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ABSTRACT

Temporal Convolutional AutoEncoders are used as feature ex-
tractors to project time series onto a latent space where simi-
larity detection can be easily performed. This model can gen-
erate accurate descriptors of the temporal profile of the input
time-series. We apply this algorithm to PolSAR S1 uncoher-
ent SAR time series where the model learns highly discrim-
inative data representations. This reduction method is com-
pared to others such as PCA or Temporal Averaging and is
shown to outperform them when leveraging the learnt repre-
sentation using K-Means clustering.

Index Terms— Autoencoder, Deep Learning, dual polar-
ization SAR, Time Series, Clustering

1. INTRODUCTION

When working with SAR interactions, different environments
can be characterised by the value of their backscatter signal.
The physical structures and dielectric characteristics of crops
and forests, for example, are discriminating enough so that
we can differentiate them by their backscatter signal value. It
is also possible to discriminate among different forest types,
as studied in [1].
However, crops and forests scattering properties evolve be-
tween seasons. For example, it was shown in [2] that the
increase in VV and HH signal could be up to 10dB during
the growth season. Such patterns signify that the average
backscatter signal value may not always be enough to dif-
ferentiate elements with similar physical structure: the tem-
poral dimension of the signal, implying the use of multiple
images, can be leveraged as a differentiating factor for this
circumstance. The detection of trends and temporal profile
of environments such as forests or crops have been explored
for different data sources: for instance, with the use of Land-
sat Time Series for forest monitoring in [3] or for detection
of forest disturbances with L-Band SAR images from ALOS
and PALSAR in [4].
However, it has not always been a small matter to access Time
Series of SAR images: with the advent of Big Data, the tem-
poral analysis of the SAR backscatter for different environ-
ments is possible, to more considerable extent than it used

to. New tools now allow researchers and users to access large
preprocessed temporal stacks of intensity data from every cor-
ner of the Earth, which opens new opportunities to explore
SAR Time Series.
The paper is organized in the following way: (2) presenta-
tion of the background surrounding Convolutional AutoEn-
coders; (3) description of the context, the task, and explored
solutions; (4) presentation of our CAE architecture and of ex-
perimental results; (5) conclusions.

2. BACKGROUND

2.1. Nonlinear Principal Component Analysis

The concept of an Autoencoder was originally introduced in
[5] where the author presents this architecture as a “Nonlinear
Principal Component Analysis” (cf Fig.1).
Highly performant at eliminating nonlinear correlations
within data, by learning an identity mapping with dimen-
sionality reduction, the NLPCA or autoencoder consists of 3
main parts:

• The Mapping layer, or the encoder;

• The Bottleneck layer, or the latent representation layer;

• The De-mapping layer, or the decoder.

The former’s task is to compress the input data into a rep-
resentation with lower dimensions, called the input’s “fea-
tures vector” or “embedding”. The decoder then uses this
embedding to try to recreate the input data. Intuitively, as-
signing the task of the identity function to this network forces
it to statistically learn a mapping with the least amount of cor-
related components. An assumption can then be that data with
higher-level similarity (i.e. for time series, similarity in sea-
sonality) will have similar embeddings.
These embeddings can then be used in tasks where a distance
between two samples is computed, such as K-Means. As the
generated embeddings contain a less noisy and more succinct
version of the input, the computed distance becomes more re-
liable and tasks such as K-Means computation, which can see
their performance decline in high dimensions, are improved.



Fig. 1: Illustration of the NLPCA architecture (source: [5])

2.2. Convolutional Autoencoder

The example of Autoencoder presented in Fig. 1 used fully-
connected layers, which can be used for data with no coher-
ence between their features. However, in the case of Time
Series, the temporal dimension needs to be accounted for.
Two solutions are possible: we can either use Recurrent Neu-
ral Nets or 1D Convolutional Neural Nets. However, we
choose the latter as empirically found that the reconstruction
capabilities of 1D CNNs exceed their recurrent peers.
1D Convolutional Autoencoders (CAE) use convolutional
layers as feature extractors and exploit the known correlation
between neighbouring temporal features. The encoder part
of a 1D-CAE will reduce the input’s temporal dimension but
will use a high number of filters. Once flattened, the high-
dimensional feature vector is mapped using a traditional fully
connected layer to the embedding layer. Oppositely, a simi-
larly sized vector is recreated from the embedding layer using
a fully connected layer before being fed to the decoder. The
decoder, responsible for reconstructing the input signal, uses
“Deconvolution”, or transpose convolution, for dimension
expansion.
Once reconstructed, the time series is compared against its
original input using a Mean-Squared-Error loss function.
Other works have used multi-task learning to improve the em-
bedding, such as in [6] where they use an auxiliary truncated-
SVD during training to model the K-Means objective directly
within the autoencoder training pipeline.

3. CONVOLUTIONAL AUTOENCODER FOR SAR
TIME-SERIES

Convolutional Autoencoders have already been used to ex-
tract embeddings from SAR Time Series as in [7] where the

authors use 3D Convolutions, exploiting both temporal and
spatial dimension (resp. 1D & 2D) to represent their input
data as an encoded feature vector, with the purpose of clus-
tering. For that matter, they represent each pixel p(i,j) as a
neighbouring patch of odd size s, to model its neighbourhood.
This added information can better define each pixel p(i,j) with
regards to its environment, but it may also lead to information
leakage & redundancy in case of two pixels sharing neigh-
bourhood. For that matter, this could diminish the contribu-
tion of the temporal dimension within the embedding.
Hence we choose to focus on a fully-temporal architecture, re-
lying on no spatial information to create an embedding solely
based on the temporal profile of a pixel.
Given a temporal stack of T dual-pol SAR images consist-
ing of N pixels, we transform it into a list of time-series
l = {pi,∀i ∈ J1, NK} where each pi is a multimodal time-
series such that:
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In this paper, we investigate candidates for an optimal func-
tion f : RT×2 → R2 that projects the fore-mentioned time-
series into a latent space where similarity computation and
clustering can be performed more quickly and efficiently.
This function is expected to use seasonality, inter-annual and
intra-annual trends as leverages for its low-dimension repre-
sentation task. Multiple candidates are kept for comparison:

• Temporal Averaging: f(p) = 1
T ∗

∑T
t=1 p

(t)
. ;

• PCA: f(p) = flatten(p)∗M where M is a 2-columns
matrix consisting of the two first principal components
of a PCA of l;

• CAE: f(p) = encoder(p) where the encoder function
is trained in a CAE using a reconstruction task.

The details about the CAE’s architecture and experiments are
presented in the following section.

4. EXPERIMENTAL RESULTS

4.1. Architecture

As presented in Fig.2, the multimodal SAR time-series are
fed to a CAE with the parameters presented in table.1. We
use two Convolutional layers to extract features that are then
mapped onto a 2-sized vector using fully connected layers.
This vector is then transformed back into the original time se-
ries using transposed convolutions, after which one last con-
volution aims at cleaning their potentially rough output.
In our experiments, we worked with a stack of T = 189 dates,
with recordings from Jan. 2019 to Nov. 2020, with a total of
around N = 4e5 time series. Only images with an ascend-
ing orbit during acquisition were kept. The training was run
for 100 epochs using ADAM Optimiser and a learning rate of



Fig. 2: Temporal Convolutional Autoencoder model

Table 1: Parameters of our CAE architecture

#1 Conv1D 64 Filters, Kernel Size 3, Stride 2
#2 Conv1D 128 Filters, Kernel Size 5, Stride 2
#3 Dense (5760,100)
#4 Dense (Embedding) (100,2)
#5 Dense (2,5760)
#6 ConvTranspose1D 64 Filters, Kernel Size 5, Stride 2
#7 ConvTranspose1D 2 Filters, Kernel Size 3, Stride 2
#8 Conv1D 2 Filters, Kernel Size 3, Stride 2

5e−3. The training batch size was set to 1024 with a train/test
split of 80/20. On an RTX 3090, one epoch lasts 30sec.
Experiments were divided into two phases:

1. Train the autoencoder using a reconstruction task;

2. Group each time series’ embedding with K-Means;

4.2. Results

As presented in Fig.3, we experiment with PCA decomposi-
tion, Temporal Averaging (TA), and a CAE architecture. The
comparison between the CAE and the TA intends to demon-
strate the value of using the temporal dimension to analyse
land cover for tasks such as unsupervised segmentation us-
ing clustering algorithms. The second, between PCA and
CAE, is to justify the need to explicitly model the temporal
interaction, rather than use a vectorised representation of the
data. This temporal concept is leveraged with the use of 1D
Convolutional Autoencoders for dimension reduction. Each
of these methods reduces pixels’ multimodal time series to a
vector of 2 values. They are being evaluated on their degree
of expressiveness and discriminability with regards to the
original time series.

TA Components PCA Components CAE Components

Fig. 3: Visual comparison of algorithms applied to Forêt Nézer

In Fig.3, we compare the components of each 2-sized vec-
tor (TA, PCA, and CAE): we notice a higher contrast for the
deep embeddings of pixels than for the other methods. This
high contrast, here between a farm and the surrounding trees,
let us presume higher semantic separability between envi-
ronments with different temporal behaviour when using the
CAEs as descriptors. To verify this visual observation, we
run a K-Means, with K = 2, algorithm using the data repre-
sentation from each of these three methods. We then check
both the spatial and temporal coherence of the clusters.

K-Means algorithm results quality is a consequence of an
already existing separability potential within data representa-
tion. When observing Fig. 4, we notice a higher degree of
divisibility between CAE embeddings. While the 2nd com-
ponent of the PCA plots appears to offer better separability
than the VH TA, it still is more cluttered than vectors from the
CAE. We can suppose that the two sets of spikes in the his-
tograms of the CAE components correspond to a distinction
between the area of the farm and its surroundings, displaying
a higher spatial coherence than with TA or PCA.



Fig. 4: Histograms of each 3 methods (CAE, Temp. Mean, PCA)

(a) TA (b) PCA

(c) CAE (d) Sentinel 2 B4/B3/B2

Fig. 5: Binary K-Means for TA, PCA and CAE components

When running K-Means over the resulting vectors, we in-
deed notice, in Fig.5, a much clearer distinction between the
farm environment and its surroundings than with other meth-
ods. The farm outline’s unusual shape on the right side of
the image, consisting of round corners, is preserved when us-
ing the CAE to encode the time series. When plotting the
histogram, using the cluster attribute as a colour code, we ob-
serve that each cluster indeed corresponds to specific spikes
amongst the histogram of Fig.4. This proves how leverage-
able a CAE architecture can be to discriminate environments
based on their temporal profile, within which lies a lot of
physical information about the surface.

5. CONCLUSION

In this paper, we investigate the potential of Convolutional
Autoencoders (CAE) for dimension reduction of Time Series

while retaining information related to trends, inter or intra-
annual seasonalities in PolSAR S1 Time Series. Its perfor-
mance is evaluated on a farm located next to Forêt Nézer. We
compare it to using the Temporal Average (TA) or a PCA for
data representation of the time series. The CAE represen-
tational performance is shown to be able to discriminate the
farm’s temporal profile against its surroundings. At this task,
the TA and the PCA are shown to have much less potential
at representing time-dependent features and output a messier
result. While applied to an agricultural environment, the CAE
can also be leveraged to detect and discriminate naturally oc-
curring seasonalities, amongst forests for example.
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