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Abstract—Generalized metrics, arising from Lawvere’s view of
metric spaces as enriched categories, have been widely applied
in denotational semantics as a way to measure to which extent
two programs behave in a similar, although non equivalent, way.
However, the application of generalized metrics to higher-order
languages like the simply typed lambda calculus has so far proved
unsatisfactory. In this paper we investigate a new approach to the
construction of cartesian closed categories of generalized metric
spaces. Our starting point is a quantitative semantics based on a
generalization of usual logical relations. Within this setting, we
show that several families of generalized metrics provide ways
to extend the Euclidean metric to all higher-order types.

I. INTRODUCTION

In the literature on program semantics much attention has
been devoted to program equivalence, and, accordingly, to
the study of program transformations which do not pro-
duce any observable change of behavior. However, in fields
involving numerical or probabilistic forms of computation
one often deals with transformations that do alter program
behavior, replacing a piece of program with one which is only
approximately equivalent. For example, numerical methods
(e.g. linear regression, numerical integration) are based on
the replacement of computationally expensive operations with
more efficient, although less precise, ones. On another scale,
statistical learning algorithms compute approximations of a
desired function by fitting with a finite sample.

The challenge that accompanies the use of such approximate
program transformations [66] is to come up with methods to
measure and bound the error they produce. This has motivated
much literature on program metrics [6], [65], [8], [31], [9],
[25], [19], [26], [35], that is, on semantics in which types are
endowed with a notion of distance. This approach has found
widespread applications, for example in differential privacy
[7], [5], [12] and reinforcement learning [33].

A natural framework for the study of program metrics
and their abstract properties is provided by so-called gen-
eralized metrics. Since Lawvere’s [49] it has been known
that some of the basic axioms of standard metric spaces
(notably, the reflexivity and transitivity axioms d(x, x) = 0
and d(x, z) + d(z, y) ≥ d(x, y)) can be seen, at a higher
level of abstraction, as describing the structure of a category
enriched over some quantitative algebra. Typically, when this
algebra is the usual semi-ring of positive reals (i.e. when
“0” actually means zero, and “+” actually means plus), one
gets the metric spaces everyone is used to. However, one can
consider generalized distance functions d : X × X → Q,

where Q is now a different algebra (typically a quantale or a
quantaloid [39]), and the monoidal structure of Q determines
the actual meaning of the metric axioms. Well-investigated
examples of the generalized approach are given by ultra-metric
spaces [65], [31], partial metric spaces [16], [17], [43], [40]
and probabilistic metric spaces [60], [38].

Generalized program metrics have been applied in several
areas of computer science, e.g. to co-algebraic [11], [45], and
concurrent [19] systems, and to algebraic effects [51], [35].
However, the application of program metrics to basic higher-
order languages like the simply typed λ-calculus STλC has
so far proved unsatisfactory. One can mention both theoretical
and practical reasons for this failure. At the abstract level, for
instance, there is the well-known fact that standard categories
of metric spaces, even generalized, are usually not cartesian
closed, and thus only account for linear or sub-exponential
variants of STλC [57], [34], [7]. At a more practical level,
there is the observation that even with such restrictions, the
distance between two functional programs computed in such
models is often not very informative, as it estimates the error
of replacing one program by the other one in the worst case,
and thus independently of the current context in which these
programs are placed.

In this paper we introduce a new class of program metric
semantics for STλC which overcome the aforementioned
difficulties. These semantics arise from the study of a class of
quantitative models based on what we call quantitative logical
relations (in short, QLR).

A QLR is just what remains of a generalized metric space
when one discards the reflexivity and transitivity axioms; in
other words, it is nothing more than a function a : X×X → Q
relating pairs of points x, y ∈ X with an element a(x, y)
of some quantitative algebra Q. At the same time, such
functions can be seen as a quantitative analog of standard
logical relations. The difference is that while with the latter
two programs may or may not be related, with QLR two
programs are always related to a certain degree.

We believe that models for STλC should be as elementary
as possible. By the way, the category of sets is itself a deno-
tational model of STλC. For this reason, we do not, at first,
impose any restriction (e.g. continuity, Lipschitz continuity)
over the set-theoretic functions between QLR. Importantly,
maps of QLR can relate functions measuring distances over
different quantitative algebras. For this reason, set-theoretic
maps are accompanied by a second map, a sort of derivative,



relating errors in input with errors in output. In fact, this idea,
which extends similar ones from differential logical relations
[27], [48] and diameter spaces [36], is the main novelty of
our approach with respect to standard metric models (in which
one usually considers a fixed quantale), and a key ingredient
to obtain models of the full STλC.

However, recall that our starting point was program metric
semantics, and QLR, by their very definition, are not metric
spaces. Yet, since generalized metrics are particular cases of
QLR, the latter provide an ideal environment to investigate
which families of generalized metrics (i.e. which choices of the
“0” and the “+”) adapt well to the cartesian closed structure.

Our first contribution is to show that several variants of QLR
form cartesian closed categories and that some standard results
about logical relations (e.g the Fundamental Lemma) have a
quantitative analog in the realm of QLR. These results show
that QLR-models capture quantitative relational reasoning of
higher-order programs in a fully compositional way.

Our second contribution is a characterization of the class
of generalized metric spaces that give rise to cartesian closed
categories of QLR. These results demonstrate the existence of
a variety of compositional metric semantics of STλC which
extend the Euclidean metrics over the reals to all simple types.

Finally, we show that the derivatives found in QLR-models
can be compared with those appearing in other quantitative
models of STλC, like those arising from the differential λ-
calculus [29], [14], [15].

Outline: After motivating the introduction of QLR in
Section II, in Section III we recall the definition of some
classes of generalized metric spaces; in Section IV we intro-
duce two cartesian closed categories Q and Qr of QLR, and
we describe the interpretation of STλC in them. In Section V
we investigate the generalized metrics which form cartesian
closed sub-categories of Q and Qr. Finally, in Section V we
construct a different cartesian closed category LLMet by intro-
ducing a “locally Lipschitz” condition for QLR morphisms.

II. HIGHER-ORDER METRIC SEMANTICS

A. Program Metrics and Higher-Order Languages

Program metrics have been widely investigated to capture
properties like program similarity and sensitivity. The fun-
damental idea is usually to associate types σ, τ with metric
spaces, and programs f : σ → τ with non-expansive, or more
generally Lipschitz continuous functions. This means that for
all programs t, u of type σ, the distance between f(t) and
f(u) does not exceed that between t and u by more than a
fixed factor L (formally, d(f(t), f(u)) ≤ L · d(t, u)).

However, the approach just sketched is not satisfactory for
the interpretation of higher-order languages, as those based
on STλC. The main problem is that the category MetQ of
metric spaces over a quantale Q and non-expansive maps
[39], which provides the abstract setting for usual program
metrics, is not compatible with the usual structure of models
of STλC. More precisely, while the space MetQ(X,Y ) of
non-expansive functions can be endowed with a metric (the

sup-metric dsup(f, g) = sup{d(f(x), g(x)) | x ∈ X}), this
construction does not yield a right-adjoint to the categorical
product. For this reason MetQ is not a cartesian closed cat-
egory (although MetQ still admits some interesting cartesian
closed sub-categories, see [21], [22]).

This abstract issue is not the only one has to face, though.
After all, category theory is usually invoked in program se-
mantics as a way to enforce compositionality, i.e. the property
by which the semantics of a composed program is expressed
in terms of the semantics of its components. Yet, even if we
accept to restrict to higher-order languages compatible with
the categorical structure of MetQ (like e.g. the system Fuzz
[57]), the metric dsup still does not account for the behavior
of higher-order programs in a sufficiently compositional, and,
in the end, informative way. For example, as observed in
[27], consider the two Lipschitz functions f = λx. sin(x) and
g = λx.x: since f and g get arbitrarily far from each other in
the worst case (i.e. as x grows to infinity), one can deduce that
dsup(f, g) is infinite. Hence, the distance dsup(f, g) provides
no significant information in any situation in which f is
replaced by g as a component of a larger program: for instance,
if C[ ] is a context applying a function on values close to 0,
the programs C[f ] by C[g] will likely turn out close, yet there
is no way to predict this fact in terms of dsup(f, g).

A related issue occurs with contextual notions of distance,
as those found e.g. in probabilistc extensions of the λ-calculus
[25]. These metrics extend usual contextual equivalence, by
letting the distance dctx(t, u) between two objects of type σ
be the sup of all observable distances dEuc(C[f ], C[g]), for any
context C[ ] : σ ⇒ Real. In fact, as shown in [26], the non-
linearity of STλC can be used to define contexts that arbitrarily
amplify distances, with the consequence that the metric dctx
trivializes onto plain contextual equivalence.

B. From Program Metrics to Quantitative Logical Relations

To overcome these issues, in Section IV we introduce
quantitative logical relations, a quantitative extension of usual
logical relations (generalizing previous approaches [27], [48],
[36]) which, on the one hand, applies to higher-order programs
without restrictions, and, on the other hand, enables reasoning
about behavioral similarity in a fully compositional way.

Semantically, logical relations for a programming language
L can be introduced starting from a denotational model of
L (for simplicity, we consider a simple set-theoretic model,
associating each type σ with a set JσK and each program t :
σ → τ with a function JtK : JσK → JτK); one then constructs
a more refined model whose objects are binary relations r :
JσK×JσK→ {0, 1}, and whose arrows are those functions from
our original model which send related points into related points
(in more abstract terms, this construction is an instance of the
glueing construction from [42]). The so-called Fundamental
Lemma tells then that any program t : σ → τ of L yields a
morphism in this model, i.e. preserves relatedness.

While in logical relations relatedness is measured over a
fixed algebra (the Boolean algebra {0, 1}), in QLR relatedness
is measured over a larger class of quantales. Hence, a QLR is



of the form a : JσK× JσK→ LσM, where LσM is some quantale
associated with σ. Typically, when σ is a functional type, LσM
will be some quantale of functions mapping differences in
input into differences in output.

To interpret a program t : σ → τ we must accompany the
function JtK with a second function LtM : JσK × LσM → LτM
mapping differences in LσM around some point of JσK into
differences in LτM. Such functions LtM can be seen as sort
of derivatives of the programs of L, and are the key to
the compositionality of this semantics: if α ∈ LσM measures
the similarity of two programs t, u and C[ ] : σ → τ is a
context with derivative LCM, then by composing LCM with JtK
and α, we obtain a measure of the similarity between C[t] and
C[u]. Notably, the Fundamental Lemma of logical relations
translates in this setting into a result showing that any program
t from L translates into a derivative LtM, thus yielding a fully
compositional semantics for L.

So for instance, take JRealK = R and LRealM = R≥0; if
f, g : Real→ Real are the two programs λx. sin(x), λx.x seen
before and C[ ] = [ ]0 : (Real → Real) → Real is the context
that applies a function to 0, in the setting of quantitative
relations we can reason compositionally as follows: first,
the difference d(JfK, JgK) will be itself a function, notably
one mapping small differences in input around 0 onto small
differences in output; secondly, the derivative LCM will be such
that that the value LCM(f, ϕ) only depends on how much ϕ
grows on small neighborhoods of 0; hence, the difference
between C[f ] and C[g], computed by applying LCM to JfK and
to d(JfK, JgK), will yield a value close to 0.

C. ...and back to Generalized Metric Spaces

While a QLR a : JσK × JσK → LσM needs not be a metric,
several classes of generalized metric spaces can be seen as
QLR satisfying further properties. One can thus ask which
families of generalized metrics can be lifted to all simple types
within a given QLR-model.

In Section V we investigate generalized metrics in cat-
egories of QLR with unrestricted morphisms (that is, with
no continuity or Lipschitz restriction). We show that, under
some mild assumptions, lifting metrics to simple types forces
distances to be idempotent (i.e. to satisfy α = α + α). This
implies that the generalized metrics that can be lifted to all
simple types are of two kinds: firstly, the ultra-metric and
partial ultra-metric spaces, that is, those metrics based on an
idempotent quantitative algebra; secondly, those generalized
metrics whose distance function can be factored through an
idempotent metric. By extending a construction from [36]
relating partial metrics with lattice-valued distances, we show
that the Euclidean metric, as well as many other standard
metrics and partial metrics, belong to this second class.

In Section VI we investigate generalized metrics in cat-
egories of QLR where morphisms satisfy suitable gener-
alizations of the Lipschitz and locally Lipschitz continuity
conditions. We first show that the first condition does not
yield a cartesian closed category, for reasons very similar to
those found when considering metrics over a fixed quantale.

We then show that the second yields, instead, a model of
STλC by restricting to the QLR that satisfy the reflexivity and
transitivity axioms, that is, to the generalized metric spaces.

III. GENERALIZED METRIC SPACES

In this paper we consider several variants of metric spaces.
It is thus useful to adopt a general and abstract definition of
what we take a (generalized) metric space to be. We exploit the
abstract formulation of generalized metric spaces as enriched
categories dating back to Lawvere’s [49], who first observed
that a metric space in the standard sense can be seen as a
category enriched in the monoidal poset ([0,+∞),≥, 0,+) of
positve real numbers under reversed ordering and addition.

A. Metrics over an Arbitrary Quantale

The standard axioms of metric spaces involve an order
relation and a monoidal operation (addition) with a neutral
element 0. This structure is characterized by a monoidal poset,
that is, a tuple (M,≥, 0,+) where (M,≥) is a poset and
(M, 0,+) is a monoid such that + is monotone. In practice,
one is usually interested in measuring distances in monoidal
posets where sups and infs always exist. This leads to consider
(commutative and integral) quantales:

Definition III.1. A (commutative) quantale is a commutative
monoidal poset (Q, 0,+,≥) such that (Q,≥) is a complete
lattice satisfying α +

∧
S =

∧
{α + β | β ∈ S}, for all

S ⊆ Q. A commutative quantale (Q, 0,+,≤) is integral when
0 = ⊥. A commutative quantale Q is a locale when 0 = ⊥
and α = α + α holds for all α ∈ Q (or, equivalently, when
α+ β = α ∨ β).

Remark III.1. With respect to common presentations of
quantales, we adopt here the reversed order (so that

∨
s and∧

s are inverted), as this is more in accordance with the
quantitative intuition.

Example III.1 (The Lawvere quantale). The structure
(R∞≥0, 0,+,≤), where R∞≥0 is the set of positive reals plus ∞,
is a commutative and integral quantale, and usually referred
to as the Lawvere quantale [39]. If we replace + with sup,
the resulting structure (R∞≥0, 0, sup,≤) is a locale.

Example III.2. For all commutative monoid (M, 0,+),
the structure (℘(M), {0},+,⊆), is a commutative quantale,
where A+B = {x+ y | x ∈ A, y ∈ B}.

Example III.3. All products Πi∈IQi of (commutative and
integral) quantales, with the point-wise order, are still com-
mutative and integral quantales.

In a quantale Q one can define the following two operations:

α› β =
∧
{δ | β ⊗ δ ≥ α} α⇐ β =

∧
{δ | β ∨ δ ≥ α}

In any quantale δ ≥ α › β holds iff δ ⊗ β ≥ α, that is,
› is right-adjoint to +. A quantale in which ⇐ is right-
adjoint to ∨, i.e. δ ≥ α ⇐ β holds iff δ ∨ β ≥ α, is called
a Heyting quantale [39], [21]. The Lawvere quantale and



all other quantales obtained from it by product are Heyting.
Moreover, all locales are Heyting.

Example III.4. In the Lawvere quantale x › y =
max{0, x− y} and x⇐ y is 0 if x ≤ y and is x otherwise.

Over any quantale Q we can define generalized metric
spaces as follows:

Definition III.2. A generalized metric space is a triple
(X,Q, a) where X is a set, Q is a commutative quantale,
and a : X ×X → Q satisfies, for all x, y, z ∈ X:

0 ≥ a(x, x) (reflexivity)
a(x, y) + a(y, z) ≥ a(x, z) (transitivity)

A generalized metric space is said:

• symmetric if a(x, y) = a(y, x);
• separated if a(x, y) = 0 implies x = y.

Observe that, when Q is integral, from the reflexivity axiom
it follows that a(x, x) = 0 holds for all x ∈ X .

Following usual terminology, we let a pseudo-metric space
be a symmetric metric space (X,Q, a), and a standard metric
space be a separated pseudo-metric space.

The Euclidean metric is the standard metric space
(R,R∞≥0, dEuc) where dEuc(x, y) = |x− y|.

Example III.5. A standard metric space (X,Q, a) in which Q
is a locale is usually called a ultra-metric space. The transitiv-
ity axiom reads in this case as a(x, y)∨a(y, z) ≥ a(x, z). For
instance, the sequence metric on the set XN of X-sequences
(xn)n∈N is the ultra-metric space (XN,R∞≥0, dseq) given by
dseq(xn, yn) = 2−c(xn,yn), where c(xn, yn) is the length or
the largest common prefix of xn and yn.

Example III.6. A standard metric space (X,∆, a) in which
∆ is the quantale of distributions, i.e. the left-continuous maps
f : R≥0 → [0, 1] with the monoidal operation (f ⊕ g)(r) =∧
s+t=r f(s)·g(s) , is an example of probabilistic metric space

[60], [38]. Observe that the transitivity axiom reads in this
case as a(x, y, r) + a(y, z, s) ≥ a(x, y, r + s).

B. Partial Metrics Spaces

In several approaches to program metrics one encounters
distance functions which do not satisfy the reflexivity axiom
0 ≥ a(x, x). A basic example (see [16]) is obtained when the
sequence metric dseq is extended to the set X̂ =

⋃∞
n Xn ∪

XN of finite and infinite X-sequences (this kind of spaces are
common, for instance, in domain theory): whenever xn is a
sequence of length k, we have that dseq(xn, xn) = 2−k > 0.

The simplest way to define a metric with non-zero self-
distances is simply to drop the reflexivity axiom. This yields
the relaxed metrics from [27]. An even more drastic relaxation

of the metric axioms is the one considered in [27], where
transitivity is also weakened to1

a(x, y) ≤ a(x, z) + a(z, z) + a(z, y) (1)

We will refer to the latter as hyper-relaxed metrics.
A more algebraic approach is to consider distance functions

that do satisfy both metric axioms, but relative to a different
monoidal structure over Q. The partial metric spaces [16],
[17], developed to account for domains of objects akin to the
set X̂ , provide an example of this approach, as shown by the
elegant presentation from [40], [64], that we recall below.

For all commutative integral quantale Q, let D(Q) be the
category whose objects are all elements of Q, and where
D(Q)(α, β) is the complete lattice of diagonals from α to
β, i.e. those δ ∈ Q satisfying

α+ (δ › α) = δ = (δ › β) + β

The identity morphism idα is just α (moreover, α is the
smallest element of D(Q)(α, α)); the composition of two
diagonals δ ∈ D(Q)(β, α) and η ∈ D(Q)(γ, β) is the diagonal

η +β γ := η + (γ › β)

The category D(Q) is an example of quantaloid (see [64]).

Example III.7. In the Lawvere quantale, a diagonal from x
to y is any real number z ≥ x, y, and the composition law
reads as x+z y := x+ y − z.

Remark III.2. When Q is a locale, D(Q)(α, β) = {γ | α ∨
β ≤ γ} and the composition law of D(Q) coincides with that
of Q, since α ∨ (β ⇐ γ) = α ∨ β holds for all γ ≤ β.

Using this fact, the definition of the category of diagonals
can be extended to the case in which Q is just a com-
plete lattice (and thus needs not be a locale), by letting
D(Q)(α, β) = {γ | α ∨ β ≤ γ}, with identities idα = α
and composition given by ∨. The category D(Q) is then a
quantaloid precisely when Q is a locale.

Partial metric spaces can be defined as metric spaces with
respect to the monoidal structure of diagonals:

Definition III.3. A partial metric space is a triple (X,Q, a)
where X is a set, Q is a (commutative and integral) quantale
and a : X ×X → Q satisfies, for all x, y, z ∈ X:

ida(x,x) ≥ a(x, x) (reflexivity)
a(x, y) +a(y,y) a(y, z) ≥ a(x, z) (transitivity)

A partial metric space is said:
• symmetric if a(x, y) = a(y, x);
• separated if a(x, y) = a(x, x) = a(y, y) implies x = y.

A symmetric and separated partial metric over the Lawvere
quantale a : X ×X → R∞≥0 satisfies the axioms below:

1Actually, [27] does not define a distance function d : X × X → Q but
rather a distance relation ρ ⊆ X ×Q×X obeying a relaxed transitivity of
the form ρ(x, α, y), ρ(y, β, y), ρ(y, γ, z)⇒ ρ(x, α+β+γ, y). In fact, this
is the same thing as a function dρ : X ×X → ℘(Q) (where ℘(Q) indicates
the quantale of subsets of Q from Example III.2) satisfying (1).



PMS1 a(x, x) ≤ a(x, y), a(y, x);
PMS2 a(x, y) = a(y, x);
PMS3 if a(x, x) = a(x, y) = a(y, x), then x = y;
PMS4 a(x, y) ≤ a(x, z) + a(z, y)− a(z, z).

Observe that a (symmetric and separated) metric is the same
as a (symmetric and separated) partial metric with a(x, x) = 0.
Moreover, any (symmetric and separated) partial metric a :
X ×X → Q gives rise to a (symmetric and separated) metric

a∗(x, y) = (a(x, y) › a(x, x)) + (a(x, y) › a(y, y))

We let a partial pseudo-metric space be a symmetric metric
space, a standard partial metric space be a separated partial
pseudo-metric space, and a partial ultra-metric space be a
standard partial metric space (X,Q, a) where Q is a locale.

For example, the sequence metric dseq extended to X̂ yields
a partial ultra-metric space. Another standard example of
partial metric over the Lawvere quantale is the one defined
over the set I of closed intervals {[r, s] | r ≤ s} by
p([r, s], [r′, s′]) = max{s, s′} −min{r, r′}.

Remark III.3. The definition of partial ultra-metric spaces
can be extended, as we will do in Section V, to the case in
which Q is just a complete lattice, following Remark III.2.
However, one must be careful that all properties that rely on
the existence of the right-adjoint⇐ need not hold in this case.

IV. QUANTITATIVE LOGICAL RELATIONS

In this section we introduce two categories Q and Qr of
quantitative logical relations.. After describing their cartesian
closed structure, we describe the interpretation of STλC in
these categories and we show that some standard results about
logical relations scale to QLR in a quantitative sense.

A. Two Categories of QLR

A quantitative logical relation (X,Q, a) (in short, a QLR)
is the given of a set X , a commutative quantale Q and a
function a : X × X → Q. A map of quantitative logical
relations (X,Q, a), (Y,R, b) is a pair (f, ϕ), where f : X →
Y , ϕ : X ×Q→ R and for all x, y ∈ X ,

a(x, y) ≤ α ⇒ b(f(x), f(y)) ≤ ϕ(x, α)

QLR and their maps form a category Q having as identities the
pairs (idX , λxα.α), and with composition defined by (g, ψ) ◦
(f, φ) = (g ◦ f, ψ ◦ 〈f ◦ π1, ϕ〉).

The category Q is cartesian closed: given QLR (X,Q, a)
and (Y,R, b),

• their cartesian product is the QLR (X×Y,Q×R, a×b),
and the unit is the space ({?}, {?}, 〈?, ?〉 7→ ?);

• their exponential is the QLR (Y X , RX×Q, da,b) where

da,b(f, g)(x, α) = sup{d(f(x), g(y)),d(f(x), f(y)))

| a(x, y) ≤ α}

The isomorphism Q(Z ×X,Y ) Q(Z, Y X)
λ

ev
defin-

ing the cartesian closed structure is given by λ(f, ϕ) =
(λ(f), λ(ϕ)) and ev(f, ϕ) = (ev(f), ev(ϕ)), where

λ(f)(z)(x) = f(〈z, x〉)
λ(ϕ)(〈z, γ〉)(〈x, α〉) = ϕ(〈〈z, x〉, 〈γ, α〉〉)

ev(f)(〈z, x〉) = f(z)(x)

ev(ψ)(〈〈z, x〉, 〈γ, α〉〉) = ψ(〈z, γ〉)(〈x, α〉)

Given QLR (X,Q, a) and (Y,R, b), for all function f :
X → Y there exists a smallest function D(f) : X ×Q → R
such that (f,D(f)) ∈ Q(X,Y ), defined by

D(f)(x, α) = sup{b(f(x), f(y)) | a(x, y) ≤ α} (2)

We call D(f) the derivative of f . Derivatives in Q satisfy the
following properties:

D(idX)(x, α) = α (D1)
D(πi)(〈x1, x2〉, 〈α1, α2〉) = αi (D2)

D(〈f, g〉)(x, α) = 〈D(f)(x, α),D(g)(x, α)〉 (D3)
D(g ◦ f)(x, α) ≤ D(g)(f(x),D(f)(x, α)) (D4)
D(λ(f))(x, α) ≤ λ(D(f))(x, α) (D5)
D(ev(f))(x, α) ≤ ev(D(f))(x, α) (D6)

Properties (D1)-(D3) recall some of the axioms of Cartesian
Differential Categories [14], a well-investigated formalization
of abstract derivatives. Property (D4) is a lax version of the
chain rule, and properties (D5) and (D6) state that D commutes
with the cartesian closed isomorphisms in a lax way.

Remark IV.1. Derivatives in Cartesian Differential Cate-
gories are additive in their second variable, i.e. they satisfy
∂(f)(x, 0) = 0 and ∂(f)(x, α + β) = ∂(f)(x, α) + ∂(x, β).
By contrast, it is not difficult to construct counter-examples to
the additivity of D(f). Let f, g : R→ R be given by

f(x) =

{
x if |x| ≤ 1

2x otherwise
f(x) =

{
2x if |x| ≤ 1

x otherwise

Then 6 = D(f)(x, 1 + 1) > D(f)(x, 1) + D(f)(x, 1) = 4 and
6 = D(g)(x, 1 + 1) < D(g)(x, 1) + D(g)(x, 1) = 8.

The distance function on Y X in Q can be character-
ized using derivatives as follows: given QLR (X,Q, a) and
(Y,R, b) and functions f, g ∈ Y X , let (2, {0 < ∞}, ddisc)
be the QLR given by the discrete metric on 2 = {0, 1}. Let
hf,g : 2×X → Y be the function given by hf,g(0, x) = f(x)
and hf,g(1, x) = g(x). A simple calculation yields then:

Lemma IV.1. da,b(f, g)(x, α) = D(hf,g)(〈〈0, x〉, 〈∞, α〉〉).

A consequence of Lemma IV.1 is that the self-distance of
f ∈ Y X coincides with its derivative, that is:

da,b(f, f) = D(f) (3)

Observe that this property implies that the self-distance of f
is (constantly) zero precisely when f is a constant function.



We now define a category Qr of reflexive QLR: Qr is the
full subcategory of Q made of QLR (X,Q, a) such that Q is
Heyting and a(x, x) = 0 holds for all x ∈ X .

Remark IV.2. We will make the further assumption that the
objects of Qr satisfy the following property:

if α ≤ β then β ≤ β ⇐ α (??)

Notably, the Lawvere quantale and all quantales constructed
from it by product satisfy (??).

Qr inherits the cartesian product from Q. Instead, the
exponential of (X,Q, a) and (Y,R, b) in Qr is the QLR
(Y X , RX×Q, ea,b), where

ea,b(f, g) := da,b(f, g)⇐ D(f)

Observe that ea,b(f, f) = D(f) ⇐ D(f) = 0. The isomor-

phism Qr(Z ×X,Y ) Qr(Z, Y X)
λr

evr
is given by:

λr(f, ϕ) = (λ(f), λ(ϕ)⇐ λz.D(f(〈z, )))

evr(f, ϕ) = (ev(f), ev(ϕ) ∨ λz.D(f(z)( )))

Remark IV.3. In the absence of property (??), reflexive QLR
only form a cartesian lax-closed category [61]. In particular,
one has that evr(λr(f, ϕ)) = ϕ and λr(evr(f, ψ)) ≤ ψ
(in other words, β-reduction is preserved while η-reduction
decreases the interpretation).

Remark IV.4. In Q and Qr we can define “naı̈ve” extensions
of the Euclidean metric to all simple types. In particular, this
yields the two distance functions d and e on RR below:

d(f, g)(x, α) = sup{dEuc(f(x), f(y)), dEuc(f(x), g(y))

| dEuc(x, y) ≤ α}

e(f, g)(x, α) =

{
d(f, g)(x, α) if d(f, g)(x, α) > D(f)(x, α)

0 otherwise

One can also consider categories Qs,Qrs of symmetric
(resp. reflexive and symmetric) QLR. One has the following:

Lemma IV.2. Let (X,Q, a), (Y,R, b) be symmetric QLR. If R
is a locale, then their exponential QLR in Q is still symmetric.

As a consequence, the categories Qs
∧ and Qsr

∧ of symmetric
(resp. reflexive and symmetric) QLR (X,Q, a) where Q is
a locale, are cartesian closed subcategories of Q,Qr, respec-
tively. We will meet these two categories in the next section.

The locale-valued one is essentially the only case in which
symmetric relations inherit the cartesian closed structure of Q
and Qr, as shown be the lemma below.

Lemma IV.3. Let (X,Q, a), (Y,R, b) be symmetric QLR,
where Y is injective ([32], [21], see also the Appendix) and
X contains two points v0, v1 with a(v0, v1) 6= 0. Then, if the
exponential of X and Y in Q is symmetric, then for all α ∈ R
such that α+ α ∈ Im(b), α = α+ α.

B. QLR Models

We now describe the interpretation of the simply typed λ-
calculus inside Q and Qr. Concretely, this means associating
each simple type with a QLR and each typed program with
a morphism of QLR. We describe this situation abstractly
through the notion of QLR-model, introduced below.

Definition IV.1. Let C be a cartesian closed category. A QLR-
model (resp. reflexive QLR-model) of C is a cartesian closed
functor F : C→ Q (resp. F : C→ Qr).

Concretely, a QLR-model consists in the following data:
• for all object X of C, a QLR (JXK, LXM, aX);
• for all morphism f ∈ C(X,Y ), functions JfK : JXK →

JY K and LfM : JXK× LXM→ LY M such that (JfK, LfM) is
a QLR morphism from JXK to JY K,

where the application f 7→ LfM satisfies equations D1-D6
in a strict sense. Observe that LfM is in general only an
approximation of the derivative D(JfK) (that is, one has
D(JfK) ≤ LfM).

We now describe a concrete QLR-model for a simply typed
λ-calculus STλC(Fn) over a type Real for real numbers. More
precisely, simple types are defined by the grammar

σ, τ := Real | σ → τ | σ × τ

For all n > 0, we fix a set Fn of functions from Rn to R. We
consider the usual Curry-style simply-typed λ-calculus, with
left and right projection π1 and π2, and with pair constructor
〈 , 〉, enriched with the following constants: for all r ∈ R,
a constant r : Real; for all n > 0 and f ∈ Fn, a constant
f : Real→ · · · → Real→ Real.

The usual relation of β-reduction is enriched with the
following rule, extended to all contexts: for all n > 0,
f ∈ Fn, and r1, . . . , rn ∈ R, fr1 . . . rn −→β s, where
s = f(r1, ..., rn). By standard arguments [46], this calculus
has the properties of subject reduction, confluence and strong
normalization.

We let Λ(Fn) be the cartesian closed category whose
objects are the simple types and where Λ(Fn)(σ, τ) is the
the quotient of the set of closed terms of type σ → τ under
βη-equivalence, and composition of [λx.t] ∈ Λ(Fn)(σ, τ) and
[λx.u] ∈ Λ(Fn)(τ, ρ) is [λx.u(tx)].

We describe a QLR-model of STλC(Fn) by defining the
QLR (JσK, LσM, aσ) as shown below (in fact, a similar con-
struction also yields a reflexive QLR-model):

JRealK = R LRealM = R∞≥0 aReal = dEuc

Jσ × τK = JσK× JτK aσ×τ = aσ × aτ
Lσ × τM = LσM× LτM

Jσ → τK = JτKJσK aσ→τ = daσ,aτ

Lσ → τM = LτMJσK×LσM

Given a context Γ = {x1 : σ1, . . . , xn : σn} and a term t of
type Γ ` t : σ (that we take as representative of a class of terms
of type (

∏n
i=1 σi) → σ), the functions JtK :

∏n
i=1JσiK →



JσK and LtM :
∏n
i=1JσiK ×

∏n
i=1LσiM → LσM are defined by a

straightforward induction on t. We unroll below the definition
of LtM in the case of Q:

LrM(~x, ~α) = 0

LfM(~x, ~α) = D(f)(~x, ~α)

LxM(~x, ~α) = αi

L〈t, u〉M(~x, ~α) = 〈LtM(~x, ~α), LuM(~x, ~α)〉
LtπiM(~x, ~α) = πi(LtM(~x, ~α))

Lλy.tM(~x, ~α) = λxα.LtM(~x ∗ x, ~α ∗ α)

LtuM(~x, ~α) = LtM(~x, ~α)(JuK(~x), LuM(~x, ~α))

where ~x ∗ y indicates the concatenation of ~x with y.

Theorem IV.4 (Soundness). For all simply typed term t such
that Γ ` t : σ, (JtK, LtM) ∈ Q(JΓK, JσK). Moreover, if t −→β u,
then JtK = JuK and LtM = LuM.

The following fact is an immediate consequence of Theorem
IV.4 and Eq. (3), and can be seen as a quantitative analog of
the Fundamental Lemma of logical relations:

Corollary IV.1 (Fundamental Lemma for QLR). For all term
t such that ` t : σ, aσ(JtK, JtK) ≤ LtM.

Another quite literal consequence of Theorem IV.4 is that
program distances are contextual: given a distance between
programs t and u, for any context C[ ] we can obtain a distance
between C[t] and C[u]:

Corollary IV.2 (contextuality of distances). For all terms t, u
such that ` t, u : σ holds and for all context C[ ] : σ ` τ ,

aτ (JC[t]K, JC[u]K) ≤ LCM(JtK, aσ(JtK, JuK))

Remark IV.5. Corollaries IV.1 and IV.2 generalize proper-
ties established in the setting of differential logical relations
(cf. Lemma 15 in [27]).

Remark IV.6. One can define an alternative interpretation of
STλC by letting LtM be the “true” derivative D(JtK). However,
while Corollaries IV.1 and IV.2 still hold, the operation t 7→
(JtK,D(JtK)) only yields a colax functor (since one only has
D(JuK ◦ JtK) ≤ D(JuK)(JtK,D(JtK))).

V. METRIZABILITY

In this section we investigate generalized metric as sub-
categories of Q and Qr. We first show that the relaxed and
hyper-relaxed metrics all form cartesian closed subcategories
of Q; we then turn to metrics and partial metrics: we show
that, under suitable assumptions, the exponential QLR formed
from two metric or partial metric spaces X and Y is a metric
or a partial metric space precisely when the metric of Y is
idempotent (i.e. distances satisfy α = α+ α).

This result can be used to show that the naı̈ve extension
to simple types of ultra-metric and partial ultra-metric spaces
yields cartesian closed subcategories of Q and Qr; at the same
time it shows that the naı̈ve extension of the Euclidean metric
(as well as of any non-idempotent metric) in either Q or

Qr is not a generalized metric. Nevertheless, we show that
extensions to all simple types can be defined for those metrics
and partial metrics (including the Euclidean metric), whose
distance function factors as the composition of an idempotent
metric and a valuation [54], [59].

A. Relaxed metrics

It is not difficult to check that whenever (X,Q, a) and
(Y,R, b) are two relaxed or hyper-relaxed metrics, so is their
exponential (Y X , RX×Q, d) in Q. For the relaxed metrics,
given f, g, h ∈ Y X , using the triangular law of Y we deduce
that for all x, y ∈ X and α ≥ a(x, y),

b(f(x), g(y)) ≤ b(f(x), h(x)) + b(h(x), g(y))

≤ da,b(f, h)(x, α) + da,b(h, g)(x, α)

and thus in particular that da,b(f, g) ≤ da,b(f, h) + da,b(h, g).
This argument straightforwardly scales to the hyper-relaxed
metrics, yielding:

Proposition V.1. The full subcategories of Q made of relaxed
and hyper-relaxed metrics are cartesian closed.

An immediate consequence is that the QLR
(RR, (R+∞

≥0 )X×R
+∞
≥0 , d) from Remark IV.4 is a relaxed

metric. We will show below that we cannot actually say more
of this QLR: it is not a partial metric.

B. Ultra-metrics

For all metric spaces (X,Q, a) and (Y,R, b), whenever R
satisfies α + β = α ∨ β (or, equivalently, α = α + α and
0 = ⊥), it is not difficult to check that the transitivity axiom
lifts to the exponential in Q: in fact, for all f, g, h ∈ Y X and
x, y ∈ X with a(x, y) ≤ α) one has

b(f(x), g(y)) ≤ b(f(x), h(x)) ∨ b(h(x), g(y))

≤ da,b(f, h)(x, α) ∨ da,b(h, g)(x, α)

from which we deduce da,b(f, g)(x, α) ≤ da,b(f, h)(x, α) ∨
da,b(h, g)(x, α). A similar argument can be developed for the
distance ea,b, leading to:

Proposition V.2. The full subcategories of Qsr
∧ and Qs

∧ made
of ultra-metric spaces and partial ultra-metric spaces are
cartesian closed.

When Q is a locale, also the category MetQ is cartesian
closed [62]. These categories have been mostly used to provide
intensional models of the simply typed λ-calculus (e.g. mea-
suring program approximations or the number of computation
steps [31]). Instead, in the categories Qsr

∧ and Qs
∧ we can

define more extensional metrics as the one below.

Example V.1. Let I(R) be the complete lattice of closed
intervals [x, y] (where x, y ∈ R and x ≤ y), enriched with ∅
and R. We can define a partial ultra-metric u : R×R→ I(R)
by letting u(x, y) = [min{x, y},max{x, y}].

The metric u lifts in Qs
∧ to a partial ultra-metric du,u over

real-valued functions where, for all x ∈ R and I ∈ I(R),



du,u(f, g)(x, I) is the smallest interval containing all f(y)
and g(y), for y ∈ I ∨ {x} (see also [36]).

We now establish a sort of converse to Proposition V.2:
under suitable conditions, if the exponential of two metric
spaces X and Y satisfies the transitivity axiom, then the
distances over Y are idempotent:

Lemma V.3. i. Let (X,Q, a) and (Y,R, b) be two metric
spaces, where X has at least two distinct points and Y
is injective ([32], [21], see also the Appendix). If the
reflexive QLR (Y X , RX×Q, ea,b) is a metric space then
for all α, β ∈ R, if α+ β ∈ Im(b), then α+ β = α∨ β.

ii. Let (X,Q, a) and (Y,R, b) be two partial metric spaces,
where X has at least two distinct points and Y is in-
jective. If the QLR (Y X , RX×Q, da,b) is a partial metric
space then for all α, β ∈ R, if α + β ∈ Im(b), then
α+ β = α ∨ β.

To give the reader an idea of the proof of Lemma V.3, we
illustrate in Fig. 1 counter-examples to transitivity for the naı̈ve
extensions of the Euclidean metric (cf. Remark IV.4).

C. Decomposing Partial Metrics through Valuations

Lemma V.3 shows that one cannot hope to lift the Euclidean
metric to all simple types inside Q or Qr. Nevertheless,
the Euclidean metric, as well as many other non-idempotent
metrics and partial metrics, can be lifted to all simple types
inside the categories Qs

∧ and Qsr
∧. We show this fact using

a well-investigated connection between partial metrics and
lattice-valued metrics.

A basic intuition comes from the observation that the
Euclidean distance can be decomposed as

R× R I(R) R+
≥0

u µ

where u is the partial ultra-metric from Example V.1 and µ
is the Lebesgue measure. This observation can be generalized
using the theory of valuations [54], [18], [59].

A join-valuation [59] on a join semi-lattice L is a monotone
function F : L→ R+∞

≥0 which satisfies the condition

F(a ∨ b) ≤ F(a) + F(b)−F(a ∧ b) (4)

for all a, b such that a∧ b exists in L. When L is a σ-algebra,
join-valuations on L are thus sort of relaxed measures on L.

Any join-valuation F : L → R+∞
≥0 induces a join semi-

lattice LF obtained by quotienting L under the equivalence

a 'F b iff (a ≤ b or b ≤ a) and F(a) = F(b)

One obtains then a separated and symmetric partial metric
pF : LF × LF → R+∞

≥0 by letting pF (a, b) = F(a ∨ b). The
transitivity axiom is checked as follows:

F(a ∨ b) ≤ F((a ∨ c) ∨ (c ∨ b))
≤ F(a ∨ c) + F(c ∨ b)−F((a ∨ c) ∧ (c ∨ b))
≤ F(a ∨ c) + F(c ∨ b)−F(c ∨ c)

Remark V.1. The connection between partial metrics and
valuations has a converse side [59]: any (symmetric and
separated) partial metric p : X × X → R+∞

≥0 defines an
order vp over X given by x vp y iff p(x, y) ≤ p(x, x). Then,
whenever the poset (X,vp) is a join semi-lattice, the self-
distance function X ∆→ X ×X p→ R+∞

≥0 is a join-valuation.

Extending this observation to arbitrary (commutative and
integral) quantales leads to the following:

Definition V.1. A (generalized) valuation space (noted L F−→
Q) is the given of a monotone function from a complete lattice
L to a quantale Q satisfying

F(a ∨ b) ≤ F(a) + (F(b) › F(a ∧ b)) (5)

for all a, b ∈ L such that a ∧ b 6= ⊥.

By arguing as above, any valuation space L F−→ Q yields a
(symmetric and separated) partial metric F : LF × LF → Q.
This leads to the following definition:

Definition V.2. A partial metric valuation space is a triple
(X,L

F−→ Q, a), where L F−→ Q is a valuation space and
UX = (X,LF , a) is a (symmetric and separated) partial
ultra-metric space.

A map of partial metric valuation spaces (X,L
F−→ Q, a)

and (Y,M
G−→ R, b) is an arrow (f, ϕ) in Qs

∧(UX,UY ).

Example V.2. The Euclidean metric can be presented as a
partial metric valuation space in two ways: either using the
Lebesgue measure as shown before, or by considering the
valuation space I(R)−

diam−→ R+∞
≥0 where I(R)− is the join-

semilattice I(R) − {∅} and diam is the diameter function
(which is in fact modular over intersecting intervals, see [36]).

Observe that for any map (f, ϕ) of spaces (X,L
F−→ Q, a)

and (Y,M
G−→ R, b), we have that for all x, y ∈ X and α ∈ L,

G(b(f(x), f(y)) ≤ G(ϕ(x, α))

In other words, the composition of derivatives and valuations
provides a compositional way to compute distance bounds.

We let pV indicate the category of partial metric valuation
spaces. Since the functor U : pV → Qs

∧ is by definition
full and faithful, pV inherits the cartesian closed structure
from Qs

∧. In particular, given partial metric valuation spaces
(X,L

F−→ Q, a) and (Y,M
G−→ R, b), their product and

exponential are as follows:

(X × Y, L×M R×QF×G
, a× b)

(Y X , (RG)X×LF QX×LF
G◦

, da,b)

Example V.3. The exponential object of the Euclidean metric
inside pV is (essentially) the partial metric p : (RR×RR)→
(R+
≥0)R×I(R) from [36], and is given by

p(f, g)(x, I) = diam{b(f(y), g(z)) | y, z ∈ {x} ∨ I}

We can compare this extension with the naı̈ve extension d in
Fig. 1, by considering the interval I = [x− r, x+ r]. One has



xx− r x+ r

g(x)

h(x)

f(x)

g

h

f

d(h, g)

d(f, h) = d(h, h)

d(f, g)

(a) The distance d from Remark IV.4 is not a partial metric. The
example above shows that d(f, g) > d(f, h) + d(h, g) − d(h, h)
(with all distances computed in (x, r)). A similar example can be
found in [36].

xx− r x+ r

g(x)

h(x)

f(x)

g

h

f

d(h, g)

d(f, f)

d(f, g)

(b) The distance e from Remark IV.4 is not a metric. In the example
above (with all values computed in (x, r)), e(f, h) = 0, since each
h(y) is no farther from f(x) than f(x+r), e(h, g) = d(h, g) and
e(f, g) is d(f, f)+d(f, g). Hence transitivity fails since e(f, g) =
d(f, h) + d(h, g) > 0 + d(h, g) = e(f, h) + e(h, g).

Fig. 1: The distances d and e from Remark IV.4 do not satisfy the transitivity axioms of metric and partial metric spaces.

p(f, h)(x, I) = d(f, h) but p(h, g)(x, I) = d(h, h) + d(h, g).
Hence transitivity holds, since p(f, g)(x, I) = p(f, h)(x, I) +
p(h, g)(x, I)− p(h, h)(x, I).

This construction can be adapted to metric spaces. Let a
dual join-valuation be a monotone map Lop×L D→ Q (where
Lop is the complete lattice with the reversed order) satisfying

D(a, a) = 0 D(a, b ∨ c) ≤ D(a, b) +D(b ∧ c, c)

One defines the quotient LD by a 'D b iff a ≤ b or
b ≤ a and D(a, a ∨ b) = D(b, b ∨ a) = 0. For any dual
join valuation D, the function dD : LD × LD → Q given by
d(a, b) = D(a, a∨b)+D(b, b∨a) is a symmetric and separated
metric. Moreover, any join-valuation L

F→ Q yields the dual
join valuation F ′(a, b) = F(b) › F(a).

One can define then a metric valuation space as a triple
(X,Lop × L

D→ Q, a), where Lop × L
D→ Q is a dual join

valuation and UX = (X,LD, a) is a symmetric and separated
ultra-metric space One obtains then a category V of metric
valuation spaces, with V(X,Y ) = Qsr

∧(UX,UY ).

Theorem V.4. The categories pV and V are cartesian closed.

Example V.4. The Euclidean metric lives in V as it arises
from the dual join valuation D : I(R)op×I(R)→ R∞≥0 given
by D(I, J) = diam(J) › diam(I). Its extension to RR inside
V yields the metric m(f, g) = 2p(f, g) − p(f, f) − p(g, g),
where p is the partial metric from Example V.3.

VI. A GENERALIZED LIPSCHITZ CONDITION

In this section we explore a different class of morphisms
between QLR, generalizing the usual Lipschitz condition.
Notably, we show that in this setting the QLR satisfying
reflexivity and transitivity can be lifted to all simple types.

A. From Lipschitz to Locally Lipschitz functions

As observed in previous sections, the Lipschitz condition
has been widely investigated in program semantics, but is
considered problematic when dealing with fully higher-order

languages. Does the picture change when we step from models
like MetQ to categories of QLR?

Remark VI.1. For simplicity, from now on we will suppose
that QLR are always reflexive and symmetric.

To answer this question we must first find a suitable
extension of the Lipschitz condition to this setting. The first
step is to introduce a notion of finiteness: since a quantale is a
complete lattice, we must avoid that any function f : X → Y
between QLR admits the trivial Lipschitz constant >.

Definition VI.1. Let Q be a commutative and integral quan-
tale. A finiteness filter of Q is a downward set F ⊆ Q such
that a, b ∈ F implies a+ b ∈ F .

A finitary QRL is a tuple (X,Q,F, a) such that (X,Q, a)
is a QLR, F ⊆ Q is a finitary filter of Q and Im(a) ⊆ F .

The positve reals R≥0 form a finitary filter for R∞≥0.
Moreover, if F ⊆ Q and G ⊆ R are finitary filters, then
F ×G ⊆ Q × R is a finitary filter of Q × R, and for all set
X , FX ⊆ QX is a finitary filter of QX .

A basic observation is that a Lipschitz L constant for a
function f : X → Y yields an additive monoid homomor-
phism ϕ : R+

≥0 → R+
≥0 given by ϕ(x) = L · x, such that

d(f(x), f(y)) ≤ ϕ(a(x, y)). This suggests the following:

Definition VI.2 (generalized Lipschitz maps). Let
(X,Q,F, a), (Y,R,G, b) be two finitary QLR. A function
f : X → Y is a generalized Lipschitz map from X to Y if
there exists a monoid homomorphism ϕ : Q→ R satisfying:

∀α ∈ F ϕ(α) ∈ G (finiteness)
a(x, y) ≤ α ⇒ b(f(x), f(y)) ≤ ϕ(α) (Lipschitz)

Observe that any Lipschitz function f : R→ R in the usual
sense is a generalized Lipschitz map between the finitary and
reflexive QLR given by the Euclidean metric.

Finitary QLR and generalized Lipschitz maps form a carte-
sian category L, with cartesian structure defined as similarly to
Q. Moreover, given finitary QLR (X,Q,F, a) and (Y,R,G, b)
we can define a finitary QLR (L(X,Y ), RX , GX , bX) where



bX is given by bX(f, g)(x) = b(f(x), g(x)) (note that also
symmetry and reflexivity are preserved).

Yet, with this definition L is still not cartesian closed. For
instance, consider the function f(x)(y) : R → RR given by
f(x)(y) = x ·y. As a function of two variables, f is Lipschitz
in both x and y, with Lipschitz constants |y| and |x|; one
can use this fact to show then that f ∈ L(R,RR). Now, if
L were cartesian closed, using the canonical isomorphism
L(R,RR) ' L(R × R,R), we could deduce that also the
function ev(f)(〈x, y〉) = f(x)(y) is Lipschitz. However,
there is no way to deduce, from the two piecewise Lipschitz
constants |x| and |y| for x and y, a uniform Lipschitz constant
for both variables. In fact, all we can say is that, for any
choice of points x, y ∈ R, we can deduce a Lipschitz constant
Lx,y = |x| · |y| for ev(f), although there is no way to define
one in a uniform way.

This observation suggests to replace the Lipschitz condition
with the local Lipschitz condition. Recall that a function
f : X → Y between two metric spaces is locally Lipschitz
continuous when for all x ∈ X there exists a constant Lx such
that the inequality d(g(y), g(z)) ≤ Lx · d(y, z) holds in some
open neighborhood of x.

Remark VI.2. From now on we will suppose that quantales
(Q,≥) are continuous as lattices, and we indicate by α� β
the usual way below relation. It is clear that the Lawvere
quantale and all quantales obtained from it by applying
products are continuous lattices.

The observation above suggests the following definition:

Definition VI.3. Let (X,Q,F, a) and (Y,R,G, b) be finitary
QLR. A function f : X → Y is said generalized locally Lips-
chitz (in short LL), if there exists a function ϕ : X ×Q→ R
(called a family of LL-constants for f ) such that ϕ(x, ) is
additive in its second variable, and the following hold:

∀x ∈ X,∀α ∈ F ϕ(x, α) ∈ G (finiteness)
∀x, y, z ∈ X∃δx � 0 a(x, y), a(x, z) ≤ δx,
a(y, z) ≤ α ⇒ b(f(y), f(z)) ≤ ϕ(x, α) (local Lipschitz)

Any locally Lipschitz function f : R→ R yields a LL-map
between the finitary QLR given by the Euclidean metric.

The finitary QLR with LL maps form a category LL: the
identity function idX has the LL constants λxε.ε. Moreover,
the composition of LL functions f : X → Y and g : Y → Z
is LL: if ϕ is a family of LL constants for f and ψ is a family
of LL constants for g, then the map (x, ε) 7→ ψ(f(x), ϕ(x, ε))
is a family of LL constants for g ◦f (observe that identity and
composition of LL constants work precisely as in Q).

One can also consider a more “constructive” category LL∗

defined as follows. First, for a QLR (X,Q, a), let 'a be the
equivalence relation over X defined by x 'a x′ if a(x, x′) =
0. We indicate by X/a the quotient of X by 'a. By definition,
the QLR (X/a,Q, a) is separated.

Now, the objects of LL∗ are the same as those of LL;
instead, the arrows between (X,Q,F, a) and (Y,R,G, b) are

pairs (f, ϕ), where f : X → Y is LL and stable under 'a-
classes (that is, a(x, y) = 0 implies b(f(x), f(y)) = 0), and
ϕ is a family of LL-constants for f (and is also stable under
'a-classes, that is a(x, y) = 0 implies ϕ(x, α) = ϕ(y, α)).

There is a forgetful functor U : LL∗ → LL given
by U(X,Q,F, a) = (X/a,Q, F, Ua), where Ua([x], [y]) =
a(x, y), and U(f, ϕ) = f̃ , where f̃([x]a) = [f(x)]b.

Given finitary QLR (X,Q,F, a) and (Y,R,G, b) we can
define the two finitary QLR

(LL(X,Y ), RX , GX , bX) (LL∗(X,Y ), RX , GX , bX ◦ π1)

Observe that if X and Y satisfy transitivity, so do LL(X,Y )
and LL∗(X,Y ). In particular, if Y is a standard metric space,
LL(X,Y ) is a standard metric space, while LL∗(X,Y ) is a
pseudo-metric space.

Moreover, if the QLR X,Y, Z satisfy
transitivity, we can define an isomorphism

LL∗(Z ×X,Y ) LL∗(Z,LL∗(X,Y ))
λ

ev
as follows:

• the map λ(f, ϕ) = (〈λ(f), λ0(ϕ)〉, λ1(ϕ)) is defined by

λ(f)(z)(x) = f(〈z, x〉)
λ0(ϕ)(z)(〈x, ε〉) = ϕ(〈z, x〉, 〈0, ε〉)
λ1(ϕ)(〈z, ζ〉)(x) = ϕ(〈z, x〉, 〈ζ, 0〉)

• the map ev(〈g, ψ〉, χ) = 〈ev(g), ev(ψ, χ)〉 is defined by

ev(f)(〈z, x〉) = f(z)(x)

ev(ψ, χ)(〈z, x〉, 〈ζ, ε〉) = χ(〈z, ζ〉)(x) + ψ(z)(〈x, ε〉)

Observe that reflexivity and transitivity are essential for the
isomorphism above to hold. In fact, for all (f, ϕ) ∈ LL∗(Z×
X,Y ), to show the validity of

b(f(z, x), f(z, x)) ≤ λ1(ϕ)(z, 0)(x) = 0

one makes essential use of the fact that b(f(z, x), f(z, x)) =
0 holds in Y for all z ∈ Z and x ∈ X . Conversely given
(〈g, ψ〉, χ) ∈ LL∗(Z,LL∗(X,Y )), to show the validity of

b(f(z, x), f(z′, x′)) ≤ χ(z, a(z, z′))(x) + ψ(z)(x, a(x, x′))

one makes essential use of the transitivity of Y to de-
duce it from b(f(z, x), f(z′, x)) ≤ χ(z, a(z, z′))(x) and
b(f(z′, x), f(z′, x′)) ≤ ψ(z)(x, a(x, x′)),

All this leads to the following result:

Proposition VI.1. The full sub-category LLMet ↪→ LL of
standard metric spaces is cartesian closed. The full sub-
category LLpMet ↪→ LL∗ of pseudo-metric spaces is cartesian
closed. Moreover, the restriction of U as a functor from LLMet

to LLpMet is a cartesian closed functor.

The reason why the category LL is less constructive than
LL∗ is that to establish its cartesian closure one has to invoke
the axiom of choice (see Appendix).

Example VI.1. In LL the space of locally Lipschitz functions
LL(R,R) is endowed with the pointwise metric dPoint(f, g) :
R→ R≥0, where dPoint(f, g)(x) = dEuc(f(x), g(x)).



B. QLR Models

We define QLR models within LLMet and LLpMet similarly
to what we did for Q.

Definition VI.4. Let C be a cartesian closed category. A QLR
model of C is a diagram of cartesian closed functors

C LLpMet

LLMet

F

FU
U

Concretely, a QLR model consists in the following data:

• for all object X of C, a finitary pseudo-metric space
(JXK, LXM, LXMfin, aX);

• for all morphism f ∈ C(X,Y ), a LL-function JfK :
JXK → JY K stable on the aX -classes, and a family of
LL-constants LfM : JXK× LXM→ LY M for JfK,

where the application f 7→ LfM, which plays the role of the
derivative in this setting, satisfies a bunch of properties that
we discuss in some more detail below.

We now define a concrete model of the simply typed λ-
calculus over a set of locally Lipschitz functions. For all n > 0,
let us fix a set Ln of locally Lipschitz functions f : Rn → R
(in the usual sense), and for each f ∈ Ln, let us fix a function
Lip(f) : Rn → [0,+∞) associating each ~x ∈ Rn with a local
Lipschitz constant Lip(f)(~x) so that when ~y, ~z are in some
open neighborhood of ~x,

|f(~y)− f(~z)| ≤ Lip(f)(~x) · dnEuc(~y, ~z)

where dnEuc(~y, ~z) =
√∑

i (yi − zi)2. For all simple type σ, the
finitary pseudo-metric space (JσK, LσM, LσMfin, aσ) is defined as
follows:

JRealK = R LRealMfin = R∞≥0

LRealM = [0,∞]+ aReal = dEuc

Jσ × τK = JσK× JτK Lσ × τMfin = LσMfin × LτMfin

Lσ × τM = LσM× LτM aσ×τ = aσ × aτ

Jσ → τK = LL∗(JσK, JτK) Lσ → τMfin = (LτMfin)JσK

Lσ → τM = LτMJσK aσ→τ = aJσK
τ ◦ π1

For all simple type σ, U(JσK, LσM, LσMfin, aσ) is then a
standard metric space (observe in particular that one has
Uaσ→τ (f, g)(x) = Uaσ(f(x), g(x))).

Given a context Γ = {x1 : σ1, . . . , xn : σn} and a term t of
type Γ ` t : σ (that we take as representative of a class of terms
of type (

∏n
i=1 σi) → σ), the functions JtK :

∏n
i=1JσiK →

JσK and LtM :
∏n
i=1JσiK ×

∏n
i=1LσiM → LσM are defined by a

straightforward induction on t. We illustrate below only the
definition of LtM:

LrM(~x, ~α) = 0

LfM(~x, ~α) = Lip(f)(~x) · (
∑

~α)

LxM(~x, ~α) = αi

L〈t, u〉M(~x, ~α) = 〈LtM(~x, ~α), LuM(~x, ~α)〉
LtπiM(~x, ~α) = πi(LtM(~x, ~α))

Lλy.tM(~x, ~α) = λx.LtM(~x ∗ x, ~α ∗ 0)

LtuM(~x, ~α) = LtM(~x, ~α)(JuK(~x))

+ JtK1(~x, ~α)(JuK(~x), LuM(~x, ~α))

where we recall that for t of type τ → σ, JtK is a
pair 〈JtK0, JtK1〉 with JtK0(~x, ~α) ∈ JσKJτK and JtK1(~x, ~α) ∈
LσMJτK×LτM.

Theorem VI.2 (Soundness). For all simply typed term t such
that Γ ` t : τ , (JtK, LtM) ∈ LLpMet(JΓK, JσK). Moreover, if
t −→β u, then JtK = JuK and LtM = LuM.

Observe that since the QLR (JσK, LσM, aσ) are metric spaces,
the Fundamental Lemma reduces in this case to the remark that
aσ(JtK, JtK) = 0 holds for all term t of type σ. Instead, one
can prove a “local” version of the contextuality lemma:

Corollary VI.1 (local contextuality of distances). For all
terms t, u such that ` t, u : σ and for all context C[ ] : σ ` τ ,

aτ (JC[t]K, JC[u]K) ≤ LCM(JtK, aσ(JtK, JuK))

holds whenever JuK is close enough to JtK.

C. Lipschitz Derivatives and Cartesian Differential Categories

Due to their different function spaces, the derivatives con-
structed in LLpMet (i.e. the maps LtM) behave differently with
respect to the derivatives from Q. In particular, the former
behave more closely to the derivatives found in Differential
λ-Categories [15] (in short DλC), the categorical models of
the differential λ-calculus [29].

We recall that a DλC is a left-additive [14] category C
in which every morphism f ∈ C(X,Y ) is associated with a
morphism D(f) ∈ C(X ×X,Y ) satisfying a few axioms: the
axioms (D1)-(D7) of Cartesian Differential Categories [14],
plus an additional axiom (D-curry) [15] relating derivatives
and the function space.

We list below the properties of the application f 7→ LfM
in a QLR model inside LLpMet. We let λC, evC indicate the
isomorphism C(Z × X,Y ) ' C(Z,C(X,Y )), and ev∗C =
evC(idC(X,Y ), and similarly ev∗ = ev(idLLpMet(X,Y )):
(1) LidM = π1, Lg ◦ fM = LgM ◦ 〈f ◦ π1, LfM〉;
(2) LfM(x, 0) = 0, LfM(x, α+ β) = LfM(x, α) + LfM(x, β);
(3) Lπ1M = π1 ◦ π1, Lπ2M = π2 ◦ π1;
(4) L〈f, g〉M = 〈LfM, LgM〉;
(5) LλC(f)M = λX(LfM ◦ 〈π1 × idX , π2 × 0〉)

(where for g : Z ×X → Y , λX(g) = λx.g(〈 , x〉))
(6) Lev∗C ◦ 〈h, g〉M = ev∗ ◦ 〈LhM, g ◦ π1〉+ LevC(h)M ◦ 〈〈π1, g ◦

π1, 〈0, LgM〉〉, (where h ∈ C(Z,C(X,Y )), g ∈ C(Z,X)).



The properties above literally translate the fact that a QLR
model is a cartesian closed functor:
• (1) says that f 7→ LfM is functorial;
• (2) says that LfM is additive in its second variable;
• (3) and (4) say that the cartesian structure of C commutes

with that of LLpMet;
• (5) and (6) say that the cartesian closed structure of C

commutes with that of LLpMet.
(1)-(2)-(3)-(4) coincide with axioms (D2)-(D3)-(D4)-(D5)

of Cartesian Differential Categories (in short, CDC). Actually,
this is not very surprising, since these axioms describe the
fact that the application f 7→ D(f) in a CDC C describe
the fact that the application f 7→ 〈f,D(f)〉 yields a cartesian
functor (known as the tangent functor, see [24]). Observe that
the other axioms of CDCs do not make sense in our setting,
because LLpMet is not left-additive and there are no “second
derivatives” in LLpMet.

Finally, property (5) is precisely axiom (D-curry) of DλCs,
and property (6) can be deduced in any DλC from the other
axioms (cf. Lemma 4.5, [15]).

VII. RELATED WORKS

Logical relations [55], [63] are a standard method to estab-
lish program equivalence and other behavioral properties of
higher-order programs, also related to the concept of relational
parametricity [58]. The primary sources of inspiration for the
QLR are the differential logical relations [27], [48]. That (non
symmetric) differential logical relations are a special cases of
QLR can be easily seen as follows: a DLR is a triple (X,Q, ρ),
where Q is a quantale and ρ is ternary relation ρ ⊆ X×Q×X .
This is the same as the QLR (X,℘(Q), dρ), where ℘(Q)
is the quantale of subsets of Q (see Example III.2) and
dρ(x, y) = {α | ρ(x, α, y)}. Notably, under this translation,
the categorical structure of (non-symmetric) DLR from [27]
coincides with the one of the category Q. A precursor of this
approach is [66], which develops a System F-based system for
approximate program transformations, but without explicitly
mentioning any metric structure.

The category V from Section V is reminiscent of the
diameter spaces from [36], which form a cartesian lax-closed
category based on a similar factorization of partial metric
spaces. A main difference is that in [36] the factorization is
considered as a property of (suitable) partial metric spaces,
rather than an additional structure, as we do here.

Several relational logics have been developed to formalize
logical relations and, more generally, higher-order relational
reasoning [56], [28], [44], [47], [1], including quantitative
reasoning [12], [20]. An important question, which transcends
the scope of this paper, is whether one can describe a QLR
semantics for at least some of these logics, or if a different
relational logic has to be developed in order to capture
quantitative relational reasoning based on QLR.

The literature on program metrics in denotational semantics
is vast. Since [6] metric spaces have been exploited as an
alternative framework to standard, domain-theoretic, denota-
tional semantics. Notably, Banach’s fixed point theorem plays

the role of standard order-theoretic fixpoint theorems in this
setting (see [65] and [9]).

More recently, program metrics have been applied in the
field of differential privacy [57], [5], [12], by relying on
Lipschitz-continuity as a foundation for the notion of program
sensitivity. To this line of research belongs also the literature
on System Fuzz [57], a sub-exponential PCF-style language
designed for differential privacy, which admits an elegant
semantics based on metric spaces and metric CPOs [57], [7].

Ultra-metrics are widely applied in program metrics, mostly
to describe intensional aspects (e.g. traces, computation steps)
[65], [50], [31], also for the λ-calculus, due to the fact that
when Q is a locale, MetQ is cartesian closed.

Partial metrics were introduced in [16] with the goal of
modeling partial objects in program semantics, and indepen-
dently discovered in sheaf theory as M -valued sets [41]. [17]
shows that partial metrics and relaxed metrics can be used to
characterize the topology of continuous Scott domains with a
countable bases. This work was, to our knowledge, the first
to acknowledge the correspondence between partial metrics
and lattices, which was later developed through the theory of
valuations [18], [54], [59]. [43] provides a topological char-
acterization of partial metric spaces. Fuzzy and probabilistic
partial metric spaces are well-investigated too [68], [67], [37].
Our description of generalized partial metric spaces was based
on the elegant presentation from [40], [64] of such spaces as
quantaloid-enriched categories.

Together with standard real-valued metrics, Lawvere’s gen-
eralized metrics [49] have also played a major role in these
research lines. More generally, the abstract investigation of
metric spaces as quantale and quantaloid-enriched categories
is part of the growing field of monoidal topology [39]. To this
approach we can be ascribe the already mentioned description
of partial metric spaces from [40], [64], as well as the very
general characterization of exponentiable metric spaces and
quantaloid-enriched categories in [21], [22].

Quantitative approaches based on generalized metric spaces
have been developed for bisimulation metrics [10], [11] and
algebraic effects [51], [35]. Generalized metrics based on
Heyting quantales have been used to investigate properties of
graphs and transition systems (see [45] for a recent survey).

Finally, research on axiomatizations of abstract notions of
differentiation has been a very active domain of research
in recent years [14], [24], [23], [13], [4], [3], supported
by the growth of interest in algorithms based on automatic
differentiation. The two notions of derivative discussed in this
paper can be compared with two lines of research on abstract
differentiation. On the one hand, the derivatives arising from
differential logical relations (which essentially coincide with
the derivatives from Q) have been compared [48] with those
found in some recent literature on discrete differentiation
(e.g. finite difference operators, Boolean derivatives), and
approaches based on the so-called incremental λ-calculus
[2], [3]. On the other hand, the derivatives from Section VI
can be compared with the literature on Cartesian Differential
Categories, originating in Ehrhard and Regnier’s work on



differential Linear Logic and the differential λ-calculus [30].
Very recently, Cartesian Difference Categories [3] have been
proposed as a framework unifying these two lines of research.

VIII. CONCLUSION

This paper provides just a first exploration of the program
metrics semantics that arise from the study of quantitative
logical relations, and leaves a considerable number of open
questions. We indicate a few natural prosecutions of this work.

While our focus here was only on cartesian closure, it
is natural to look for QLR-models with further structure
(e.g. coproducts, recursion, monads etc.). For instance, by
extending the picture to quantaloid-valued relations [64], one
can define a coproduct of QLR with nice properties.

The correspondence between metrics and enriched cate-
gories suggests to consider the transitivity axiom as a “ver-
tical” composition law for distances. An interesting ques-
tion is whether one can define 2-(or even 3-)categories of
program distances with a nice compositional structure, in
analogy with well-investigated higher-dimensional models in
categorical rewriting [52], [53]. At a more formal level, the
same observation also suggests to investigate relational logics
to formalize the metric reasoning justified by QLR-models, in
line with the program logics developed for standard logical
relations [56], [28] and for quantitative relational reasoning
[44], [47], [1], [12], [20].
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and Applications of Categories, 25(15):393–425, 2011.
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APPENDIX

Proof of Lemma IV.1. We have that

D(hf,g)(〈〈0, x〉, 〈∞, α〉〉)
= sup{b(hf,g(〈0, x〉),hf,g(〈i, y〉)) | ddisc(0, i) ≤ ∞, a(x, y) ≤ α}
= sup{b(f(x), f(y)), b(f(x), g(y)) | a(x, y) ≤ α}
= da,b(f, g)(x, α)

Proof of Proposition V.2. Let (X,Q, a), (Y,R, b) be objects of Qsr
∧. It suffices to show that the QLR Y X satisfies the

triangle inequality. Since R is a locale, α + β = α ∨ β holds for all α, β ∈ R. Let f, g, h ∈ Y X . Then we
have that D(f) ∨ (da,b(f, h) + da,b(h, g)) = (D(f) ∨ da,b(f, h)) ∨ da,b(h, g), so in particular for all x, y ∈ X and
α ≥ a(x, y), (D(f) ∨ (da,b(f, g) + da,b(h, g)))(x, α) = ((D(f) ∨ da,b(f, g))(x, α)) ∨ ((D(f) ∨ da,b(h, g))(x, α)) ≥
da,b(f(x), h(x)) ∨ da,b(h(x), g(y)) ≥ da,b(f(x), g(y)), from which we deduce that (da,b(f, g) + da,b(h, g))(x, α) ⇐
D(f)(x, α) ≥ (da,b(f, g)(x, α))⇐ (D(f)(x, α)) = ea,b(f, g)(x, α).

A argument can be developed for Qs
∧, using the fact that in a locale α+γ β = α ∨ β.

Let us recall the notion of injective metric space, that will be essential in our next arguments. A map f : X → X between
two metric spaces (X,Q, a), (Y,Q, b) over the same quantale is said an extension if for all x, y ∈ X , b(f(x), f(y)) = a(x, y),
and non-expansive if for all x, y ∈ X , b(f(x), f(y)) ≤ a(x, y).

A metric space (X,Q, a) is injective when for all non-expansive map f : Y → X and extension e : Y → Z there exists a
non-expansive map h : Z → X such that f = h ◦ e.

Injective metric spaces (also known as hyperconvex metric spaces, see [32]) enjoy several nice properties (see [32]). In
particular, they form a cartesian closed subcategory of Met [21], which includes the Euclidean metric. Instead, here we will
use such spaces to establish a few somehow negative results.

Proof of Lemma IV.3. Let α ∈ R and x1, x2 ∈ Y be such that b(x1, x2) = α + α. Let (Z,R, c) be a metric space where
Z = X ∪ {u0, u3} and c is defined so that c(u0, u0) = c(u3, u3) = 0 and the following hold:

c(u0, u1), c(u0, u2), c(u0, u3) = α

c(u1, u2), c(u2, u3), c(u3, u1) = α+ α

Since Y is injective, there exists a non-expansive map f : Y → X such that f ◦ ι = idX , where ι is the injection ι : X → Z
(which is obviously an expansion). Hence there exist points x0, x3 ∈ X such that b(x0, x1), b(x0, x2), b(x0, x3) = α and
b(x1, x2), b(x2, x3), b(x3, x1) ≤ α+ α.

Let f, g ∈ Y X be defined by

f(w) =

{
x1 if w = v0

x2 otherwise
g(w) =

{
x3 if w = v0

x4 otherwise

where v0, v1 are two distinct points of X such that a(v0, v1) 6= 0. If da,b(f, g) = da,b(g, f), we deduce that

α ≥ sup{b(f(v0), f(w)), b(f(v0), g(w)) | a(v0, w) ≤ a(v0, v1)}
= da,b(f, g)(v0, a(v0, v1))

= da,b(g, f)(v0, a(v0, v1))

= sup{b(g(v0), g(w)), b(g(v0), f(w)) | a(v0, w) ≤ a(v0, v1)}
= α+ α

Proof of Lemma IV.2. If R is a locale, then we have that for all x, y ∈ X , α ∈ Q with a(x, y) ≤ α, b(g(x), f(y)) ≤
b(g(x), f(x)) ∨ b(f(x), f(y)) = b(f(x), f(y)) ∨ b(f(x), g(x)) ≤ da,b(f, g)(x, a(x, y)) and b(g(x), g(y)) ≤ b(g(x), f(x)) ∨
b(f(x), g(y)) = b(f(x), g(x)) ∨ b(f(x), g(y)) ≤ da,b(f, g)(x, a(x, y)), since b is symmetric. From this we deduce that
da,b(g, f)(x, α) = sup{b(g(x), g(y)), b(g(x), f(y)) | a(x, y) ≤ α} ≤ da,b(f, g)(x, α) and conversely.

Proof of Lemma V.3 i.. Let α, β ∈ R and u0, u2 ∈ Y be such that b(u0, u2) = α + β. Let Y ′ = Y ∪ {v1} and b′ be as b on
Y and satisfying b(u0, v1) = α, b(v1, u2) = β. The injection ι : Y → Y ′ is an expansion, hence, since Y is injective, there



exists a non-expansive function f : Y ′ → Y such that f ◦ ι = idY . This implies in particular that, by letting u1 := f(v1),
b(u0, u1) ≤ α, b(u1, u2) ≤ β.

Let now x0, x1 be two distinct points in X and let f, g, h : X → Y be the following functions: f(x) is constantly u0 except
for f(x1) = u1; g(x) is constantly u2 and h(x) is constantly u1. We have then that D(f)(x, a(x0, x1)) ≤ α, D(g) = D(h) = 0.
Moreover, for all x′ ∈ X with a(x0, x

′) ≤ a(x0, x1), d(f(x0), f(x′)), d(f(x0), h(x′)) ≤ b(u0, u1) ≤ D(f)(x, a(x0, x1)) =
D(f)(x0, a(x0, x1))∨0, that is da,b(f, h)(x0, a(x0, x1)) ≤ D(f)(x, a(x0, x1)), and thus ea,b(f, h)(x, a(x0, x1)) = da,b(f, h)⇐
D(f))(x0, a(x0, x1)) ≤ 0

Then, since by hypothesis ea,b is a metric, we deduce that

α+ β = b(u0, u2) = b(f(x0), g(x1))

≤ da,b(f, g)(x0, a(x0, x1))

≤
(
D(f) ∨ ea,b(f, g)

)
(x0, a(x0, x1))

≤
(
D(f) ∨ (ea,b(f, h) + ea,b(h, g))

)
(x0, a(x0, x1))

≤ α ∨ (0 + β) = α ∨ β

Proof of Lemma V.3 ii.. As in the proof of point i. let α, β ∈ R and u0, u1, u2 ∈ Y be such that b(u0, u1) ≤ α, b(u1, u2) ≤ β
and b(u0, u2) = α+ β. We can suppose w.l.o.g. that b is symmetric.

Let now x0, x1 be two distinct points in X and let f, g, h : X → Y be the following functions: f(x) is constantly
u0, h(x) is constantly u1 except for h(x1) = u0 and g(x) is constantly u1 except for g(x1) = u2. Then we have that
da,b(f, g)(x0, a(x0, x1)) = b(u0, u2) = α + β, da,b(f, h)(x0, a(x0, x1)) = da,b(h, h)(x0, a(x0, x1)) = b(u0, u1) ≤ α and
da,b(h, g)(x0, a(x0, x1)) = b(u0, u1) ∨ b(u1, u2) ≤ α ∨ β.

Then, since by hypothesis da,b is a partial metric, we deduce that

α+ β = b(u0, u2) = b(f(x0), g(x1))

≤ da,b(f, g)(x0, a(x0, x1))

≤
(
(da,b(f, h) › da,b(h, h)) + da,b(h, g)

)
(x0, a(x0, x1))

=
(
(da,b(h, h) › da,b(h, h)) + da,b(h, g)

)
(x0, a(x0, x1))

= da,b(h, g)(x0, a(x0, x1)) ≤ α ∨ β

Proof of Proposition VI.1. We first check the cartesian closure of LLpMet.

(⇒) the map λ(f, ϕ) = (〈λ(f), λ0(ϕ)〉, λ1(ϕ)) is defined by

λ(f)(z)(x) = f(〈z, x〉)
λ0(ϕ)(z)(〈x, ε〉) = ϕ(〈z, x〉, 〈0, ε〉)
λ1(ϕ)(〈z, ζ〉)(x) = ϕ(〈z, x〉, 〈ζ, 0〉)

For all z ∈ Z, then map λ0(ϕ)(z)( , ) is additive in its second variable; moreover, for all z ∈ Z and x ∈ X there is
〈ζz, εx〉 � 0 (which implies ζz � 0 and εx � 0) such that, whenever c(z, z′), c(z, z′′) ≤ ζz and a(x, x′), a(x, x′′) ≤ εx,
λ0(ϕ)(z)(〈x, a(x′, x′′)〉) ≥ b(λ(f)(z)(x′), λ(f)(z)(x′′)) = b(f(〈z, x′〉), f(〈z, x′′〉)). This proves that 〈λ(f), λ0(ϕ)〉(z) ∈
LLMet(X,Y ).
Finally, any z is contained in an open ball such that, whenever z′, z′′ belong to it, λ1(ϕ)(〈z, c(z′, z′′)〉)(x) ≥
b(λ(f)(z′)(x), λ(f)(z′′)(x)) = b(f(〈z′, x〉), f(〈z′′, x〉)), so we can conclude that λ(f, ϕ) ∈ LLpMet(Z,LLpMet(X,Y )).

(⇐) the map ev(〈g, ψ〉, χ) = 〈ev(g), ev(ψ, χ)〉 is defined by

ev(f)(〈z, x〉) = f(z)(x)

ev(ψ, χ)(〈z, x〉, 〈ζ, ε〉) = χ(〈z, ζ〉)(x) + ψ(z)(〈x, ε〉)

The map ev(ψ, χ) is additive in its second variable. In fact we have

ev(ψ, χ)(〈z, x〉, 〈0, 0〉) = χ(〈z, 0〉)(x) + ψ(z)(〈x, 0〉)
= 0 + 0 = 0



and

ev(ψ, χ)(〈z, x〉, 〈ζ + ζ ′, ε+ ε′〉)
= χ(〈z, ζ + ζ ′〉)(x) + ψ(z)(〈x, ε+ ε′〉)
= χ(〈z, ζ〉)(x) + χ(〈z, ζ ′)(x) + ψ(z)(〈x, ε〉) + ψ(z)(〈x, ε′〉)
= χ(〈z, ζ〉)(x) + ψ(z)(〈x, ε〉) + χ(〈z, ζ ′)(x) + ψ(z)(〈x, ε′〉)
= ev(ψ, χ)(〈z, x〉, 〈ζ, ε〉) + ev(ψ, χ)(〈z, x〉, 〈ζ ′, ε′〉)

Moreover, for all z ∈ Z and x ∈ X there exists ζz � 0, εx � 0 (which implies 〈ζz, εx〉 � 0) such that whenever
c(z, z′), c(z, z′′) ≤ ζz and a(x, x′), a(x, x′′) ≤ εx

ev(ψ, χ)(〈z, x〉, 〈ζ, ε〉)
≥ b(f(z′)(x′), f(z′)(x′′)) + b(f(z′)(x′′), f(z′′)(x′′))

≥ b(f(z′)(x′), f(z′′)(x′′)

= b(ev(f)(〈z′, x′〉), ev(f)(〈z′′, x′′〉))

We can thus conclude that ev(〈g, ψ〉, χ) ∈ LLpMet(Z ×X,Y ).
It remains to show that λ and ev inverse each-other:
• on one side we have ev(〈λ(f), λ0(ϕ)〉, λ1(ϕ)〉) = 〈ev(λ(f)), ev(λ0(ϕ), λ1(ϕ))〉 = 〈f, ϕ〉, since

ev(λ0(ϕ), λ1(ϕ))(〈z, x〉, 〈ζ, ε〉) = ϕ(〈z, x〉, 〈ζ, 0〉) + ϕ(〈z, x〉, 〈0, ε〉) = ϕ(〈z, x〉, 〈ζ, ε〉) by the additivity of ϕ.
• on the other side we have λ(ev(〈g, ψ〉, χ)) = λ(ev(g), ev(ψ, χ)) = (〈λ(ev(g)), λ0(ev(ψ, χ))〉, λ1(ev(ψ, χ))〉 = (〈g, ψ〉, χ),

since λ0(ev(ψ, χ))(z)(〈x, ε〉) = ψ(z)(〈x, ε〉) +χ(〈z, 0〉)(x) = ψ(z)(〈x, ε〉) and λ1(ev(ψ, χ))(〈z, ζ〉)(x) = ψ(z)(〈x, 0〉) +
χ(〈z, ζ〉)(x) = χ(〈z, ζ〉)(x).

The cartesian closure of LLMet is proved as follows: if f ∈ LLMet(Z ×X,Y ), then f admits a family of LL-constants ϕ.
Then for all z ∈ Z, λ0(ϕ)(z) is a family of LL-constants for λ(f)(z), which implies that λ(f)(z) ∈ LLMet(X,Y ); moreover,
λ1(ϕ) is a family of LL-constants for the application z 7→ λ(f)(z), so we can conclude that λ(f) ∈ LLMet(Z, Y

X).
If now f ∈ LLMet(Z, Y

X), then for all z ∈ Z, the set of families of LL-constants for f(z) is non-empty; by the axiom of
choice, there exists then a function ψ yielding, for all z ∈ Z, a family of LL-constants for f(z). Moreover f itself admits a
family of LL-constants χ. Then the map ev(ψ, χ) is a family of LL-constants for ev(f), so we deduce ev(f) ∈ LLMet(X,Y ).

It remains to prove that U is a cartesian closed functor. This descends from the following facts:
• X × Y /a× b ' (X/a)× (Y/b): in fact 〈x, y〉 'a×b 〈x′, y′〉 iff x 'a x′ and y 'b y′.
• LLpMet(X,Y )/bX ' (Y/b)(X/a): first, observe that (f, ϕ) 'bX (g, ψ) iff for all x ∈ X , f(x) 'b g(x) iff for all x, y ∈ X ,
a(x, y) = 0 implies f(x) 'b g(y) (since f, g are stable under 'a-classes). Now, for all 'a-stable functions f, g, let f ∼ g
iff for all x, y ∈ X , a(x, y) = 0 implies f(x) 'b g(y). Then the claim follows from the observation that the equivalence
classes of ∼ are in bijection with the functions from 'a-classes to 'b-classes.

Finally, since for all pseudo-metric space (X,Q, a) we have that Ua([x], [y]) = a(x, y), from b(f(y), f(z)) ≤ ϕ(x, a(y, z))
we deduce Ub(Uf([y]), Uf([z])) ≤ ϕ̃([x], Ua([y], [z])). We conclude then that ϕ̃ is a family of LL-constants for Uf .


	Introduction
	Higher-Order Metric Semantics
	Program Metrics and Higher-Order Languages
	From Program Metrics to Quantitative Logical Relations
	...and back to Generalized Metric Spaces

	Generalized Metric Spaces
	Metrics over an Arbitrary Quantale
	Partial Metrics Spaces

	Quantitative Logical Relations
	Two Categories of QLR
	QLR Models

	Metrizability
	Relaxed metrics
	Ultra-metrics
	Decomposing Partial Metrics through Valuations

	A Generalized Lipschitz Condition
	From Lipschitz to Locally Lipschitz functions
	QLR Models
	Lipschitz Derivatives and Cartesian Differential Categories

	Related Works
	Conclusion
	References
	Appendix

