Mean field games with branching - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2023

Mean field games with branching

Mean field games with branching

Résumé

Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. However, in various applications, such as population dynamics or economic growth, the number of players can vary across time which may lead to different Nash equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain a variation on the mean field game problem. As a first step, we study a simple model using a PDE approach to illustrate the main differences with the classical setting. We prove existence of a solution and show that it provides an approximate Nash-equilibrium for large population games. We also present a numerical example for a linear--quadratic model. Then we study the problem in a general setting by a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which allows us to obtain a general existence result.
Fichier principal
Vignette du fichier
163170520925145.pdf (449.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03345264 , version 1 (15-09-2021)

Identifiants

Citer

Julien Claisse, Zhenjie Ren, Xiaolu Tan. Mean field games with branching. The Annals of Applied Probability, 2023, 33 (2), ⟨10.1214/22-AAP1835⟩. ⟨hal-03345264⟩
87 Consultations
193 Téléchargements

Altmetric

Partager

More