Deep Temporal Convolutional Autoencoder for Unsupervised Representation Learning of Incoherent Polsar Time-Series - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Deep Temporal Convolutional Autoencoder for Unsupervised Representation Learning of Incoherent Polsar Time-Series

Résumé

Temporal Convolutional AutoEncoders are used as feature extractors to project time series onto a latent space where similarity detection can be easily performed. This model can generate accurate descriptors of the temporal profile of the input time-series. We apply this algorithm to PolSAR S1 uncoherent SAR time series where the model learns highly discriminative data representations. This reduction method is compared to others such as PCA or Temporal Averaging and is shown to outperform them when leveraging the learnt representation using K-Means clustering.
Fichier principal
Vignette du fichier
DTIS21173.pdf (1.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03345533 , version 1 (15-09-2021)

Identifiants

  • HAL Id : hal-03345533 , version 1

Citer

Thomas Di Martino, Regis Guinvarc'H, Laetitia Thirion-Lefevre, Elise Koeniguer. Deep Temporal Convolutional Autoencoder for Unsupervised Representation Learning of Incoherent Polsar Time-Series. IGARSS 2021, Jul 2021, Bruxelles (virtual), Belgium. ⟨hal-03345533⟩
100 Consultations
772 Téléchargements

Partager

More