On Generalized Metric Spaces for the Simply Typed Lambda-Calculus
Résumé
Generalized metrics, arising from Lawvere's view of metric spaces as enriched categories, have been widely applied in denotational semantics as a way to measure to which extent two programs behave in a similar, although non equivalent, way. However, the application of generalized metrics to higher-order languages like the simply typed lambda calculus has so far proved unsatisfactory. In this paper we investigate a new approach to the construction of cartesian closed categories of generalized metric spaces. Our starting point is a quantitative semantics based on a generalization of usual logical relations. Within this setting, we show that several families of generalized metrics provide ways to extend the Euclidean metric to all higher-order types.
Origine | Fichiers produits par l'(les) auteur(s) |
---|