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Mean Field Games with Branching

Julien Claisse ∗ Zhenjie Ren† Xiaolu Tan‡

December 30, 2019

Abstract

Mean field games are concerned with the limit of large-population stochastic differential games where

the agents interact through their empirical distribution. In the classical setting, the number of players

is large but fixed throughout the game. However, in various applications, such as population dynamics

or economic growth, the number of players can vary across time which may lead to different Nash

equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain

a variation on the mean field game problem. As a first step, we study a simple model using a PDE

approach to illustrate the main differences with the classical setting. We prove existence of a solution

and show that it provides an approximate Nash-equilibrium for large population games. We also present

a numerical example for a linear–quadratic model. Then we study the problem in a general setting by

a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which

allows us to obtain a general existence result.

Key words. Mean field games, branching diffusion process, relaxed control.

MSC (2010) 60J80, 91A13, 93E20.

1 Introduction

The theory of Mean Field Game (MFG) consists in studying the limit behaviour of the equilibrium to a

stochastic differential game involving a large number of indistinguishable agents, who have individually a

negligible influence on the overall system and whose decisions are influenced by the empirical distribution

of the other agents. It was first introduced independently by Lasry and Lions [29], and by Huang et al.

[19], in terms of a coupled backward Hamilton–Jacobi–Bellman (HJB) equation and forward Fokker–

Planck equation. Since then, it has been attracting increasing interest from both the mathematical and

the engineering communities. Let us refer to the lecture notes of Cardaliaguet [10] as well as P.-L. Lions’

courses on the site of Collège de France (http://www.college-defrance.fr/site/en-pierre-louis-lions/) for

a pedagogical introduction and a detailed overview on this subject.

More recently, probabilistic approaches have been developed to study MFG, starting with the paper

by Carmona and Delarue [11], and have generated a stream of interesting and original results. Among

them, we would like to mention the weak formulation of MFG introduced by Carmona and Lacker [14]

as well as the relaxed formulation introduced by Lacker [25], which yield very general existence results.

The latter formulation has also lead to a deeper understanding of the connection between MFG and

the corresponding finite player game, by establishing the convergence of εn–equilibrium to the n-player
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game toward the MFG solution [26]. We refer to the book of Carmona and Delarue [12] for a thorough

presentation of the probabilistic approach to MFG.

In most of the MFG literature, the corresponding n-players game has a constant number of players

throughout the game. A notable exception occurs in the context of MFG of optimal stopping, where

the players choose when they leave the game in an optimal way, so that the population decreases over

time. We refer to Nutz [31], Bertucci [6] and Bouveret et al. [8] for variations on this problem. Another

exception appears in Campi and Fischer [9], where the players quit the game when they reach the

boundary of some domain. Except these interesting examples, a general discussion on MFG allowing

the number of players to vary across time is still missing in the literature. This constitutes the first and

main objective of this paper. Besides its theoretical interest, we believe that this feature can be crucial

for various applications in areas such as biology and economy. For instance, we might take into account

the influence of demography in models of economic growth based on MFG [18].

Mathematical modelling of population dynamic has been an important topic of research over the

last century. In particular, the theory of branching processes have been developed in order to study

the evolution of population with random influences, leading to numerous applications in biology and

medicine for instance. Let us refer to [3, 24] for an introduction to branching processes and their

applications in biology. In this paper, we are specifically concerned with branching diffusion processes,

where each particle has a feature, e.g., its spatial position, whose dynamic is given by a diffusion. It was

first introduced by Skorokhod [34] and later studied, more thoroughly and systematically, in a series of

papers by Ikeda et al. [20]. In spite of its potential for applications, the optimal control of branching

diffusion processes has not attracted much interest so far. We can mention nonetheless the papers of

Ustunel [36], Nisio [30] and Claisse [15]. See also the related work of Bensoussan et al. [5] on differential

games.

In this paper, we use a branching process to model the evolution of the population of players in the

context of MFG. To give a brief illustration, let us consider the corresponding finite player game starting

with n initial players. They give rise to a branching diffusion process where each particle corresponds

to a player. Denote by Kn
t the collection of all players remaining in the game at time t. The position of

player k ∈ Kn
t follows the controlled dynamic

dXk
t = b

(

t,Xk
t , µ

n
t , α

k
t

)

dt+ σ
(

t,Xk
t , µ

n
t , α

k
t

)

dBk
t (1)

where αk corresponds to the strategy of player k, (Bk)k are independent Brownian motions and µn
t is

the renormalized empirical occupation measure of the players remaining in the game at time t given as

µn
t :=

1

n

∑

k∈Kn
t

δXk
t
.

We consider further that player k leaves the game at a random time Tk, exponentially distributed with

intensity γ(t,Xk
t , µ

n
t , α

k
t ), and is replaced by ℓ ∈ N substitute players with probability pℓ(Tk, X

k
Tk
, µn

Tk
).

In addition, each player k ∈ Kn
t aims at minimizing his own cost function given as

inf
αk

E
[

∫ Tk∧T

t

f
(

s,Xk
s , µ

n
s , α

k
s

)

ds+ g
(

Xk
T , µ

n
T

)

1Tk≥T

]

.

As in classical MFG, we heuristically send the number of initial players n→ ∞, so that the problem

can be described by a branching diffusion process starting from one representative player. In particular,

the limit of the empirical measure is given by

µn
t =

1

n

∑

k∈Kn
t

δXk
t
−−−−→
n→∞

E

[

∑

k∈K1
t

δXk
t

]

=: mt.
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We highlight that, because of the branching mechanism, the limit measure mt is not necessarily a

probability measure, but a finite positive measure. Finally, the MFG problem in this setting can be

defined as follows:

1. Fix an environment measure (µs)s∈[0,T ] where µs is a finite positive measure on Rd.

2. Find a branching diffusion process (X̂k
s )k∈K̂1

s
where every agent k solves the following stochastic

control problem:

inf
αk

E
[

∫ Tk∧T

t

f(s,Xk
s , µs, α

k
s ) ds+ g

(

Xk
T , µT

)

1Tk≥T

]

.

3. The problem is then to find an equilibrium, i.e., an environment measure (µs)s∈[0,T ] and an induced

optimal branching diffusion process such that

µs = E

[

∑

k∈K̂1
s

δX̂k
s

]

=: m̂s.

As a first step, we consider a simple model and we follow the PDE approach described in Cardaliaguet [10]

in order to provide a first insight into MFG with branching. We derive the MFG equations as a system

of coupled forward–backward PDEs, where the solution to the Fokker–Planck equation takes values in

the space of finite measures instead of probability measures. By adapting the arguments in [10], we

are able to ensure existence of a solution and show that it provides an approximate Nash–equilibrium

for games involving a large number of players. This result justifies to a certain extent the MFG for-

mulation. Then, in the spirit of Bardi [4] and Carmona et al. [13] for classical MFG, we focus on a

linear–quadratic example where the solution can be computed explicitely by solving a system of ordinary

differential equations. This allows us to illustrate numerically the behavior of the MFG equilibrium and

the influence of the branching mechanism.

Next we adopt a probabilistic approach and consider a weak formulation of the MFG with branching

in a general setting. We follow the inspiration of Lacker [25] for classical MFG and use the relaxed

formulation of stochastic control problem introduced by El Karoui et al. [16]. More precisely, we

introduce a controlled martingale problem on an appropriate canonical space which corresponds to a

weak notion of controlled branching diffusion processes. To the best of our knowledge, this relaxed

formulation appears for the first time in the literature. Then we show existence of a solution under

rather general conditions by applying Kakutani’s fixed point theorem. In order to provide a transparent

presentation of the main techniques for handling the branching mechanism, we restrict to the case of

bounded, Markovian coefficient and finite horizon problem, although our results can easily be extended

to the case of non-Markovian coefficients with appropriate growth conditions and rather general objective

functions.

Although sharing some similarities with the arguments in [25], we would like to emphasize that our

approach is not a simple extension by replacing the canonical space and the generator of diffusions by

those of branching diffusions. Indeed, in our setting, a branching diffusion process is optimal when every

particle minimizes its own individual cost function. As their intensity of default depend on the time,

position and control variables, these optimal particles does not aggregate to form a branching diffusion

process which minimizes a global cost function on the whole population. In other words, our problem

is not equivalent to a MFG where each agent controls a branching diffusion process (Xk
t )k∈Kt

in order

to minimize a cost function of the form

E
[

ḡ
(

(

Xk
T∧·

)

k∈KT∧·

, µn
T∧·

)]

.

For this reason, the completion of Step 2 above, i.e., the construction of an optimal branching diffusion,

becomes rather subtle and technical in the proof of the main existence result. This is also the reason

3



why it is not straightforward to extend the arguments in [14] to prove uniqueness, or the arguments

in [26] to derive a general limit theory in our setting. These interesting and delicate questions are left

for future research.

The rest of the paper is organized as follows. In Section 2, we provide a detailed mathematical

construction of controlled branching diffusion processes and introduce a precise (strong) formulation of

the MFG with branching. In Section 3, we apply a PDE approach in a simple framework in order to

provide a first insight into this problem. Finally, in Section 4, we consider a general setting and we

follow a probabilistic approach to formulate and to study a relaxed version of the MFG with branching.

These last two sections are independent and we provide a detailed description of their content at the

beginning of each of them.

Notations. (i) Let X be a Polish space, we denote by M(X) (resp. P(X)) the Polish space of

all finite non-negative measures (resp. probability measures) on X, equipped with the weak topology.

Denote also by M1(X) the subspace of measures with finite first moment, where the weak topology can

be metrized by the Wasserstein type metric W1 introduced in Appendix B.

(ii) To describe the genealogy in a branching process, we follow the Ulam–Harris–Neveu notation and

give to each particle a label in the following set:

K :=
∞
⋃

n=1

Nn.

Given two labels k = k1 . . . kn and k̃ = k̃1 . . . k̃m in K, we define their concatenation as the label

kk̃ := k1 . . . knk̃1 . . . k̃m. We write k ≺ k̃ (resp. k � k̃) when there exists k′ ∈ K such that k̃ = kk′ (resp.

k ≺ k̃ or k = k̃).

(iii) Let E be the state space of branching diffusion processes defined as

E :=

{

∑

k∈K

δ(k,xk); K ⊂ K finite, xk ∈ Rd, k ⊀ k̃ for all k, k̃ ∈ K

}

.

It is a Polish space under the weak topology as a closed subset of M(K× Rd).

(iv) Denote by C2
b (K× Rd) the collection of sequences ϕ̄ = (ϕk)k∈K, ϕ

k ∈ C2(Rd), such that ϕk and its

partial derivatives are bounded uniformly w.r.t. k ∈ K.

(v) Let A be the control space and denote by Ā := AK the collection of ā = (ak)k∈K, a
k ∈ A. We assume

that A is a nonempty compact metric space throughout the paper.

2 Formulation of the Problem

2.1 Controlled Branching Diffusions

A branching diffusion process describes the evolution of a population of independent and identical

particles moving according to a diffusion process. In our setting, the dynamic of the particles depends

further on a control and an environment measure. More precisely, we consider a population starting

with one particle at an initial position with distribution m0 ∈ P(Rd). Then the particle moves according

to a controlled diffusion with drift b : [0, T ] × Rd × M(Rd) × A → Rd and diffusion coefficient σ :

[0, T ]×Rd×M(Rd)×A→ Rd×d. Furthermore, the particle dies at rate γ : [0, T ]×Rd×M(Rd)×A→ R+

and gives birth to ℓ ∈ N offspring with probability pℓ : [0, T ] × Rd ×M(Rd) → [0, 1] at the position of

its death. After their birth, the child particles perform the same dynamic as the parent particle driven

by independent Brownian motions and Poisson point processes.

In order to construct the process above, we consider a filtered probability space (Ω,F , (Fs)s∈[0,T ],P)

equipped with the following mutually independent sequences of random variables:

4



• (Bk)k∈K independent d-dimensional Brownian motions;

• (Qk(ds, dz))k∈K independent Poisson random measures on [0, T ]×R+ with intensity measure ds dz.

Let A be the collection of A-valued predictable processes and denote by Ā := AK the collection of

ᾱ = (αk)k∈K, α
k ∈ A. An element ᾱ ∈ Ā is a control for the branching diffusion process in such a way

that each αk ∈ A corresponds to the strategy of particle k.

The controlled branching diffusion process is then constructed as follows: Given a control ᾱ =

(αk)k∈K ∈ Ā, an environment measure (µs)s∈[0,T ], µs ∈ M(Rd), and a collection (X1
0 , X

2
0 , . . . , X

n
0 ) of

identical and independent F0–random variables with distribution m0 ∈ P(Rd),

1. Start from n particles at position X1
0 , X

2
0 , . . . , X

n
0 and index them by 1, 2, . . . , n respectively. These

are the particles of generation 1. We denote by Si := 0 the time of birth of particle i for each

i = 1, . . . , n.

2. For generation m ≥ 1, provided that the particle k ∈ Nm was born at time Sk < T , its dynamic

is given as follows:

• The position Xk of the particle during its lifetime is given by

Xk
s = Xk

Sk
+

∫ s

Sk

b
(

r,Xk
r , µr, α

k
r

)

dr +

∫ s

Sk

σ
(

r,Xk
r , µr, α

k
r

)

dBk
r , P− a.s. (2)

• The time of death/default of the particle is given as

Tk := inf
{

s > Sk; Q
k
(

{s} ×
[

0, γ
(

s,Xk
s , µs, α

k
s

)])

= 1
}

∧ T. (3)

• If Tk < T , the particle dies and gives rise to ℓ ∈ N particles provided that

ℓ−1
∑

i=0

pi
(

Tk, X
k
Tk
, µTk

)

≤ Uk

γ
(

Tk, Xk
Tk
, µTk

, αk
Tk

) <

ℓ
∑

i=0

pi
(

Tk, X
k
Tk
, µTk

)

, (4)

where Uk is a positive random variable such that (Tk, Uk) belongs to the support of Qk, see

Remark 2.1. These particles belong to the (m+ 1)th generation. We index them by label ki

and we set Ski := Tk and Xki
Ski

:= Xk
Tk

for their time and position of birth for i = 1, . . . , ℓ.

Remark 2.1. Recall that a Poisson measure Q(ds, dz) on [0, T ]× [0, C] with intensity ds dz admits the

following representation:

Q(ds, dz) =
∑

i∈N

δ(ηi,ζi)(ds, dz)1ηi≤T ,

where (ηi − ηi−1, ζi)i∈N are i.i.d. pairs of random variables with distribution E(C) ⊗ U [0, C]1. In

particular, in view of (3)–(4) and Assumption 2.2 below, the particle k gives rise to ℓ ∈ N offspring with

conditional probability pℓ(Tk, X
k
Tk
, µTk

) given FTk−.

We represent the controlled branching diffusion above as a measure-valued process:

Zs =
∑

k∈Kn
s

δ(k,Xk
s )
,

where Kn
s contains the labels of particles alive at time s. Under the following assumptions, the propo-

sition below ensures that the population process is well-defined.

Assumption 2.2. (i) b and σ are bounded and there exists C > 0 such that for all s ∈ [0, T ], x, y ∈ Rd,

µ ∈ M(Rd), a ∈ A,
∣

∣b (s, x, µ, a)− b (s, y, µ, a)
∣

∣+
∣

∣σ (s, x, µ, a)− σ (s, y, µ, a)
∣

∣ ≤ C |x− y| ;

(ii) γ and
∑

ℓ∈N
ℓpℓ are bounded.

1Here E(C) denotes the exponential distribution with parameter C, and U [0, C] denotes the uniform distribution on [0, C].
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Proposition 2.3. Under Assumption 2.2, there exists a unique (up to indistinguishability) càdlàg and

adapted process (Zs)s∈[0,T ] valued in E. In addition, it holds

E
[

sup
s∈[0,T ]

{Nn
s }
]

≤ n exp

(

∥

∥

∥
γ
∑

ℓ∈N

ℓpℓ+1

∥

∥

∥
T

)

, (5)

where Nn
s := #Kn

s is the number of particles alive at time s.

The proof of the proposition above can be found in Claisse [15, Proposition 2.1]. It relies essentially

on two arguments which follow from Assumption 2.2. First, Point (i) ensures that there exists a unique

solution to SDE (2). Second, Assertion (ii) rules out explosion, i.e., there is almost surely finitely many

particles in finite time.

To conclude this section, we derive a semimartingale decomposition for an important class of func-

tionals. For Φ ∈ C2(R), ϕ̄ = (ϕk)k∈K, ϕ
k ∈ C2(Rd), we define Φϕ̄ : E → R as for all e =

∑

k∈K δ(k,xk),

Φϕ̄ (e) := Φ
(

〈e, ϕ̄〉
)

= Φ
(

∑

k∈K

ϕk(xk)
)

.

Given ā = (ak)k∈K, ak ∈ A, we denote by Hā the operator acting on the class of functions Φϕ̄ given by

Hµ,ā
s Φϕ̄ (e) :=

1

2
Φ′′

ϕ̄ (e)
∑

k∈K

∣

∣Dϕk(xk)σ(s, xk, µs, a
k)
∣

∣

2
+Φ′

ϕ̄ (e)
∑

k∈K

Lµ,ak

s ϕk(xk)

+
∑

k∈K

γ(s, xk, µs, a
k)

(

∑

ℓ∈N

Φϕ̄

(

e− δ(k,xk) +
ℓ
∑

i=1

δ(ki,xk)

)

pℓ(s, x
k, µs)− Φϕ̄ (e)

)

, (6)

where Lµ,a
s is the infinitesimal generator associated to a diffusion with coefficients (b, σ) given as

Lµ,a
s ϕ(x) :=

1

2
tr
(

σσ∗ (s, x, µs, a)D
2ϕ (x)

)

+ b (s, x, µs, a) ·Dϕ (x) . (7)

Proposition 2.4. Under Assumption 2.2, let ϕ̄ ∈ C2
b (K × Rd) and let Φ ∈ C2

b (R) or Φ = Id, then the

process

Φϕ̄ (Zs)−
∫ s

0

Hµ,ᾱr
r Φϕ̄ (Zr) dr, s ∈ [0, T ],

is a càdlàg martingale.

The proposition above follows from Itô’s formula, see [15, Proposition 3.2]. It is the starting point

for the relaxed formulation which is introduced in Section 4.

2.2 Mean Field Games with Branching

To describe the MFG of interest, let us start from the situation with a finite number of agents, say n ∈ N

initial agents at time 0. They generate a branching diffusion process as described above where each

particle k corresponds to an agent entering the game at time Sk and leaving at time Tk. We assume

further that the dynamics of the agents are coupled through their empirical distribution2 µn given by

µn
s :=

1

n

∑

k∈Kn
s

δXk
s
.

In addition, each agent k applies a strategy αk ∈ A in order to minimize the following cost criterion:

E
[

∫ Tk

Sk

f(s,Xk
s , µ

n
s , α

k
s ) ds+ g(Xk

T , µ
n
T )1Tk=T

]

. (8)

2Another formulation consists of writing µn
s = 1

Nn
s

∑

k∈Kn
s
δXk

s
. However our formulation allows for a broader range of

interactions without making the analysis more complex.
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where f : [0, T ]×Rd×M(Rd)×A→ R and g : Rd×M(Rd) → R are bounded. Namely, the agent pays

a running cost f while it is in the game and a terminal cost g if it stays until time T .

Remark 2.5. It would be natural to also take into account a terminal cost when an agent leaves the

game before time T , i.e., to add to (8) a term of the form

E
[

g̃
(

Tk, X
k
Tk
, µn

Tk

)

1Tk<T

]

= E
[

∫

(Sk,Tk]×R+

g̃
(

s,Xk
s , µ

n
s

)

1z≤γ(s,Xk
s ,µ

n
s ,α

k
s )
Qk(ds, dz)

]

= E
[

∫ Tk

Sk

g̃
(

s,Xk
s , µ

n
s

)

γ
(

s,Xk
s , µ

n
s , α

k
s

)

ds
]

.

In particular, we see that this feature is already encompassed in our formulation by a suitable modifi-

cation of the running cost f .

Remark 2.6. Actually the agent k entering the game at time Sk can see the current state of the game

and is rather aiming to minimize

E
[

∫ Tk

Sk

f(s,Xk
s , µ

n
s , α

k
s ) ds+ g(Xk

T , µ
n
T )1Tk=T

∣

∣

∣
FSk

]

.

By a classical dynamic programming argument, it turns out that it is equivalent to the optimization

problem (8), in the sense that an optimal strategy for one remains optimal for the other.

Similar to the classical MFG approach, as the initial number of agents n → ∞, the influence of

a single agent on the empirical distribution becomes negligible and so each agent can consider the

empirical distribution as fixed. Additionally, by construction, the entire game is symmetric and so we

expect that all the players use the same optimal strategy. We further expect by a law of large number

type argument that the sequence of empirical measures (µn)n∈N converges to a limit µ given as

〈µn
s , ϕ〉 =

1

n

n
∑

i=1

∑

k∈K
n,i
s

ϕ(Xk
s ) −→ E

[

∑

k∈K1
s

ϕ(Xk
s )

]

=: 〈µs, ϕ〉,

where Kn,i
s := {k ∈ Kn

s ; k � i} denotes the collection of descendants of agent i.

Hence, the limit system can formally be described by a branching diffusion process starting from a

single agent and we obtain the following new mean field game problem:

1. Fix (µs)s∈[0,T ], µs ∈ M(Rd), an environment measure.

2. Find a branching diffusion process Ẑs =
∑

k∈K̂1
s
δ(k,X̂k

s )
where every agent k solves the following

stochastic control problem:

inf
αk∈A

E
[

∫ Tk

Sk

f(s,Xk
s , µs, α

k
s ) ds+ g

(

Xk
T , µT

)

1Tk=T

]

.

3. The problem is then to find an equilibrium, i.e., an environment measure (µs)s∈[0,T ] and an induced

optimal branching diffusion process Ẑ such that for all ϕ : Rd → R bounded,

〈µs, ϕ〉 = E

[

∑

k∈K̂1
s

ϕ
(

X̂k
s

)

]

.

In the next section, we study this problem for a simple model using a PDE approach to provide a

first insight into the MFG with branching. Then we follow a probabilistic approach in a general setting

by considering a weak formulation of this problem, based upon the relaxed formulation of stochastic

control problem.
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3 PDE Approach

In this section, we consider a simple model and we follow the PDE approach described in Cardaliaguet [10]

in order to provide a first insight into MFG with branching. First we introduce the corresponding MFG

equations in Section 3.1 and we establish existence of a solution in Theorem 3.3. The proof is com-

pleted in Section 3.2, where we provide a detailed analysis of the MFG equations. Then we show in

Section 3.3 that a solution to the MFG with branching provides an approximate Nash-equilibrium for

large population games, thus justifying the MFG formulation. Finally, we study a numerical example

in Section 3.4 to illustrate the behaviour of the equilibrium of the MFG with branching.

3.1 PDE Formulation

In the simple framework of this section, we consider the following parameters for the model: f : Rd ×
M1(R

d) → R, g : Rd×M1(R
d) → R, γ : Rd → R+, and (pℓ)ℓ∈N, pℓ : R

d → [0, 1], such that
∑

ℓ∈N
pℓ = 1.

It is implicitly assumed that b(t, x, µ, a) = a, σ(t, x, µ, a) =
√
2 and f(t, x, µ, a) = 1

2 |a|2 + f(x, µ). Then

we introduce the following PDE formulation of the MFG with branching:

∂tu+∆u− 1

2
|Du|2 − γu+ f (·,m) = 0, in [0, T )× Rd, (9)

∂tm−∆m− div (mDu)− γ
∑

ℓ∈N

(ℓ− 1)pℓm = 0, in (0, T ]× Rd, (10)

u(T, ·) = g (·,m(T )) , m(0) = m0, in Rd. (11)

The derivation of these equations from the MFG with branching introduced in Section 2.2 is performed

in Section 3.2.

Definition 3.1. A solution to the MFG with branching (9)–(11) is a couple (u,m) ∈ C1,2([0, T ]×Rd)×
C([0, T ],M1(R

d)) such that u is a classical solution to (9) and m is a weak solution to (10) satisfying

the boundary condition (11), in the sense that for all ϕ ∈ C∞
c ([0, T )× Rd),

∫ T

0

∫

Rd

(

∂tϕ+∆ϕ−Du ·Dϕ+ γ
∑

ℓ∈N

(ℓ− 1)pℓ ϕ
)

(t, x)m(t, dx) dt+

∫

Rd

ϕ(0, x)m0(dx) = 0.

Under the following assumptions, we can show that there exists a solution to this problem by

extending the arguments in [10]. The proof is postponed to Section 3.2.3.

Assumption 3.2. (i) f and g are bounded and there exists L > 0 such that for all x, y ∈ Rd, µ, ν ∈
M1(R

d),
∣

∣f(x, µ)− f(y, ν)
∣

∣+
∣

∣g(x, µ)− g(y, ν)
∣

∣ ≤ L
(

|x− y|+W1(µ, ν)
)

.

(ii) γ and γ
∑

ℓ∈N
ℓpℓ are Lipschitz and bounded.

(iii) g(·, µ) ∈ C3
b (R

d) for all µ ∈ M1(R
d).

(iv)
∫

Rd |x|2m0(dx) <∞.

Theorem 3.3. Under Assumption 3.2, there exists a solution to the MFG with branching (9)–(11).

Remark 3.4. (i) When the coefficients γ and (pℓ)ℓ∈N are constant, the problem reduces to the classical

MFG studied in [10] by a simple change of variable. Indeed, the normalized measure

m̄(t) := exp
(

− γ
∑

ℓ∈N

(ℓ− 1)pℓ t
)

m(t),

satisfies the classical Fokker–Planck equation

∂tm̄−∆m̄− div (m̄Du) = 0, in (0, T ]× Rd.
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(ii) In view of the above, when γ and (pℓ)ℓ∈N are constant, uniqueness of the solution to (9)–(11) follows

under the usual monotonicity conditions: for all µ, ν ∈ M1(R
d) such that µ 6= ν and µ(Rd) = ν(Rd),

∫

Rd

(

f(x, µ)− f(x, ν)
)

(µ− ν)(dx) > 0,

∫

Rd

(

g(x, µ)− g(x, ν)
)

(µ− ν)(dx) ≥ 0.

Otherwise, uniqueness does not follow from a direct extension of the arguments in [10] as we have to

deal with an additional term of the form
∫

Rd (u1 − u2) d(m1 −m2) whose sign is undetermined.

3.2 Analysis of the MFG Equations

3.2.1 Hamilton–Jacobi–Bellman Equation

Let us study first the HJB equation (9) and show that it derives from the optimal control problem

solved by each agent in the MFG with branching described in Section 2.2.

Let (Ω,F , (Fs)s∈[0,T ],P) be a filtered probability space equipped with a Brownian motion (Bs)s∈[0,T ]

and a Poisson random measure Q(ds, dz) on [0, T ] × R+ with intensity ds dz. Denote by A the collec-

tion of Rd–valued predictable processes α such that
∫ T

0
|αs| ds < ∞. Given an environment measure

(µs)s∈[0,T ], µs ∈ M1(R
d), we consider the following optimal control problem:

v(t, x, µ) := inf
α∈A

{

J(t, x, µ, α)
}

, (12)

with

J(t, x, µ, α) := E

[
∫ τ

t

(

f(Xt,x,α
s , µs) +

1

2
|αs|2

)

ds+ g(Xt,x,α
T , µT )1τ=T

]

,

where

Xt,x,α
s := x+

∫ s

t

αr dr +
√
2 (Bs −Bt) , s ∈ [t, T ],

and

τ := inf
{

s > t; Q
(

{s} × [0, γ(Xt,x,α
s )]

)

= 1
}

∧ T.
It corresponds to the optimal control problem solved by each agent when the environment measure µ

is fixed. The next proposition ensures that the value function v solves the HJB equation (9) with m

replaced by µ and that each agent can use a Markovian optimal control α̂(t, x) = −Dv(t, x, µ).
Proposition 3.5. Let Assumption 3.2 hold. If we assume further that s 7→ µs is Hölder continuous,

then the value function v(·, µ) in (12) belongs to C1,2
b ([0, T ]× Rd) and is the unique (bounded) classical

solution to

∂tu+∆u− 1

2
|Du|2 − γu+ f(·, µ) = 0 in [0, T )× Rd, u(T, ·) = g(·, µT ) in Rd. (13)

In addition, α̂(t, x) := −Dv(t, x, µ) is an optimal Markov control.

Proof. Let us write a short proof of this classical result for the sake of completeness.

(i) We start by proving that there exists a classical solution to PDE (13). To this end, we use the

well-known Hopf–Cole transform: setting w = e−
u
2 we easily check that u is a solution to (13) if and

only if w is a solution to

∂tw +∆w = w

(

1

2
f(·, µ) + γ log(w)

)

in [0, T )× Rd, w(T, ·) = e−
g(·,µT )

2 in Rd. (14)

Since f and g are bounded, one can easily find constant lower and upper solutions (w,w) such that

0 < w < w < ∞. Then existence of a classical solution w ≤ w ≤ w to PDE (14) follows from classical

arguments, see, e.g., Pao [32, Theorem 7.2.1].
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(ii) The conclusion follows by a verification theorem. Indeed, using Itô’s formula and the fact that u

satisfies (13), we derive that for all α ∈ A,

J(t, x, µ, α) ≥ u(t, x) + E

[
∫ τ

t

γ(Xt,x,α
s )u(s,Xt,x,α

s ) ds− u(τ,Xt,x,α
τ )1τ<T

]

.

Additionally, it holds

E
[

u(τ,Xt,x,α
τ )1τ<T

]

= E
[

∫

(t,τ ]×R+

u(s,Xt,x,α
s )1z≤γ(Xt,x,α

s )Q(ds, dz)
]

= E
[

∫ τ

t

γ(Xt,x,α
s )u(s,Xt,x,α

s ) ds
]

.

We deduce that v(t, x, µ) ≥ u(t, x). To conclude, it remains to repeat the same computation with the

Markov control α̂.

We conclude this section with an important technical lemma.

Lemma 3.6. Under the assumptions of Proposition 3.5, the gradient Dv(·, µ) is bounded uniformly

w.r.t. µ.

Proof. Since f and g are bounded, we can restrict to admissible controls satisfying

E

[

1

2

∫ T

0

e−‖γ‖s |αs|2 ds
]

≤ 2
(

T‖f‖+ ‖g‖
)

. (15)

Indeed, the constant control α = 0 performs better than any control which does not satisfy this condition.

Then it holds that

|v(t, x, µ)− v(t, y, µ)| ≤ sup
α

{
∣

∣J(t, x, µ, α)− J(t, y, µ, α)
∣

∣

}

,

where the supremum is taken over all controls satisfying (15). To conclude, it remains to see that the

restriction of the cost function to such control is Lipchitz continuous in x, uniformly w.r.t. (t, µ, α).

3.2.2 Fokker–Planck Equation

Let us study next the Fokker–Planck equation (10) and show that the distribution of a branching

diffusion where every agent uses the optimal control of Proposition 3.5 satisfies (10) with Du replaced

by Dv(·, µ).
Let b : [0, T ] × Rd → R be bounded satisfying there exists C > 0 such that for all s, t ∈ [0, T ],

x, y ∈ Rd,
∣

∣b(t, x)− b(s, y)
∣

∣ ≤ C
(

|x− y|+
√

|t− s|
)

.

We consider a branching diffusion process, starting at time 0 from one particle at position X0 with

distribution m0, such that the particles follow a diffusion with drift b and diffusion coefficient
√
2 and

die at rate γ while giving birth to ℓ ∈ N particles with probability pℓ. We denote by (Xk
t )k∈Kt

the state

of the branching diffusion process at time t ∈ [0, T ] and we define the measure m(t) as follows: for all

ϕ : Rd → R bounded,

〈m(t), ϕ〉 := E

[

∑

k∈Kt

ϕ
(

Xk
t

)

]

. (16)

We refer to Section 2.1 for more details.
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Proposition 3.7. Under Assumption 3.2, the map t 7→ m(t) in (16) belongs to C([0, T ],M1(R
d)) and

is the unique weak solution to

∂tm−∆m+ div (mb)− γ
∑

ℓ∈N

(ℓ− 1)pℓm = 0 in (0, T ]× Rd, m(0) = m0 in Rd, (17)

in the sense that for all ϕ ∈ C∞
c ([0, T )× Rd),

∫ T

0

∫

Rd

(

∂tϕ+∆ϕ+ b ·Dϕ+ γ
∑

ℓ∈N

(ℓ− 1)pℓ ϕ
)

(t, x)m(t, dx) dt+

∫

Rd

ϕ(0, x)m0(dx) = 0.

Proof. Let us show first that m is a weak solution to (17). Proposition 2.4 ensures that, for all

ϕ ∈ C∞
c ([0, T )× Rd), the process

∑

k∈Kt

ϕ(t,Xk
t )− ϕ(0, X0)−

∫ t

0

∑

k∈Ks

(

∂tϕ+∆ϕ+ b ·Dϕ+ γ
∑

ℓ∈N

(ℓ− 1)pℓ ϕ
)

(s,Xk
s ) ds,

is a martingale. Since ϕ(T, ·) = 0, we deduce that

E
[

ϕ(0, X0)
]

+

∫ T

0

E

[

∑

k∈Ks

(

∂tϕ+∆ϕ+ b ·Dϕ+ γ
∑

ℓ∈N

(ℓ− 1)pℓ ϕ
)

(s,Xk
s )

]

ds = 0,

which is the desired result. Next the fact that m belongs to C([0, T ],M1(R
d)) follows from Lemma 3.8

below. As for uniqueness, it comes from a classical duality argument, see, e.g., Proposition 3.1 in

Ambrosio et al. [2].

For further developments, let us collect a couple of properties on the solution to the Fokker–Planck

equation. The proof is postponed to Appendix A.

Lemma 3.8. Under the assumptions of Proposition 3.7, there exists a constant C > 0 such that for all

s, t ∈ [0, T ],

∫

Rd

(

1 + |x|2
)

m(t, dx) ≤ C
(

1 + ‖b‖2
)

and W1(m(t),m(s)) ≤ C
(

1 + ‖b‖2
)
√

|t− s|.

3.2.3 Proof of Theorem 3.3

The main idea of the proof of Theorem 3.3 is to apply the Schauder fixed point theorem to the function

ψ defined as follows: To any µ in a well-chosen subset of C([0, T ],M1(R
d)), we associate ψ(µ) = m

where m is the solution to PDE (17) with b = −Du and u is the solution to PDE (13) corresponding

to µ.

Let C > 0 be a fixed constant, we denote by C the collection of all maps µ : [0, T ] → M1(R
d) such

that

W1

(

µ(t), µ(s)
)

≤ C
√

|t− s| and

∫

Rd

(1 + |x|2)µ(t, dx) ≤ C.

Then C is a compact3 convex subset of C([0, T ],M1(R
d)) equipped with the uniform topology. Addi-

tionally, in view of Lemmas 3.6 and 3.8, there exists a suitable choice of constant C such that ψ(C) ⊂ C.
To conclude the proof, it remains to show that ψ is continuous on C. We consider a sequence (µn)n∈N

in C converging to µ and denote mn := ψ(µn) and m := ψ(µ). We aim to show that mn converges to

3The relative compactness follows from Arzelà–Ascoli Theorem since {µ(t), µ ∈ C} is relatively compact in M1(R
d) for

every t ∈ [0, T ], see Lemma B.3.
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m. Let un be the solution to PDE (13) corresponding to µn. In view of Proposition 3.5, un admits the

probabilistic representation

un(t, x) = v (t, x, µn) .

By a straightforward computation, we see that un converges uniformly to

u(t, x) = v (t, x, µ) ,

which is the solution to PDE (13) corresponding to µ. Additionally, un satisfies

∂tun +∆un = fn in [0, T )× Rd, un(T, ·) = g(·, µn(T )) in Rd,

where

fn : (t, x) 7→ 1

2
|Dun(t, x)|2 + γ(x)un(t, x)− f(x, µn(t)).

Since fn is continuous and uniformly bounded in n, Theorem 3.11.1 in Ladyženskaja et al. [28] ensures

that Dun is locally Hölder continuous uniformly in n. Thus (Dun)n∈N is relatively compact by Arzelà-

Ascoli theorem and so it converges locally uniformly to Du. We deduce that any limit point of (mn)n∈N

is a weak solution to PDE (17) with b = −Du. The conclusion then follows by weak uniqueness.

3.3 Approximate Nash Equilibrium

In the spirit of Section 3.4 in [10], we can show that the solution to the MFG with branching provides

an ε-Nash equilibrium for the corresponding n-player game when n is large enough. To a certain extent,

this result justifies the MFG formulation as an approximation of games involving a large number of

players.

Consider n initial agents at position (X1
0 , · · · , Xn

0 ) which consists in an i.i.d. family of random

variables with distribution m0. Given a control ᾱ = (αk)k∈K, we can construct the controlled branching

diffusion process (Xk
t )k∈Kn

t
as in Section 2.1, where each agent k follows the dynamic

dXk
t = αk

t dt+
√
2 dBk

t ,

while choosing the strategy αk in order to minimize

Jn
k (ᾱ) := E

[

∫ Tk

Sk

(

f(Xk
s , µ

n,k
s ) +

1

2

∣

∣αk
s

∣

∣

2
)

ds+ g(Xk
T , µ

n,k
T )1Tk=T

]

,

where µn,k
s := 1

n

∑

k′∈Kn
s \{k} δXk′

s
.

Let us also consider the branching diffusion process (X̂k
t )k∈K̂n

t
, where every agent applies the closed

loop strategy given by the MFG with branching:

dX̂k
t = −Du(t, X̂k

t ) dt+
√
2 dBk

t ,

where (u,m) satisfies (9)–(11). The corresponding open loop control α̂ := (α̂k)k∈K is given by

α̂k
t := −Du(t, X̂k

t ).

As stated below, it provides an approximate Nash equilibrium for large population games.

Theorem 3.9. Under Assumption 3.2, for any ε > 0, there exists n0 ∈ N such that for all n ≥ n0, the

symmetric strategy α̂ provides an ε-Nash equilibrium in the sense that

Jn
k (α̂) ≤ Jn

k

(

αk, α̂−k
)

+ ε, ∀αk ∈ A, k ∈ K.
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Proof. We break down the computation as follows:

Jn
k (α̂)− Jn

k

(

αk, α̂−k
)

≤
(

Jk(α̂
k)− Jk(α

k)
)

+
(

Jn
k (α̂)− Jk(α̂

k)
)

+
(

Jk(α
k)− Jn

k (α
k, α̂−k)

)

, (18)

where

Jk(α
k) := E

[

∫ Tk

Sk

(

f(Xk
s ,ms) +

1

2

∣

∣αk
s

∣

∣

2
)

ds+ g(Xk
T ,mT )1Tk=T

]

.

(i) The first term on the r.h.s. of (18) is non-positive. Indeed, it holds

Jk(α
k) ≥ E

[

v
(

Sk, X
k
Sk
,m
)

]

= Jk(α̂
k),

where the inequality follows from a dynamic programming principle and the equality from the optimality

of α̂k established in Proposition 3.5.

(ii) Next we deal with the second term on the r.h.s. of (18). It holds that

∣

∣Jn
k (α̂)− Jk(α̂

k)
∣

∣ ≤ CE
[

∫ T

0

(

W1(µ̂
n,k
s ,ms) ∧ 1

)

ds+
(

W1(µ̂
n,k
T ,mT ) ∧ 1

)

]

where µ̂n,k
s := 1

n

∑

k′∈K̂n
s \{k} δX̂k′

s
and C = L ∨ 2‖f‖ ∨ 2‖g‖. We aim to show that the r.h.s. vanishes

uniformly w.r.t. k as n goes to infinity. We first observe that

W1(µ̂
n,k
s ,ms) ≤W1(µ̂

n,k
s , ν̂ns ) +W1(ν̂

n
s ,ms), (19)

where ν̂ns := 1
n

∑

k′∈K̂n
s
δX̂k′

s
. For the first term on the r.h.s. of (19), we use the duality result of

Lemma B.1 to obtain that

W1(µ̂
n,k
s , ν̂ns ) = sup

ϕ∈Lip0
1(R

d)

{

µ̂n,k
s (ϕ)− ν̂ns (ϕ)

}

+
∣

∣

∣
µ̂n,k
s (Rd)− ν̂ns (R

d)
∣

∣

∣
≤ 1

n

(

1 +
∣

∣X̂k
s

∣

∣

)

,

where Lip01(R
d) stands for the collection of all functions ϕ : Rd → R with Lipschitz constant smaller or

equal to 1 and such that ϕ(0) = 0. Hence, we deduce that

E
[

W1(µ̂
n,k
s , ν̂ns )

]

≤ C

n

(

1 + E
[

|X0|
])

,

where C depends solely on T and ‖Du‖. As for the second term on the r.h.s. of (19), it follows from

the law of large number that for any ϕ : Rd → R continuous such that |ϕ(x)| ≤ C(1 + |x|),

ν̂ns (ϕ) =
1

n

n
∑

i=1

∑

k′∈K̂
n,i
s

ϕ(X̂k′

s )
a.s.−−−−→

n→∞
E

[

∑

k′∈K̂1
s

ϕ(X̂k′

s )

]

= ms(ϕ),

where K̂n,i
s := {k ∈ K̂n

s ; k � i}. In view of Lemma B.2, it is equivalent to

W1(ν̂
n
s ,ms)

a.s.−−−−→
n→∞

0.

Thus we conclude by the dominated convergence theorem that

sup
k∈K

E
[

∫ T

0

(

W1(µ̂
n,k
s ,ms) ∧ 1

)

ds+
(

W1(µ̂
n,k
T ,mT ) ∧ 1

)

]

−−−−→
n→∞

0.

(iii) The third term on the r.h.s. of (18) can be treated exactly like the second one.
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3.4 Numerical Example

It is often difficult to solve a general MFG system, while it is possible to find explicit solutions in special

cases, such as the linear-quadratic models. See, e.g., Bardi [4] and Carmona et al. [13]. In order to

illustrate the behaviour of the equilibrium of the MFG with branching, we study the following simple

linear-quadratic model:

∂tu+∆u− 1

2
|Du|2 − γu = 0, in [0, T )× R, (20)

∂tm−∆m− div (mDu)− λx2m = 0, in (0, T ]× R, (21)

u(T, ·) = g (·,m(T )) , m(0) = m0, in R, (22)

where γ > 0, λ ≥ 0, δ > 0, x0 ∈ R and

g (x, µ) :=
1

2
(x− x0)

2
+
δ

2

(

x− 1

µ(R)

∫

R

y µ(dy)
)2

.

In other words, we take

f(x, µ) = 0 and
∑

ℓ∈N

ℓpℓ(x) = 1 +
λ

γ
x2.

Notice that we are not in the exact setting of the previous sections as
∑

ℓ∈N
ℓpℓ is not bounded. This is

not a problem as we can construct an explicit solution to the MFG above.

Remark 3.10. (i) The terminal cost g indicates that particles aim to reach the desired position x0
while being close to the average position of all living particles.

(ii) The quadratic form of
∑

ℓ∈N
ℓpℓ implies that particles further away from the origin generate more

particles. In particular, it is position-dependent so the problem does not reduce to classical MFG by a

simple change of variable as explained in Remark 3.4.

Proposition 3.11. Assume that m0 is a Gaussian distribution N (ρ0, v0). Then there exists an equi-

librium for the MFG with branching (20)–(22) if the horizon is short enough.

Proof. Given an environment measure µ = (µt)t∈[0,T ], we can solve the HJB equation using the

standard argument for the linear-quadratic model so that

Du(t, x) = atx+ bt,

where

at :=
γ (1 + δ)

(1 + δ + γ) eγ(T−t) − (1 + δ)
, bt := −

(

x0 + δ

∫

R

y µT (dy)

)

e−
∫

T

t
(as+γ)ds. (23)

Notice that the solution to the HJB equation is coupled with the solution to the Fokker–Plank equation

only through the term
∫

R
y µT (dy) which appears in the coefficient b.

Next we study the Fokker–Plank equation. We observe that the normalized density m̄ := m
m(R)

formally satisfies

∂tm̄−∆m̄− div(m̄Du) + λ

(
∫

R

y2 m̄(dy)− x2
)

m̄ = 0, in (0, T ]× R. (24)

We claim that there is a solution of the form t 7→ m̄(t) where m̄(t) is a Gaussian distribution N (ρt, vt).

A straightforward computation yields that PDE (24) has a Gaussian solution if and only if the following

system admits a solution:

{

v̇ = 2λv2 − 2av + 2,

ρ̇ = (2λv − a)ρ− b,
(v0, ρ0) given. (25)
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The Picard–Lindelöf theorem ensures that the Riccati equation satisfied by v has a unique solution if

the horizon is short enough. Once v is given, we can solve the linear equation satisfied by ρ so that

ρt = ρ0e
∫

t

0
(2λvs−as) ds −

∫ t

0

e
∫

t

s
(2λvr−ar) drbs ds. (26)

Based on the analysis above, we may construct a solution to the MFG as follows. First, a and v

can be calculated through (23) and (25) as they only depend on known coefficients. Then, using the

expression of b in (23), we can solve the fixed point condition and determine ρT through (26) so that

ρT =
ρ0θ̂ + x0θ

1− δθ
, where θ :=

∫ T

0

e
∫

T

t
(2λvs−2as−γ) ds dt, θ̂ := e

∫
T

0
(2λvt−at) dt. (27)

Finally, we obtain b and ρ through (23) and (26).

From the previous proof, it turns out that a solution to the MFG with branching (20)–(22) can be

calculated numerically. Let us present the result of a numerical test where T = 1, γ = 0.2, δ = 0.5,

ρ0 = 0, v0 = 1 and x0 = 5. We shall focus on the effect of branching on the MFG equilibrium, which is

illustrated by changing the value of the parameter λ. Note that if λ becomes too large, the solution to

the Riccati equation in (25) explodes.

Figure 1: The change of the equilibriums for different λ.

In view of Figure 1, when there is no branching, i.e., λ = 0, the mean ρ approaches the desired

position x0 = 5 almost linearly, and the variance v is controlled to be small when the time approaches

the maturity. Once the branching appears, the mean moves more quickly towards x0 as illustrated in

the case λ = 0.35. As we increase further the parameter λ, it eventually crosses the desired position and

keeps growing larger as particles further away from the origin generate more particles. Meanwhile the

variance v becomes slightly larger but remains well-controlled. A singularity appears for λ close to 0.5 as

ρT becomes infinite since δθ = 1 in (27). The unexpected case happens right after the singularity when

δθ > 1 in (27). As a result, the mean ρ moves in the negative direction, moving away from the desired

position x0 instead of approaching it. Meanwhile the variance grows larger and larger, and eventually

explodes for λ close to 0.54.
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4 Probabilistic Approach

In this section, we provide a weak probabilistic formulation of the MFG with branching described in

Section 2.2. We follow the inspiration of Lacker [25] for classical MFG and use the relaxed formula-

tion of stochastic control problem introduced by El Karoui et al. [16]. First we focus on the relaxed

control problem for diffusions solved by each agent in Section 4.1. Then we formulate and study the

corresponding relaxed control problem for branching diffusions in Section 4.2. This allows us to define a

relaxed MFG with branching in Section 4.3 and to ensure existence of solutions in Theorem 4.13. Some

technical proofs are completed in Section 4.4.

4.1 Relaxed Control of Diffusions

Following [16], we introduce a relaxed control problem for diffusion processes which corresponds to the

optimization problem solved by each agent in the game. The main idea is to consider a controlled

martingale problem on an appropriate canonical space corresponding to the pair formed by the control

and the diffusion.

Let us introduce first the canonical space Ω := V × C ×Q where

• V is the space of measures λ on [0, T ] × A with first marginal corresponding to the Lebesgue

measure, equipped with the weak topology;

• C is the space of continuous maps x : [0, T ] → Rd, equipped with the uniform topology;

• Q is the space of locally finite integer–valued measures q on [0, T ]×R+, equipped with the vague

topology.

Denote by Λ, X and Q the canonical projection from Ω onto V, C and Q respectively. Then we define

the canonical filtration F = (Fs)s∈[0,T ] as

Fs := σ
(

1[0,s]Λ, Xs∧·,1[0,s]Q
)

.

We can further define a F-predictable process (Λs)s∈[0,T ] valued in P(A) such that Λ(ds, da) = Λs(da) ds,

see [25, Lemma 3.2].

Next we introduce the notion of relaxed control as solution to a controlled martingale problem.

Recall that the operator Lµ,a
s in (7) is defined as

Lµ,a
s ϕ(x) =

1

2
tr
(

σσ∗ (s, x, µs, a)D
2ϕ (x)

)

+ b (s, x, µs, a) ·Dϕ (x) .

Definition 4.1. Given (t, x) ∈ [0, T ]×Rd and µ = (µt)t∈[0,T ], µt ∈ M(Rd), an element of R(t, x, µ) is

a probability measure P on Ω such that

(i) P(Xs = x, s ≤ t) = 1;

(ii) for all ϕ ∈ C2
b (R

d), the process

M t,µ,ϕ
s := ϕ(Xs)−

∫ s

t

∫

A

Lµ,a
r ϕ(Xr) Λ(dr, da),

is a (P,F)–martingale on [t, T ];

(iii) Q(ds, dz) is a (P,F)–Poisson random measure with intensity 1(t,T ](s) ds dz.

Remark 4.2. Let P ∈ R(t, x, µ) be such that Λ(ds, da) = ds δαs
(da) for some predictable process α.

Then there exists a Brownian motion B on a possibly enlarged space such that X satisfies

dXs = b(s,Xs, µs, αs) ds+ σ(s,Xs, µs, αs) dBs on [t, T ].

In particular, the notion of relaxed control generalizes the classical notion of control process as the

disintegration λ(ds, da) = ds λs(da) may not be supported on the Dirac measures.
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Let us now consider the relaxed control problem corresponding to the following value function:

v(t, x, µ) := inf
P∈R(t,x,µ)

J(t, x, µ,P), (28)

with the cost function

J(t, x, µ,P) := EP

[

∫ τ

t

∫

A

f(s,Xs, µs, a) Λ(ds, da) + g(XT , µT )1τ=T

]

,

and the stopping time

τ := inf
{

s > 0; Q
(

{s} ×
[

0,

∫

A

γ(s,Xs, µs, a)Λs(da)
])

= 1
}

∧ T.

Then we define R∗(t, x, µ) the collection of all optimal relaxed controls as

R∗(t, x, µ) :=
{

P ∈ R(t, x, µ); J(t, x, µ,P) = v(t, x, µ)
}

.

One of the main advantages of the relaxed control formulation is that it allows us to derive existence

of optimal controls under general conditions. The next proposition supports this statement.

Assumption 4.3. b, σ, γ, f and g are bounded, continuous w.r.t. (x, µ, a) ∈ Rd ×M(Rd)×A.

Proposition 4.4. Under Assumption 4.3, the set R∗(t, x, µ) is nonempty.

The existence of an optimal relaxed control follows from the compactness of R(t, x, µ) and the

continuity of the cost function w.r.t. P ∈ R(t, x, µ). We refer to [16, 25] for a detailed proof in a slightly

different context.4

Remark 4.5. If we assume further that for all (s, x, µ) ∈ [0, T ]× Rd ×M(Rd),

{(

b(s, x, µ, a), σσ∗(s, x, µ, a), γ(s, x, µ, a), z
)

; a ∈ A, z ≤ f(s, x, µ, a)
}

is convex, then it is well-known that there exists an optimal strict Markov control, i.e., an element

P ∈ R∗(t, x, µ) such that Λ(ds, da) = ds δα(s,Xs)(da) for some map α : [0, T ] × Rd → A. We refer

to [16, 25] for more details.

4.2 Relaxed Control of Branching Diffusions

By extending the ideas of [16], we can formulate a relaxed control problem for branching diffusion

processes where every agent aims at solving the problem of Section 4.1. Although the appropriate

formulation readily follows from Proposition 2.4, the problem of existence of optimal solutions raises

significant difficulties as the optimization criterion is rather peculiar, see Remark 4.10.

Recall that Ā is the collection of all sequences ā = (ak)k∈K, a
k ∈ A. Let us introduce first the

canonical space Ω̄ := V̄ × D where

• V̄ is the space of measures λ̄ on [0, T ] × Ā with first marginal corresponding to the Lebesgue

measure and such that

λ̄(dt, dā) = dt
⊗

k∈K

λkt (da
k),

where λk(dt, da) = dt λkt (da) is the pushforward of λ̄(dt, dā) by πk : (t, ā) 7→ (t, ak), endowed with

the weak topology;

4The only difficulty in our setting comes from the stopping time τ which might impair at first sight the continuity of the

cost function. Nevertheless, τ is continuous on Ω except on the set

Ω0 :=
{

ω = (λ, x, q) ∈ Ω; ∃s ∈ [0, T ], q
(

{s} ×
{

∫

A

γ(s, xs, µs, a)λs(da)
})

≥ 1
}

,

and P(Ω0) = 0 whenever Q is (P,F)–Poisson random measure with intensity 1(t,T ](s) ds dz.
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• D is the space of all càdlàg paths z : [0, T ] → E, endowed with the Skorokhod topology.

Let Λ̄ and Z be the canonical projection from Ω̄ onto V̄ and D respectively. Then the canonical filtration

F̄ = (F̄t)t∈[0,T ] is given by

F̄t := σ
(

1[0,t]Λ̄, Zt∧·

)

.

We also introduce the time of birth Sk, the time of death Tk, the position Xk and the control Λk of

particle k ∈ K as follows:

Sk := inf
{

t ≥ 0; 〈Zt,1{k}〉 = 1
}

∧ T, Tk := inf
{

t > Sk; 〈Zt,1{k}〉 = 0
}

∧ T,
Xk

t := 〈Zt,1{k}IdRd〉 ∀ t ∈ [Sk, Tk], Λk := Λ̄ ◦ (πk)−1.

Then the set Kt of all particles alive at time t ∈ [0, T ] and the size Nt of the population are given by

Kt :=
{

k ∈ K; 〈Zt,1{k}〉 = 1
}

, Nt := 〈Zt,1〉 = #Kt.

Next we introduce the notion of relaxed control for branching diffusion processes as solution to a

controlled martingale problem deriving from Proposition 2.4. Recall that the operator Hā in (6) is

defined as

Hµ,ā
s Φϕ̄ (e) :=

1

2
Φ′′

ϕ̄ (e)
∑

k∈K

∣

∣Dϕk(xk)σ(s, xk, µs, a
k)
∣

∣

2
+Φ′

ϕ̄ (e)
∑

k∈K

Lµ,ak

s ϕk(xk)

+
∑

k∈K

γ(s, xk, µs, a
k)

(

∑

ℓ∈N

Φϕ̄

(

e− δ(k,xk) +

ℓ
∑

i=1

δ(ki,xk)

)

pℓ(s, x
k, µs)− Φϕ̄ (e)

)

.

Definition 4.6. Given µ = (µt)t∈[0,T ], µt ∈ M(Rd), an element of T (µ) is a probability measure P̄ on

Ω̄ such that

(i) P̄ ◦ Z−1
0 = m0 ◦ π−1 where π : x ∈ Rd 7→ δ(1,x) ∈ E;

(ii) for all Φ ∈ C2
b (R), ϕ̄ ∈ C2

b (K× Rd), the process

M
µ,Φϕ̄

t := Φϕ̄ (Zt)−
∫ t

0

∫

Ā

Hµ,ā
s Φϕ̄ (Zs) Λ̄(ds, dā),

is a (P̄, F̄)–martingale on [0, T ].

Remark 4.7. The classical semimartingale theory provides an equivalent formulation of Condition (ii)

above, namely, for all ϕ̄ ∈ C2
b (K × Rd), the process Yt =

∑

k∈Kt
ϕk(Xk

t ) is a P̄–semimartingale with

characteristics (B̄, C̄, ν̄) given by

B̄t =
∑

k∈Kt

Bk
t , C̄t =

∑

k∈Kt

Ck
t , ν̄(dt, dy) =

∑

k∈Kt

νk(dt, dy),

where

dBk
t :=

∫

A

Lµ,a
t ϕk(Xk

t ) Λ
k(dt, da) +

∫

|y|≤1

y νk(dy, dt),

dCk
t :=

∫

A

∣

∣Dϕk(Xk
t )σ(t,X

k
t , µt, a)

∣

∣

2
Λk(dt, da)

νk(dt, dy) :=

∫

A

γ(t,Xk
t , µt, a)

∑

ℓ∈N

pℓ(t,X
k
t , µt) δ{∑

ℓ
i=1 ϕki(Xk

t )−ϕk(Xk
t )
}(dy)Λk(dt, da).

See, e.g., Jacod and Shiryaev [23, Theorem II.2.42].
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The set of optimal relaxed controls T ∗(µ) is then defined as

T ∗(µ) :=
{

P̄ ∈ T (µ); Jk
(

µ, P̄
)

= EP̄
[

v
(

Sk, X
k
Sk
, µ
)]

, ∀ k ∈ K
}

, (29)

with the value function v defined in (28) and the cost function for particle k given as

Jk
(

µ, P̄
)

:= EP̄

[

∫ Tk

Sk

∫

A

f
(

s,Xk
s , µs, a

)

Λk(ds, da) + g
(

Xk
T , µT

)

1Tk=T

]

.

This corresponds to a branching diffusion process where every agent minimizes its own cost criterion as

described in Section 2.2.

As expected for a relaxed formulation, we can ensure existence of optimal controls under rather

general conditions. However the proof is fairly delicate in this setting and we postpone it to Section 4.4.3.

Assumption 4.8. (i) There exists C > 0 such that for all t ∈ [0, T ], x, y ∈ Rd, µ ∈ M(Rd), a ∈ A,

∣

∣b(t, x, µ, a)− b(t, y, µ, a)
∣

∣+
∣

∣σ(t, x, µ, a)− σ(t, y, µ, a)
∣

∣ ≤ C |x− y| .

(ii) (pℓ)ℓ∈N and
∑

ℓ∈N
ℓpℓ are continuous w.r.t. (x, µ) ∈ Rd ×M(Rd) and

∑

ℓ∈N
ℓ2pℓ is bounded.

Proposition 4.9. Let Assumptions 4.3 and 4.8 hold. Then the set T ∗(µ) is nonempty.

Remark 4.10. The difficulty to derive existence of an element in T ∗(µ) comes from the fact that each

particle minimizes its own cost function rather than a cost function for the whole population. To fix

ideas, consider a relaxed control problem of the form

inf
P̄∈T (µ)

J̄
(

P̄
)

where J̄
(

P̄
)

:= EP̄ [ḡ(Z)] ,

for some map ḡ : D → R. Then existence of optimal controls should follow by extension of the arguments

in [16] showing that T (µ) is compact and J̄ is continuous. However, our problem does not belong to

this class and another strategy is needed to ensure existence of an optimal solution.

Remark 4.11. The proof of Proposition 4.9 relies on concatenation of optimal particles in R∗(t, x, µ)

to construct an optimal tree in T ∗(µ). In view of Remark 4.5, under additional convexity assumptions,

we can ensure existence of an optimal control P̄ ∈ T ∗(µ) such that every particle k runs an optimal

control of the form Λk(dt, da) = dt δα(t,Xk
t )
(da) for some map α : [0, T ]× Rd → A.

4.3 Relaxed MFG with Branching

We are now in a position to introduce the relaxed formulation of the MFG with branching described in

Section 2.2 and to establish existence of solutions.

Definition 4.12. A solution to the relaxed MFG with branching is a probability distribution µ̄ ∈ P(D)

such that µ̄ ∈ {P̄ ◦ Z−1; P̄ ∈ T ∗(µ)} where µ is defined from µ̄ as, for all ϕ : Rd → R bounded,

∫

Rd

ϕ(x)µt(dx) :=

∫

E

Idϕ(e) µ̄t(de) = Eµ̄
[

∑

k∈Kt

ϕ(Xk
t )
]

. (30)

The main result of this section ensures existence of solutions to the relaxed MFG with branching

under rather general conditions.

Theorem 4.13. Let Assumptions 4.3 and 4.8 hold. Then there exists a solution to the relaxed MFG

with branching.
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Proof. The idea of the proof is to apply Kakutani’s fixed point theorem [1, Corollary 17.55] to the

set-valued map

ψ : µ̄ ∈ P(D) 7→
{

P̄ ◦ Z−1; P̄ ∈ T ∗(µ)
}

⊂ P(D).

To this end, we need to check that the range of ψ is contained in a compact convex subset of P(D)

and that ψ has a closed graph and non-empty, convex values. For all µ̄ ∈ P(D), the set ψ(µ̄) is

nonempty in view of Proposition 4.9 and is a convex subset of P(D) by definition of T ∗(µ) in (29). The

conclusion then follows by applying Lemma 4.14 and Lemma 4.15 below. Their proofs are postponed

to Section 4.4.1 and Section 4.4.2 respectively.

Lemma 4.14. Let Assumptions 4.3 and 4.8 hold. Then the set–valued map µ̄ 7→ T ∗(µ) has a closed

graph, i.e., {(µ̄, P̄); P̄ ∈ T ∗(µ)} is a closed subset of P(D)× P(Ω̄).

Lemma 4.15. Let Assumptions 4.3 and 4.8 hold. Then the set
⋃

µ̄∈P(D) T (µ) is contained in a compact

convex subset of P(Ω̄).

Remark 4.16. (i) The ideas of this section can easily be extended to a broader class of branching

diffusion processes. For instance, we can take into account an immigration phenomenon to allow new

players to enter the game exogenously at any time. We can also consider that child particles start from

a different position than the mother particle, say for instance to allow players to share their wealth

between substitude players.

(ii) The analysis of this section readily extends to a wide variety of objective functions so long as the

cost function is continuous and convex.

Remark 4.17. In view of Remark 4.11, under additional convexity assumptions, we can construct

on some filtered probability space a branching diffusion process where each particle runs an identical

Markov control that solves the MFG with branching described in Section 2.2. The details are omitted

for the sake of conciseness.

Remark 4.18. In lines with Remark 4.10, as each agent optimizes its own (local) cost function rather

than the (global) cost of the whole population, it leads to serious difficulties in order to extend the

variational arguments used in classical MFG. Concretely, given P̄ ∈ T ∗(µ) and P̄′ ∈ T (µ) \ T ∗(µ), the

birth time Sk of particle k 6= 1 may have different distributions under P̄ and P̄′, and thus it may not be

true that Jk(µ, P̄) ≤ Jk(µ, P̄
′). In particular, because of the failure of this kind of variational argument,

it is not straightforward to extend the arguments in [14] to prove uniqueness, or those in [?] to prove

convergence of solutions to the n-player game toward the MFG. These delicate questions are left for

future research.

4.4 Technical Proofs

We now provide the proofs of Lemma 4.14, Lemma 4.15 and Proposition 4.9. Let us assume that

Assumptions 4.3 and 4.8 hold throughout this section.

4.4.1 Proof of Lemma 4.14

Recall that Nt = 〈Zt,1〉 denotes the size of the population at time t ∈ [0, T ]. For every µ = (µt)t∈[0,T ],

µt ∈ M(Rd), we denote by Tloc(µ) the collection of all probability measures P̄ on Ω̄ such that N0 = 1,

P̄–a.s., and the process

Φ(Nt)−
∫ t

0

∑

k∈Ks

∫

A

γ(s,Xk
s , µs, a)

(

∑

ℓ∈N

pℓ(s,X
k
s , µs)Φ(Ns + ℓ− 1)− Φ(Ns)

)

Λk(da, ds),

is a P̄–local martingale for all Φ ∈ C2
b (R). Notice that T (µ) ⊂ Tloc(µ).
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Lemma 4.19. There exists a constant C > 0, such that for all µ = (µt)t∈[0,T ], µt ∈ M(Rd),

sup
P̄∈Tloc(µ)

EP̄

[

sup
t∈[0,T ]

{

N2
t

}

]

≤ C. (31)

Proof. Let P̄ ∈ Tloc(µ), it follows by Theorem II.2.42 of Jacod and Shiryaev [23] that the process

N is a P̄–semimartingale with known characteristics, see Remark 4.7. Together with Corollary II.2.38

of [23], it yields the following representation:

Nt = N0 +

∫

[0,t]×N

nµN (ds, dn),

where µN (ds, dn) =
∑

r∈[0,T ] 1{∆Nr 6=0}δ(r,∆Nr)(ds, dn) is a random measure with compensator

νN (ds, dn) :=
∑

k∈Ks

∫

A

γ(s,Xk
s , µs, a)

∑

ℓ∈N

pℓ(s,X
k
s , µs) δ{ℓ−1}(dn) Λ

k(ds, da).

We can further use a representation theorem [21, Theorem II.7.4] to ensure existence of a Poisson

measure Q(ds, dz, dk) on [0, T ] × R+ × K with intensity ds dz
∑

k∈K
δk(dk) on an extension of the

canonical space, such that

Nt = N0 +

∫

[0,t]×R+×K

1k∈Ks

∑

ℓ∈N

(ℓ− 1)1z∈I
µ

ℓ
(s,Xk

s ,Λ
k
s )
Q(ds, dz, dk),

where (Λk
s)s∈[0,T ] is a F-predictable process valued in P(A) such that Λk(ds, da) = dsΛk

s(da) and for

all (s, x, κ) ∈ [0, T ]× Rd × P(A),

Iµℓ (s, x, κ) :=
[

∫

A

γ(s, x, µs, a)κ(da)

ℓ−1
∑

i=0

pi(s, x, µs),

∫

A

γ(s, x, µs, a)κ(da)

ℓ
∑

i=0

pi(s, x, µs)
)

.

Since γ and
∑

ℓ∈N
ℓ2pℓ are uniformly bounded by assumption, a classical computation as in Proposi-

tion 2.3 yields (31).

Proof of Lemma 4.14. Let (µ̄n, P̄n)n∈N be a sequence in P(D) × P(Ω̄) satisfying P̄n ∈ T ∗(µn) and

converging to (µ̄,P). We aim to show that P̄ ∈ T ∗(µ).

(i) First we observe that P̄ ◦ Z−1
0 = m0 ◦ π−1 since the projection Z0 is continuous for the Skorokhod

topology. See, e.g., Billingsley [7, Theorem 12.5].

(ii) Next we check that Mµ,Φϕ̄ is a martingale under P̄ for all Φ ∈ C2
b (R), ϕ̄ ∈ C2

b (K×Rd). Since Mµ,Φϕ̄

is a martingale under P̄n, it holds for all t ≤ s, h : Ω̄ → R F̄t–measurable, continuous and bounded,

EP̄n

[(

Mµn,Φϕ̄
s −M

µn,Φϕ̄

t

)

h
]

= 0. (32)

In view of Proposition VI.3.14 in [23], there exists DP̄ ⊂ (0, T ) countable such that for all t, s /∈ DP̄,

EP̄n

[(

Φϕ̄(Zs)− Φϕ̄(Zt)
)

h
]

−−−−→
n→∞

EP̄

[(

Φϕ̄(Zs)− Φϕ̄(Zt)
)

h
]

.

Additionally, it follows by a straighforward extension of Corollary A.5 in Lacker [25] to the Skorokhod

space that

(λ̄, z) 7→
∫ s

t

∫

Ā

Hµ,ā
r Φϕ̄ (z(r)) λ̄(dr, dā),

is continuous, and there exists a constant C > 0 such that

∣

∣

∣

∫ s

t

∫

Ā

Hµ,ā
r Φϕ̄ (Zr) Λ̄(dr, dā)

∣

∣

∣
≤ C sup

r∈[0,T ]

{Nr} .
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Using Lemma 4.19, we can thus pass to the limit in (32) and deduce that for all t, s /∈ DP̄,

EP̄

[(

Mµ,Φϕ̄
s −M

µ,Φϕ̄

t

)

h
]

= 0.

If t or s belong to DP̄, this equality still holds as we can pass to the limit with a decreasing sequence in

[0, T ] \DP̄ converging to t or s. We conclude that Mµ,Φϕ̄ is a martingale under P̄.

(iii) Finally, it holds for all k ∈ K,

Jk
(

µn, P̄n

)

= EP̄n
[

v
(

Sk, X
k
Sk
, µn

)]

.

In view of Proposition VI.2.7 in [23], the random variables Sk, Tk and Xk
Sk

are continuous on Ω̄.

Additionally, it follows by extension of the arguments in [16, 25] that (t, x, µ̄) 7→ v(t, x, µ) is continuous5

on [0, T ]× Rd × P(D). We deduce that

EP̄n
[

v
(

Sk, X
k
Sk
, µn

)]

−−−−→
n→∞

EP̄
[

v
(

Sk, X
k
Sk
, µ
)]

.

Next a straightforward extension of Corollary A.5 in [25] as above together with the continuity of the

projection ZT [7, Theorem 12.5] yields that

Jk
(

µn, P̄n

)

−−−−→
n→∞

Jk
(

µ, P̄
)

,

using the identity 1Tk=T = 〈ZT ,1{k}〉 for all k ∈ ⋃t∈[0,T ]Kt to handle the indicator function.

4.4.2 Proof of Lemma 4.15

Lemma 4.20. The set T (µ) is compact.

Proof. First we observe that the set T (µ) is closed in view of the proof of Lemma 4.14. Next we aim

at showing that it is relatively compact in P(Ω̄). As [0, T ]× Ā is compact, so are V̄ and P(V̄). Thus it
remains to check that {P̄ ◦Z−1, P̄ ∈ T (µ)} is relatively compact in P(D). According to Theorem 2.1 in

Roelly [33], it suffices to show that, for all ϕ̄ ∈ C2
b (K× Rd), {P̄ ◦ (Y ϕ̄)−1, P̄ ∈ T (µ)} is tight where

Y ϕ̄
t :=

∑

k∈Kt

ϕk(Xk
t ), t ∈ [0, T ].

Let ϕ̄ ∈ C2
b (K× Rd), it follows by Theorem II.2.42 and Corollary II.2.38 of Jacod and Shiryaev [23]

that Y ϕ̄ is a semimartingale, which admits the decomposition (w.r.t. the canonical filtration F̄)

Y ϕ̄
t = Y ϕ̄

0 +Aϕ̄
t +M ϕ̄

t ,

where Aϕ̄ is a process with finite variation given by

Aϕ̄
t :=

∫ t

0

∑

k∈Ks

∫

A

Lµ,a
s ϕk(Xk

s ) Λ
k(ds, da)

+

∫ t

0

∑

k∈Ks

∫

A

γ(s,Xk
s , µs, a)

∑

ℓ∈N

pℓ(s,X
k
s , µs)

(

ℓ
∑

i=1

ϕki(Xk
s )− ϕk(Xk

s )
)

Λk(da, ds),

5The main idea is to use Berge Theorem [1, Theorem 17.31]. To this end, it suffices to show that the set-valued map

(t, x, µ̄) 7→ R(t, x, µ) has closed graph, nonempty compact values and that any control rule P ∈ R(t, x, µ) can be approximated

by control rules Pn ∈ R(tn, xn, µn) whenever (tn, xn, µ̄n) → (t, x, µ̄).
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and M ϕ̄
t is a local martingale with quadratic variation

〈M ϕ̄〉t =
∫ t

0

∑

k∈Ks

∫

A

∣

∣Dϕk(Xk
s )σ(s,X

k
s , µs, a)

∣

∣

2
Λk(ds, da)

+

∫ t

0

∑

k∈Ks

∫

A

γ(s,Xk
s , µs, a)

∑

ℓ∈N

pℓ(s,X
k
s , µs)

(

ℓ
∑

i=1

ϕki(Xk
s )− ϕk(Xk

s )
)2

Λk(da, ds).

Then we consider the localized process Y ϕ̄,n := Y ϕ̄
·∧τn with τn := inf{t ≥ 0; Nt ≥ n} and we observe

that

V (Aϕ̄)t∧τn + 〈M ϕ̄〉t∧τn ≤ Ct,

where V (Aϕ̄) stands for the total variation of Aϕ̄. Thus it follows from Theorem 2.3 of Jacod et al. [22]

that the family {P̄ ◦ (Y ϕ̄,n)−1; P̄ ∈ T (µ)} is tight. To conclude, it remains to notice that, in view of

Lemma 4.19,

sup
P̄∈T (µ)

P̄
(

τn ≤ T
)

≤ C

n
,

and so the family {P̄ ◦ (Y ϕ̄)−1; P̄ ∈ T (µ)} is also tight.

Proof of Lemma 4.15 Assume first that the coefficients (pℓ)ℓ∈N do not depend on µ. Then the proof

is a direct consequence of Lemma 4.20 above. Indeed, let C := ‖b‖ ∨ ‖σ‖ ∨ ‖γ‖ and consider the case

A = [−C,C]d × [−C,C]d×d × [0, C] and

b(t, x, µ, a) = β, σ(t, x, µ, a) = υ, γ(t, x, µ, a) = η, for all a = (β, υ, η) ∈ A.

Denote by T̄ be the set of probability measures in Definition 4.6 with the above coefficient (b, σ, γ),

which does not depend on µ. Notice that T̄ is convex by definition and that it is compact in view of

Lemma 4.20. To conclude, it remains to observe that
⋃

µ∈P(D)

T (µ) ⊂ T̄ .

In the general case, when (pℓ)ℓ∈N depend on µ, the proof follows by the same arguments using a

straightforward extension of Lemma 4.20 where the coefficient (pℓ)ℓ∈N are being controlled.

4.4.3 Proof of Proposition 4.9

Proof of Proposition 4.9. (i) First, we observe that

T ∗(µ) =
⋂

n∈N

T ∗
n (µ),

where T ∗
n (µ) is the collection of P̄ ∈ T (µ) satisfying the optimality constraints (29) up to the nth

generation, i.e.,

T ∗
n (µ) :=

{

P̄ ∈ T (µ) : Jk
(

µ, P̄
)

= EP̄
[

v
(

Sk, X
k
Sk
, µ
)]

, k ∈
n
⋃

i=1

Ni
}

.

Notice that the set T ∗
n (µ) is closed in view of the proof of Lemma 4.14. Together with Lemma 4.15,

it follows that T ∗
n (µ) is compact. It remains to show that T ∗

n (µ) is non-empty in order to conclude by

Cantor’s intersection theorem.

(ii) To show that T ∗
n (µ) is nonempty, we use an induction argument to construct an optimal tree up

to the (n+ 1)th generation by concatenation of an optimal relaxed control for the first particle and an

optimal tree for the subsequent n generations. To this end, given (t, e) ∈ [0, T ] × E, we introduce the

set T ∗
n (t, e, µ) as the collection of P̄ ∈ P(Ω̄) such that
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(a) P̄(Zs = e, s ≤ t) = 1;

(b) for all Φ ∈ C2
b (R), ϕ̄ ∈ C2

b (K× Rd), the process

M t,µ,Φϕ̄
s (ω̄) := Φϕ̄ (z(s))−

∫ s

t

∫

Ā

Hµ,ā
r Φϕ̄ (z(r)) λ̄(dr, dā), s ∈ [t, T ],

is a P̄–martingale;

(c) for all k = k′k′′ such that k′ ∈ K0 and k′′ ∈ ⋃n−1
i=1 Ni,

Jk
(

µ, P̄
)

= EP̄
[

v
(

Sk, X
k
Sk
, µ
)]

.

Let us show that T ∗
n (t, e, µ) is non-empty for all (t, e) ∈ [0, T ]× E by induction.

(ii.1) For the base case n = 0, we observe that there is no optimality constraint (c). Thus, existence of

an element in T (t, e, µ) := T ∗
0 (t, e, µ) follows from a straightforward extension of Proposition 2.4 with

initial condition Zs = e for all s ≤ t.

(ii.2) For the induction step, let us construct first an element in T ∗
n+1(t, ek, µ) with ek := δ(k,xk). To

this end, we take an optimal relaxed control P ∈ R∗(t, xk, µ) and we define an integer-valued random

variable I as follows:

I :=

∫

(t,τ ]×R+

∑

ℓ∈N

ℓ1z∈Iℓ(s,Xs,Λs)Q(ds, dz) =
∑

ℓ∈N

ℓ1U∈Iℓ(τ,Xτ ,Λτ ),

where (τ, U) belongs to the support of Q and for all (s, x, κ) ∈ [0, T ]× Rd × P(A),

Iµℓ (s, x, κ) :=
[

∫

A

γ(s, x, µs, a)κ(da)

ℓ−1
∑

i=0

pi(s, x, µs),

∫

A

γ(s, x, µs, a)κ(da)

ℓ
∑

i=0

pi(s, x, µs)
)

.

Then we introduce the process (Zk
s )s∈[0,T ] by

Zk
s :=

{

δ(k,Xs), if s ∈ [0, τ),
∑I

i=1 δ(ki,Xτ ), if s ∈ [τ, T ],

and the random measure Λ̄k as the pushforward of Λ by the map

(s, a) ∈ [0, T ]×A 7→ (s, ā) ∈ [0, T ]× Ā, where ā(k′) =

{

a if k′ = k,

a0 otherwise,

for some fixed a0 ∈ A. Let us show that the process

Φϕ̄(Z
k
s∧τ )−

∫ s∧τ

t

∫

Ā

Hµ,a
r Φϕ̄(Z

k
r ) Λ̄k(dr, dā),

is a P-martingale on [t, T ]. As P ∈ R(t, xk, µ), the only difficulty is to check that

Φϕ̄(Z
k
s∧τ )− Φϕ̄(δ(k,Xs∧τ ))

−
∫ s∧τ

t

∫

A

γ(r,Xr, µr, a)
(

∑

ℓ∈N

Φϕ̄

(

ℓ
∑

i=1

δ(ki,Xr)

)

pℓ(r,Xr, µr)− Φϕ̄

(

δ(k,Xr)

)

)

Λ(da, dr)

is a P–martingale. This property follows immediately from the identity

Φϕ̄(Z
k
s∧τ )− Φϕ̄(δ(k,Xs∧τ )) =

∫

(t,s∧τ ]×R+

∑

ℓ∈N

(

Φϕ̄

(

ℓ
∑

i=1

δ(ki,Xr)

)

− Φϕ̄

(

δ(k,Xr)

)

)

1z∈Iℓ(r,Xr,Λr)Q(dr, dz).
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In other worlds, if we denote P̄k := P ◦ (Zk, Λ̄k)
−1, the process M t,µ,Φϕ̄ is a P̄k–martingale on [t, τ1]

where η is the first branching time given as

η := inf {s > 0; Ks 6= K0} . (33)

Furthermore, by induction hypothesis and Lemma 4.21 below, we can use a measurable selection argu-

ment [35, Theorem 12.1.10] to ensure existence of a Borel map

(s, ẽ) ∈ [0, T ]× E 7→ P̄n
s,ẽ ∈ T ∗

n (s, ẽ, µ).

This allows us to define by concatenation6 P̄∗
k := P̄k ⊗η P̄

n
· . In view of [35, Theorem 1.2.10], the process

M t,µ,Φϕ̄ is a P̄∗
k–local martingale. It is actually a martingale by Lemma 4.19 since

sup
s∈[t,T ]

∣

∣M t,µ,Φϕ̄
s

∣

∣ ≤ C
(

1 + sup
s∈[t,T ]

{Ns}
)

.

We conclude that P̄∗
k ∈ T ∗

n (t, ek, µ) by Lemma 4.22 below.

(ii.3) Next we show existence of an element in T ∗
n+1(t, e, µ) with e :=

∑

k∈K ek. Let us introduce the

probability measure P̄∗ as the pushforward of
⊗

k∈K P̄∗
k by the map

(

zk, λ̄k)k∈K ∈ Ω̄K 7→
(

∑

k∈K

zk, λ̄
)

∈ Ω̄,

where λ̄ is the pushforward of (λ̄k)k∈K by the map

(

s, (āk)k∈K

)

∈ [0, T ]× ĀK 7→ (s, ā) ∈ [0, T ]× Ā, where ā(k′) =

{

āk(k
′) if k′ � k,

a0 otherwise.

Then we consider the process Y k
s :=

∑

k′∈Kk
s
ϕk′

(Xk′

s ) where Kk
s := {k′ ∈ Ks; k

′ � k}. In view of

Remark 4.7, it is a P̄∗–semimartingale with characteristics

(

B̄k
s , C̄

k
s , ν̄

k(ds, dy)
)

:=
∑

k′∈Kk
s

(

Bk′

s , C
k′

s , ν
k′

(ds, dy)
)

.

Since (Y k)k∈K are P̄∗–independent, the process Ys :=
∑

k∈K Y k
s is also a P̄∗–semimartingale with

characteristics

(

B̄s, C̄s, ν̄(ds, dy)
)

:=
∑

k∈K

(

B̄k
s , C̄

k
s , ν̄

k(ds, dy)
)

=
∑

k′∈Ks

(

Bk′

s , C
k′

s , ν
k′

(ds, dy)
)

.

Therefore, M t,µ,Φϕ̄ is a P̄∗–martingale by Remark 4.7. We conclude that P̄∗ ∈ T ∗
n+1(t, e, µ) since for all

k′ � k ∈ K,

Jk′

(

µ, P̄∗
)

= Jk′

(

µ, P̄∗
k

)

= E
[

v
(

Sk′ , Xk′

Sk′
, µ
)]

.

6The concatenation P̄∗
k := P̄k⊗η P̄

n
· is defined as the probability measure satisfying for all φ : D → R and ϕ : [0, T ]×Ā → R

bounded,

E
P̄
∗

k

[

φ(Z)

∫ T

0

∫

Ā

ϕ(t, ā) Λ̄(dt, dā)
]

:=

∫

Ω̄

E
P̄
n
η(ω̄),Zη(ω̄)

[

φ(Z)

∫ T

η(ω̄)

∫

Ā

ϕ(t, ā) Λ̄(dt, dā)
]

P̄k(dω̄)

+

∫

Ω̄

E
P̄
n
η(ω̄),Zη(ω̄)

[

φ(Z)
]

∫ η(ω̄)

0

∫

Ā

ϕ(t, ā) Λ̄(ω̄)(dt, dā) P̄k(dω̄).

See, e.g., El Karoui and Tan [17, Section 4] for more details.
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(ii.4) Finally, to construct an element in T ∗
n (µ), it remains to choose a measurable family (P̄n

x)x∈Rd such

that P̄n
x ∈ T ∗

n (0, δ(1,x), µ). Then one can easily check that

∫

Rd

P̄n
x m0(dx) ∈ T ∗

n (µ).

Lemma 4.21. The set–valued map (t, e) 7→ T ∗
n (t, e, µ) has a closed graph.

Proof. The proof follows by similar arguments as Lemma 4.14. The only difficulty concerns the

initial condition (a) as the projection Zt is not continuous for the Skorokhod topology. Consider a

sequence (tm, em, P̄m)m∈N converging to (t, e, P̄) such that P̄m ∈ T ∗
n (tm, em, µ). We aim to prove that

P̄(Zt = e) = 1. Let Φ ∈ C2
b (R) and ϕ̄ ∈ C2

b (K× Rd) be chosen arbitrarily. First we observe that

∣

∣

∣

∣

1

h
EP̄m

[

∫ t+h

t

Φϕ̄(Zs) ds
]

− Φϕ̄(e)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

h
EP̄m

[

∫ t+h

t

(

Φϕ̄(Zs)− Φϕ̄(em)
)

ds
]

∣

∣

∣

∣

+
∣

∣Φϕ̄(em)− Φϕ̄(e)
∣

∣.

Then, denoting by η the first branching time as in (33), it follows by the martingale property and

Lemma 4.19 that
∣

∣

∣

∣

1

h
EP̄m

[

∫ t+h

t

(

Φϕ̄(Zs)− Φϕ̄(em)
)

ds1η>t

]

∣

∣

∣

∣

≤ Ch.

Notice that P̄m(η > t) = 1 whenever tm ≥ t by definition of T ∗
n (tm, em, µ). In the case tm < t, we can

use further Cauchy–Schwartz Inequality and Lemma 4.19 to obtain that

∣

∣

∣

∣

1

h
EP̄m

[

∫ t+h

t

(

Φϕ̄(Zs)− Φϕ̄(em)
)

ds1η≤t

]

∣

∣

∣

∣

≤ C
√

P̄m (η ≤ t).

In addition, it holds

P̄m (η ≤ t) ≤
∑

k∈Km

P̄m (Tk ≤ t) .

Writing the martingale problem for Φ = Id and ϕ̄ = 1k with k ∈ Km and taking expectation, we obtain

that

P̄m (Tk > t) = 1−
∫ t

tm

EP̄m

[

∫

A

γ (s,Xs, µs, a) Λ
k
s(da)1Tk>s

]

ds

We deduce by the differential form of Grönwall’s lemma that

P̄m (Tk > t) ≥ e−‖γ‖(tm−t).

We conclude that

∣

∣

∣

∣

1

h
EP̄m

[

∫ t+h

t

Φϕ̄(Zs) ds
]

− Φϕ̄(e)

∣

∣

∣

∣

≤ C
(

h+
√

(tm − t)+

)

+
∣

∣Φϕ̄(em)− Φϕ̄(e)
∣

∣,

which yields the desired by letting m→ ∞ and h→ 0.

Lemma 4.22. The probability measure P̄ ∈ T ∗(µ) if and only if P̄ ∈ T (µ) and for all k ∈ K,

EP̄

[

∫ Tk

Sk

∫

A

f
(

s,Xk
s , µs, a

)

Λk(ds, da) + g
(

Xk
T , µT

)

1Tk=T

∣

∣

∣
F̄Sk

]

= v
(

Sk, X
k
Sk
, µ
)

.

Proof. Let k ∈ K and P̄ ∈ T (µ), denote by (P̄ω̄)ω̄∈Ω̄ a family of conditional probability measures of P̄

w.r.t. F̄Sk
. Then, for P̄–a.e. ω̄ ∈ Ω̄, the process (M

µ,Φϕ̄
s )s∈[Sk(ω̄),T ] is a P̄ω̄–martingale for all Φ ∈ C2

b (R)
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and ϕ̄ ∈ C2
b (K × Rd). By setting Φ(x) = x, ϕk = 1 and ϕk′

= 0 otherwise, it follows that the process

t 7→ 1t<Tk
is non-increasing with P̄ω̄–compensator

−
∫ t

Sk(ω̄)

∫

A

γ(s,Xs, µs, a)1s<Tk
Λk(ds, da).

By the representation theorem of semimartingales [21, Theorem II.7.4], there exists a Poisson random

measure Qk(dt, dz) on [Sk(ω̄), T ]× R+ with compensator dt dz such that

Tk = inf
{

s > Sk(ω̄); Q
k
(

{s} ×
[

0,

∫

A

γ(s,Xs, µs, a)Λ
k
s(da)

])

= 1
}

, P̄ω̄–a.s.

Then considering again the martingale problem with Φ(x) = x, ϕk = ϕ ∈ C2
b (R

d) and ϕk′

= 0 otherwise,

we observe that the law of (Xk,Λk, Qk) under P̄ω̄ induces an element of R(Sk(ω̄), XSk
(ω̄), µ). In

particular, it holds

EP̄

[

∫ Tk

Sk

∫

A

f
(

s,Xk
s , µs, a

)

Λk(ds, da) + g
(

Xk
T , µT

)

1Tk=T

∣

∣

∣
F̄Sk

]

≤ v
(

Sk, X
k
Sk
, µ
)

.

Thus, if P̄ ∈ T ∗(µ), it follows from the optimality constraint (29) that

EP̄

[

∫ Tk

Sk

∫

A

f
(

s,Xk
s , µs, a

)

Λk(ds, da) + g
(

Xk
T , µT

)

1Tk=T

∣

∣

∣
F̄Sk

]

= v
(

Sk, X
k
Sk
, µ
)

.

A Proof of Lemma 3.8

Throughout this section, C denotes a positive constant depending solely on T , d, ‖γ‖, ‖∑ℓ∈N
ℓpℓ‖ which

may change from line to line.

(i) In view of Proposition 2.3, it holds

m(t)
(

Rd
)

= E [Nt] ≤ C. (34)

Hence it suffices to show that
∫

Rd

|x|2m(t)(dx) ≤ C

(

1 + ‖b‖2 +
∫

Rd

|x|2m0(dx)

)

. (35)

Denote

Mt :=
∑

k∈Kt

∣

∣Xk
t

∣

∣

2 − |X0|2 −
∫ t

0

∑

k∈Ks

(

2d+ 2b(s,Xk
s ) ·Xk

s + γ(Xk
s )
∑

ℓ∈N

(ℓ− 1)pℓ(X
k
s )
∣

∣Xk
s

∣

∣

2
)

ds.

It follows from Proposition 2.4 that M is a local martingale with localizing sequence of stopping times

τn := inf
{

t ≥ 0; sup
k∈Kt

|Xk
t | ≥ n

}

.

Furthermore, a straightforward calculation yields that

∑

k∈Kt∧τn

∣

∣Xk
t∧τn

∣

∣

2 ≤ |X0|2 +
∫ t∧τn

0

∑

k∈Ks

(

2d+ ‖b‖2 +
(

1 +
∥

∥

∥
γ
∑

ℓ∈N

ℓpℓ+1

∥

∥

∥

)

∣

∣Xk
s

∣

∣

2
)

ds+Mt∧τn .

Taking expectation and using (34), we obtain

E

[

∑

k∈Kt∧τn

∣

∣Xk
t∧τn

∣

∣

2
]

≤ C

(

1 + ‖b‖2 + E
[

|X0|2
]

+

∫ t

0

E

[

∑

k∈Ks∧τn

∣

∣Xk
s∧τn

∣

∣

2
]

ds

)

.
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By Grönwall’s lemma, we deduce that

E

[

∑

k∈Kt∧τn

∣

∣Xk
t∧τn

∣

∣

2
]

≤ C
(

1 + ‖b‖2 + E
[

|X0|2
]

)

.

The conclusion then follows from Fatou’s lemma.

(ii) Let us show next that for all 0 ≤ t ≤ s ≤ T ,

W1

(

m(t),m(s)
)

≤ C

(

1 + ‖b‖2 +
∫

Rd

|x|2m0(dx)

)√
s− t. (36)

Using Kantorovitch’s duality (see Lemma B.1), we have

W1(m(t),m(s)) = sup

{
∫

Rd

ϕ(x)m(t)(dx)−
∫

Rd

ϕ(x)m(s)(dx)

}

+
∣

∣m(t)(Rd)−m(s)(Rd)
∣

∣ ,

where the supremum is taken over the set of all 1-Lipschitz continuous maps ϕ : Rd → R such that

ϕ(0) = 0. For the second term on the r.h.s., we observe that

E[Ns] = E[Nt] +

∫ s

t

E

[

∑

k∈Kr

γ(Xk
r )
∑

ℓ∈N

(ℓ− 1)pℓ(X
k
r )

]

dr,

We deduce by (34) that

∣

∣m(t)(Rd)−m(s)(Rd)
∣

∣ =
∣

∣E[Nt]− E[Ns]
∣

∣ ≤ C(t− s),

As for the first term, let ϕ : Rd → R be an arbitrary 1-Lipschitz continuous map satisfying ϕ(0) = 0. It

holds
∣

∣

∣

∣

∫

Rd

ϕ(x)m(t)(dx)−
∫

Rd

ϕ(x)m(s)(dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

E

[

∑

k∈Kt

ϕ
(

Xk
t

)

−
∑

k∈Ks

ϕ
(

Xk
s

)

]
∣

∣

∣

∣

. (37)

We decompose the integrand on the r.h.s. as follows:

∑

k∈Kt

ϕ
(

Xk
t

)

−
∑

k∈Ks

ϕ
(

Xk
s

)

=
∑

k∈Kt∩Ks

(

ϕ
(

Xk
t

)

− ϕ
(

Xk
s

)

)

+
∑

k∈Kt\Ks

ϕ
(

Xk
t

)

−
∑

k∈Ks\Kt

ϕ
(

Xk
s

)

.

First we observe that
∣

∣

∣

∣

E

[

∑

k∈Kt∩Ks

(

ϕ
(

Xk
t

)

− ϕ
(

Xk
s

)

)

]∣

∣

∣

∣

≤ E

[

∑

k∈Kt

∣

∣Xk
t −Xk

s

∣

∣

]

,

where, using the notations of Section 2.1,

Xk
s = Xk

t +

∫ s

t

b(r,Xk
r ) dr +

√
2
(

Bk
s −Bk

t

)

, P− a.s.

In particular, we have

E
[

∣

∣Xk
t −Xk

s

∣

∣

∣

∣

∣
Ft

]

≤ C(1 + ‖b‖)
√
s− t.

It then follows by (34) that
∣

∣

∣

∣

E

[

∑

k∈Kt∩Ks

(

ϕ
(

Xk
t

)

− ϕ
(

Xk
s

)

)

]∣

∣

∣

∣

≤ C
(

1 + ‖b‖
)√
s− t

Second, we observe that
∣

∣

∣

∣

E

[

∑

k∈Kt\Ks

ϕ
(

Xk
t

)

]∣

∣

∣

∣

≤ E

[

∑

k∈K

∣

∣Xk
t

∣

∣1{k∈Kt\Ks}

]

.
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In addition, we have

P
(

k ∈ Kt \Ks

∣

∣

∣
Ft

)

≤
(

1− e−‖γ‖(s−t)
)

1k∈Kt
≤ ‖γ‖(s− t)1k∈Kt

, (38)

and it follows from Step (i) above that

E

[

∑

k∈Kt

∣

∣Xk
t

∣

∣

]

≤ 1

2
E

[

∑

k∈Kt

(

1 +
∣

∣Xk
t

∣

∣

2
)

]

≤ C
(

1 + ‖b‖2 + E
[

|X0|2
]

)

. (39)

Thus we deduce that
∣

∣

∣

∣

E

[

∑

k∈Kt\Ks

ϕ
(

Xk
t

)

]∣

∣

∣

∣

≤ C
(

1 + ‖b‖2 + E
[

|X0|2
]

)

(s− t).

Third, we observe that
∣

∣

∣

∣

E

[

∑

k∈Ks\Kt

ϕ
(

Xk
s

)

]∣

∣

∣

∣

≤ E

[

∑

k∈Kt

1Tk≤s

∑

k′∈Ks

k′≻k

∣

∣Xk′

s

∣

∣

]

.

In addition, similar to (39), it holds

E

[

∑

k′∈Ks

k′≻k

∣

∣Xk′

s

∣

∣

∣

∣

∣

∣

FTk

]

≤ C
(

1 + ‖b‖2 +
∣

∣Xk
Tk

∣

∣

2
)

It follows that
∣

∣

∣

∣

E

[

∑

k∈Ks\Kt

ϕ
(

Xk
s

)

]∣

∣

∣

∣

≤ CE

[

∑

k∈Kt

1Tk≤s

(

1 + ‖b‖2 +
∣

∣Xk
Tk

∣

∣

2
)

]

≤ CE

[

∑

k∈Kt\Ks

(

1 + ‖b‖2 +
∣

∣Xk
t

∣

∣

2
+
∣

∣Xk
Tk

−Xk
t

∣

∣

2
)

]

.

To conclude, it remains to observe that, on the one hand, it follows by (38)–(39) that

E

[

∑

k∈Kt\Ks

(

1 + ‖b‖2 +
∣

∣Xk
t

∣

∣

2
)

]

≤ C
(

1 + ‖b‖2 + E
[

|X0|2
]

)

(s− t),

and, on the other hand, it holds

E

[

∑

k∈Kt\Ks

∣

∣Xk
Tk

−Xk
t

∣

∣

2
]

≤ E

[

∑

k∈Kt

∣

∣Xk
Tk∧s −Xk

t

∣

∣

2
]

≤ C
(

1 + ‖b‖2
)

(s− t),

since

E
[

∣

∣Xk
Tk∧s −Xk

t

∣

∣

2
∣

∣

∣
Ft

]

≤ C
(

1 + ‖b‖2
)

(s− t).

B Wasserstein Distance for Finite Measures

Let (X, d) be a nonempty Polish space and denote by M1(X) the collection of all finite non-negative

Borel measures on X such that
∫

X
d(x, x0)µ(dx) <∞ for some (and thus all) x0 ∈ X. We aim to define

a Wasserstein type distance on M1(X).

To this end, we introduce a cemetery point ∂ to obtain an enlarged space X̄ := X ∪{∂}. By defining

d(x, ∂) := d(x, x0) + 1, we extend the distance d on X̄ in such a way that (X̄, d) is still a Polish space.

Next we introduce the classical Wasserstein distance on

M1,m(X̄) := {µ ∈ M1(X̄); µ(X̄) = m},
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as follows

W1,m(µ, ν) := inf
π∈Π(µ,ν)

∫

X̄×X̄

d(x, y)π(dx, dy), ∀µ, ν ∈ M1,m(X̄),

where Π(µ, ν) denotes the collection of all non-negative measures on X̄ × X̄ with marginals µ and ν.

The Wasserstein type distance on M1(X) is then defined as follows:

W1(µ, ν) :=W1,m(µ̄m, ν̄m), ∀µ, ν ∈ M1(X), (40)

where m ≥ µ(X) ∨ ν(X) and

µ̄m(·) := µ(· ∩X) +
(

m− µ(X)
)

δ∂(·), ν̄m(·) := ν(· ∩X) +
(

m− ν(X)
)

δ∂(·).

As shown in the next lemma, this definition does not depend on the choice of m.

Lemma B.1. The following dual representation holds: for all µ, ν ∈ M1(X),

W1(µ, ν) = sup
ϕ∈Lip0

1(X)

{

µ(ϕ)− ν(ϕ)
}

+
∣

∣µ(X)− ν(X)
∣

∣,

where Lip01(X) denote the collection of all functions ϕ : X → R with Lipschitz constant smaller or equal

to 1 and such that ϕ(x0) = 0.

Proof. By Kantorovitch duality on M1,m(X̄), it holds

W1(µ, ν) =W1,m(µ̄m, ν̄m) = sup
ϕ∈Lip0

1(X̄)

{

µ̄m(ϕ)− ν̄m(ϕ)
}

.

See, e.g., Villani [37, Remark 6.5]. Additionally, we have

µ̄m(ϕ)− ν̄m(ϕ) = µ(ϕ|X)− ν(ϕ|X) + ϕ(δ)(µ(X)− ν(X))

To conclude, it remains to observe that ϕ belongs to Lip01(X̄) if and only if ϕ|X belongs to Lip01(X) and

|ϕ(∂)| ≤ 1.

Next we show that W1 defines a metric on the space of finite non-negative measures and collect

important topological properties.

Lemma B.2. (M1(X),W1) is a Polish space. Additionally, a sequence (µn)n∈N converges to µ in

M1(X) if and only if, for all ϕ : X → R continuous satisfying |ϕ(x)| ≤ C(1 + d(x, x0)),
∫

X

ϕ(x)µn(dx) −→
∫

X

ϕ(x)µ(dx).

Proof. (i) The fact thatW1 is a metric on M1(X) follows easily from the fact thatW1,m is a metric on

M1,m(X̄). Let us prove the triangular inequality for the sake of completeness. Let µ1, µ2, µ3 ∈ M1(X)

and m ≥ µi(X) for i = 1, 2, 3. It holds

W1(µ
1, µ3) =W1,m(µ̄1

m, µ̄
3
m) ≤W1,m(µ̄1

m, µ̄
2
m) +W1,m(µ̄2

m, µ̄
3
m) =W1(µ

1, µ2) +W1(µ
2, µ3).

(ii) Let us show next thatM1(X) is separable and complete underW1. Recall thatM1,m(X̄) is separable

and complete for the classical Wasserstein distance. In particular, M1(X) ⊂ ∪m∈NM1,m(X̄) is separable

as a subset of a separable space. To verify the completeness, we consider a Cauchy sequence (µk)k∈N in

M1(X). By Lemma B.1, |µ(X)− ν(X)| ≤W1(µ, ν) and thus (µk(X))k∈N is a Cauchy sequence in R+.

In particular, it is bounded and so (µk)k∈N can be identified to a sequence (µ̄k
m)k∈N in M1,m(X̄) for

some m large enough. Since M1,m(X̄) is complete, it converges to a measure µ̄ ∈ M1,m(X̄). It follows

that (µk)k∈N converges to µ := µ̄(· ∩X) under W1.

(iii) The characterization of the convergence follows easily from the analoguous result for the classical

Wasserstein distance, see, e.g., Theorem 6.9 in [37]. Similar to the proof of completeness above, we can

use the fact that the sequence (µn(X))n∈N is bounded to identify the sequence (µn)n∈N to a sequence

of M1,m(X̄) for m large enough.
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We conclude this section by providing a compactness criterion in the case X = Rd.

Lemma B.3. Let p > 1. If K ⊂ M1(R
d) satisfies

sup
µ∈K

{
∫

Rd

(1 + |x|p)µ(dx)
}

<∞,

then K is relatively compact.

Proof. The set K can be identified to a subset of M1,m(X̄) for m large enough. The conclusion

then follows from the analogous result for the classical Wasserstein distance, see, e.g., Cardaliaguet [10,

Lemma 5.7].
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