Semiclassical Ohsawa-Takegoshi extension theorem and asymptotics of the orthogonal Bergman kernel - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Geometry Année : 2024

Semiclassical Ohsawa-Takegoshi extension theorem and asymptotics of the orthogonal Bergman kernel

Résumé

In this paper, we study the asymptotics of Ohsawa-Takegoshi extension operator and orthogonal Bergman projector associated with high tensor powers of a positive line bundle. More precisely, for a fixed submanifold in a complex manifold, we consider the operator which associates to a given holomorphic section of a positive line bundle over the submanifold the holomorphic extension of it to the ambient manifold with the minimal $L^2$-norm. When the tensor power of the line bundle tends to infinity, we prove an exponential estimate for the Schwartz kernel of this extension operator, and show that it admits a full asymptotic expansion in powers of the line bundle. Similarly, we study the asymptotics of the orthogonal Bergman kernel associated to the projection onto the holomorphic sections orthogonal to those which vanish along the submanifold. All our results are stated in the setting of manifolds and embeddings of bounded geometry.
Fichier principal
Vignette du fichier
main.pdf (519.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03345077 , version 1 (15-09-2021)
hal-03345077 , version 2 (12-11-2024)

Identifiants

Citer

Siarhei Finski. Semiclassical Ohsawa-Takegoshi extension theorem and asymptotics of the orthogonal Bergman kernel. Journal of Differential Geometry, 2024, 128 (2), pp.639-721. ⟨10.4310/jdg/1727712891⟩. ⟨hal-03345077v2⟩
57 Consultations
39 Téléchargements

Altmetric

Partager

More