

2πpr
e−

y2

2pr dy × pr

= −
n∑
r=1

E
∫
R
f(ω, (V ki )1≤i≤m′

1≤k≤m
,Wν(ϕ1), · · · ,Wν(ϕr−1), y,Wν(ϕr+1), · · · ,Wν(ϕn))

×[∂wrur(ω, (V
k
i )1≤i≤m′

1≤k≤m
,Wν(ϕ1), · · · ,Wν(ϕr−1), y,Wν(ϕr+1), · · · ,Wν(ϕn))

− y

pr
ur(ω, (V

k
i )1≤i≤m′

1≤k≤m
,Wν(ϕ1), · · · ,Wν(ϕr−1), y,Wν(ϕr+1), · · · ,Wν(ϕn))]

1√
2πpr

e−
y2

2pr dy × pr

= EF (

n∑
r=1

urWν(ϕr)−
n∑
r=1

〈DWur, ϕr〉L2(R+×R+,ν×Leb)) = E(FδW (uW )).

Then (99) is proved. Using this duality formula recursively, we can show the closability ofDq. If there exists
u ∈ L2(Ω;H⊗q) such that Fn → 0 in L2(Ω) and DqFn → u in L2(Ω;H⊗q), then for any h1, · · · , hq ∈ P,
E〈u, h1 ⊗ · · · ⊗ hq〉H⊗q = lim

n→∞
E〈DqFn, h1 ⊗ · · · ⊗ hq〉H⊗q = lim

n→∞
EFnδ(h1δ(h2(· · · δ(hq)))) = 0. Since

P⊗q is dense in L2(Ω;H⊗q), we conclude that u = 0. This implies that Dq is closable.
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We notice that from the definition of δ and L, we get immediately that LF = δ(DF ), ∀F ∈ S. And if
we replace u by DG in (99) for G ∈ S, we get the duality formula of L (32).

Data avaibility statement. Data sharing is not applicable to this article as no datasets were generated
or analyzed during the current study.
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