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Semiclassical Ohsawa-Takegoshi extension theorem
and asymptotics of the orthogonal Bergman kernel

Siarhei Finski

Abstract. We study the asymptotics of Ohsawa-Takegoshi extension operator and orthogonal
Bergman projector associated with high tensor powers of a positive line bundle.

More precisely, for a fixed complex submanifold in a complex manifold, we consider the oper-
ator which associates to a given holomorphic section of a positive line bundle over the submanifold
the holomorphic extension of it to the ambient manifold with the minimal L2-norm. When the ten-
sor power of the line bundle tends to infinity, we obtain an explicit asymptotic expansion of this
operator. This is done by proving an exponential estimate for the associated Schwartz kernel and
showing that this Schwartz kernel admits a full asymptotic expansion. We prove similar results for
the projection onto holomorphic sections orthogonal to those which vanish along the submanifold.
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1 Introduction
One of the main goals of this article is to give an asymptotic version of Ohsawa-Takegoshi exten-
sion theorem when the powers of the twisting positive line bundle tend to infinity. Another goal
is to establish asymptotic expansion of the Schwartz kernel of the orthogonal Bergman projector
onto the holomorphic sections orthogonal to those which vanish along a submanifold.

More precisely, we fix two (not necessarily compact) complex manifolds X, Y , of dimensions
n and m respectively. We fix also a complex embedding ι : Y → X , a positive line bundle (L, hL)
over X and an arbitrary Hermitian vector bundle (F, hF ) over X . In particular, we assume that for
the curvature RL of the Chern connection on (L, hL), the closed real (1, 1)-form

ω :=

√
−1

2π
RL (1.1)

is positive. We denote by gTX the Riemannian metric on X induced by ω as follows

gTX(·, ·) := ω(·, J ·), (1.2)

where J : TX → TX is the complex structure on X . We denote by gTY the induced metric on Y .
We assume throughout the whole article that the triple (X, Y, gTX), and the Hermitian vector

bundles (L, hL), (F, hF ), are of bounded geometry in the sense of Definitions 2.3, 2.4.
Now, we fix some positive (with respect to the orientation given by the complex structure)

volume forms dvX , dvY on X and Y . For smooth sections f, f ′ of Lp ⊗ F , p ∈ N, over X , we
define the L2-scalar product using the pointwise scalar product 〈·, ·〉h, induced by hL and hF , by〈

f, f ′
〉
L2(X)

:=

∫
X

〈
f(x), f ′(x)

〉
h
dvX(x). (1.3)

Similarly, using dvY , we introduce the L2-scalar product for sections of ι∗(Lp ⊗ F ) over Y . We
denote by H0

(2)(X,L
p ⊗ F ) and H0

(2)(Y, ι
∗(Lp ⊗ F )) the vector spaces of holomorphic sections of

Lp ⊗ F over X and Y respectively with bounded L2-norm.
We assume that for the Riemannian volume forms dvgTX , dvgTY of (X, gTX), (Y, gTY ), for any

k ∈ N, there is Ck > 0, such that over X and Y , the following bounds hold∥∥∥dvgTX
dvX

∥∥∥
C k(X)

,
∥∥∥ dvX
dvgTX

∥∥∥
C k(X)

,
∥∥∥dvgTY
dvY

∥∥∥
C k(Y )

,
∥∥∥ dvY
dvgTY

∥∥∥
C k(Y )

≤ Ck. (1.4)

By extending Ohsawa-Takegoshi theorem, [35], [34], [13, §13], in Theorem 4.4, we prove that
there is p0 ∈ N, such that for any p ≥ p0, g ∈ H0

(2)(Y, ι
∗(Lp ⊗ F )), there is f ∈ H0

(2)(X,L
p ⊗ F ),

satisfying f |Y = g. Then, for the Bergman projector BY
p , given by the orthogonal projection from

the space of L2-sections L2(Y, ι∗(Lp⊗F )) toH0
(2)(Y, ι

∗(Lp⊗F )), we define the extension operator

Ep : L2(Y, ι∗(Lp ⊗ F ))→ H0
(2)(X,L

p ⊗ F ), (1.5)

by putting Epg = f , where f |Y = BY
p g, and f has the minimal L2-norm among those f ′ ∈

H0
(2)(X,L

p ⊗ F ) satisfying f ′|Y = BY
p g (the set of such f ′ is closed and convex, hence f exists

and it is unique by Hilbert projection theorem; moreover, the operator Ep is easily seen to be linear).
In particular, for g ∈ H0

(2)(Y, ι
∗(Lp ⊗ F )), we have (Epg)|Y = g. Ohsawa-Takegoshi extension
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theorem in this context means precisely that the operator Ep is bounded. In this article, we find an
explicit asymptotic expansion of Ep, as p→∞. Remark that ‖Ep‖ is the optimal constant for the
estimate of the L2-norm of the extension.

More precisely, we identify the normal bundle N of Y in X as an orthogonal complement of
TY in TX (with respect to gTX), so that we have the following orthogonal decomposition

TX|Y → TY ⊕N. (1.6)

We denote by gN the metric on N induced by gTX . Let PN : TX|Y → N , P Y : TX|Y → TY , be
the projections induced by (1.6). Clearly,∇N := PN∇TX |Y defines a connection on N .

For y ∈ Y , ZN ∈ Ny, let R 3 t 7→ expXy (tZN) ∈ X be the geodesic in X in direction ZN .
Bounded geometry condition means, in particular, that this map induces a diffeomorphism of r⊥-
neighborhood of the zero section in N with a tubular neighborhood U of Y in X . From now on,
we use this identification implicitly. Of course, points (y, 0), for y ∈ Y then correspond to Y .

We denote by π0 : U → Y the natural projection (y, ZN) 7→ y. Over U , we identify L, F to
π∗0(L|Y ), π∗0(F |Y ) by the parallel transport with respect to the respective Chern connections along
the geodesic [0, 1] 3 t 7→ (y, tZN) ∈ X , |ZN | < r⊥. We also define a function κN as follows

dvX = κNdvY ∧ dvN , (1.7)

where dvN is the relative Riemannian volume form on (N, gN). Of course, we have κN |Y = 1 if

dvX = dvgTX , dvY = dvgTY . (1.8)

Using the above identification, we define the operator E0
p : L2(Y, ι∗(Lp⊗F ))→ L2(X,Lp⊗F )

as follows. For g ∈ L2(Y, ι∗(Lp ⊗ F )), we let (E0
pg)(x) = 0, x /∈ U , and in U , we put

(E0
pg)(y, ZN) = (BY

p g)(y) exp
(
− pπ

2
|ZN |2

)
ρ
( |ZN |
r⊥

)
. (1.9)

where the norm |ZN |, ZN ∈ N , is taken with respect to gN , and ρ : R+ → [0, 1] satisfies

ρ(x) =

{
1, for x < 1

4
,

0, for x > 1
2
.

(1.10)

Now, for g ∈ H0
(2)(Y, ι

∗(Lp ⊗ F )), the section E0
pg satisfies (E0

pg)|Y = g, but E0
pg is not holomor-

phic over X unless g is zero. Nevertheless, as we shall see, E0
pg can be used to approximate very

well the holomorphic section Epg. More precisely, we have the following result.

Theorem 1.1. There are C > 0, p1 ∈ N∗, such that for any p ≥ p1, we have∥∥Ep − E0
p

∥∥ ≤ C

p
n−m+1

2

. (1.11)

where ‖ · ‖ is the operator norm. Also, as p→∞, we have∥∥E0
p

∥∥ ∼ 1

p
n−m

2

· sup
y∈Y

κ
1
2
N(y). (1.12)

Moreover, under assumption (1.8), in (1.11), one can replace p
n−m+1

2 by an asymptotically better
estimate if and only if Y is a totally geodesic submanifold of (X, gTX), i.e. the second fundamental
form, see (1.16), vanishes.
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Remark 1.2. a) From the bounded geometry condition κN is bounded, see Section 2.1.
b) By the remark after (1.5), we see that this theorem gives an asymptotic of the optimal con-

stant in Ohsawa-Takegoshi extension theorem. For other versions of optimal Ohsawa-Takegoshi
extension theorem, see Błocki [6], Guan-Zhou [24].

c) Our result refines a theorem of Randriambololona [37, Théorème 3.1.10], stating in the
compact case that for any ε > 0, there is p1 ∈ N∗, such that

∥∥Ep

∥∥ ≤ exp(εp) for p ≥ p1. Remark,
however, that theorem of Randriambololona also works for smooth nonreduced subvarieties Y .
For a generalization of Theorem 1.1 in this context, see the subsequent work [19].

Corollary 1.3. There is p1 ∈ N∗, such that for any k ∈ N∗, there is C > 0, such that for any
p ≥ p1, g ∈ H0

(2)(Y, ι
∗(Lp ⊗ F )), we have

∥∥∇k(Epg)
∥∥
L2(X)

≤ C

p
n−m−k

2

·‖g‖L2(Y ) , (1.13)

where the connection∇ is induced by the Chern and Levi-Civita connections.

Remark 1.4. The estimate of type (1.13) was lacking in Demailly’s approach to the invariance of
plurigenera for Kähler families, see [15, (4.19)]. Remark that in [15], the manifold X is an open
strictly pseudoconvex domain U , given by the neighborhood of the diagonal of certain product
manifold (hence,X is never compact). Our theorem applies toX of this form because the Bergman
metric on any strictly pseudoconvex domain has bounded geometry, see Klembeck [26, Theorem
1 and p. 279] and Greene-Krantz [22, p. 8]. We, however, couldn’t find a complex-geometric de-
scription of submanifolds Y for which there is a metric gTX on X coming from a strictly plurisub-
harmonic exhaustion function, such that the triple (X, Y, gTX) is of bounded geometry.

Both Theorem 1.1 and Corollary 1.3 appear as almost direct consequences of more precise
results about the asymptotics of the Schwartz kernel Ep(x, y) ∈ (Lp ⊗ F )x ⊗ (Lp ⊗ F )∗y, x ∈ X ,
y ∈ Y , of Ep with respect to dvY . To state them, recall that Ep(x, y) is defined so that for any
g ∈ L2(Y, ι∗(Lp ⊗ F )), x ∈ X , we have

(Epg)(x) =

∫
Y

Ep(x, y) · g(y) · dvY (y). (1.14)

As we show, this Schwartz kernel shares similar asymptotic behavior with the Bergman kernel,
previously studied by Dai-Liu-Ma [11] and Ma-Marinescu [32]. More precisely, similarly to [32],
we first show that this Schwartz kernel has exponential decay.

Theorem 1.5. There are c > 0, p1 ∈ N∗, such that for any k ∈ N, there is C > 0, such that for
any p ≥ p1, x ∈ X , y ∈ Y , the following estimate holds∣∣∣Ep(x, y)

∣∣∣
C k(X×Y )

≤ Cpm+ k
2 exp

(
− c√pdist(x, y)

)
, (1.15)

where the pointwise C k-norm of an element from C∞(X × Y, (Lp ⊗ F ) � (Lp ⊗ F )∗) at a point
(x, y) ∈ X × Y is the sum of the norms induced by hL, hF and gTX , evaluated at (x, y), of the
derivatives up to order k with respect to the connection induced by the Chern connections on L, F
and the Levi-Civita connection on TX .
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Theorem 1.5 implies that to understand fully the asymptotics of the Schwartz kernel of the
extension operator, it suffices to do so in a neighborhood of a fixed point (y0, y0) ∈ Y × Y in
X × Y . Our next result shows that after a reparametrization, given by a homothety with factor√
p in certain coordinates around (y0, y0), the kernel of this extension operator admits a complete

asymptotic expansion in integer powers of
√
p, as p→∞, similarly to the off-diagonal asymptotic

expansion of Bergman kernel [11]. To state it, let us fix some notation.
We define the second fundamental form A ∈ C∞(Y, T ∗Y ⊗ End(TX|Y )) by

A := ∇TX |Y −∇TY ⊕∇N . (1.16)

Trivially, A takes values in skew-symmetric endomorphisms of TX|Y , interchanging TY and N .
We fix a point y0 ∈ Y and an orthonormal frame (e1, . . . , e2m) (resp. (e2m+1, . . . , e2n)) in

(Ty0Y, g
TY
y0

) (resp. in (Ny0 , g
N
y0

)), such that for i = 1, . . . , n, the following identity is satisfied

Je2i−1 = e2i. (1.17)

Define the coordinate system ψy0 : BR2m

0 (rY )×BR2(n−m)

0 (r⊥)→ X , for Z = (ZY , ZN), ZY ∈ R2m,
ZN ∈ R2(n−m), ZY = (Z1, . . . , Z2m), ZN = (Z2m+1, . . . , Z2n), |ZY | < rY , |ZN | < r⊥, by

ψy0(ZY , ZN) := expXexpYy0 (ZY )(τZY (ZN)), (1.18)

where we identified ZY , ZN to elements in Ty0Y , Ny0 , using the fixed frames (e1, . . . , e2m)
and (e2m+1, . . . , e2n), τZY (ZN) ∈ NexpYy0 (ZY ) is the parallel transport of ZN along the geodesic

expYy0(tZY ), t = [0, 1], with respect to the connection ∇N on N , and BRk
0 (ε), ε > 0 means the

euclidean ball of radius ε around 0 ∈ Rk. The coordinates ψy0 are called the Fermi coordinates at
y0. Define the functions κX,y0 : BR2m

0 (rY )× BR2(n−m)

0 (r⊥)→ R, κY,y0 : BR2m

0 (rY )→ R, by

(ψ∗y0dvX)(Z) = κX,y0(Z)dZ1 ∧ · · · ∧ dZ2n,

((expYy0)
∗dvY )(ZY ) = κY,y0(ZY )dZ1 ∧ · · · ∧ dZ2m.

(1.19)

Clearly, under assumptions (1.8), we have κX,y0(0) = κY,y0(0) = 1. Once the point y0 is fixed, we
usually omit it from the subscript of functions.

We fix an orthonormal frame f1, . . . , fr ∈ Fy0 , and define f̃1, . . . , f̃r by the parallel transport of
f1, . . . , fr with respect to the Chern connection∇F of (F, hF ), done first along the path ψ(tZY , 0),
t ∈ [0, 1], and then along the path ψ(ZY , tZN), t ∈ [0, 1], ZY ∈ R2m, ZN ∈ R2(n−m), |ZY | < rY ,
|ZN | < r⊥. Similarly, we trivialize L in the neighborhood of y0. These frames, as well as the
induced frames of the dual vector bundles, allow us to interpret Ep(x, y) as an element of End(Fy0)
for x ∈ X , y ∈ Y in a min(r⊥, rY )-neighborhood of y0.

We also define the function En,m over R2n × R2m as follows

En,m(Z,Z ′Y ) = exp
(
− π

2

m∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

)
− π

2

n∑
i=m+1

|zi|2
)
, (1.20)

where Z = (ZY , ZN), ZY , Z ′Y ∈ R2m, ZN ∈ R2(n−m) and zi, z′i are given by zi = Z2i−1+
√
−1Z2i,

z′j = Z ′2j−1+
√
−1Z ′2j , for i = 1, . . . , n and j = 1, . . . ,m. As we show in Section 3.2, En,m(Z,Z ′Y )

is the Schwartz kernel of the extension operator for a model space. For general manifolds, the
extension operator is comparable to this model one, as the following theorem shows.
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Theorem 1.6. For any r ∈ N, y0 ∈ Y , there are JEr (Z,Z ′Y ) ∈ End(Fy0) polynomials in Z ∈ R2n,
Z ′Y ∈ R2m, with the same parity as r and deg JEr ≤ 3r, whose coefficients are polynomials inRTX ,
A, RF , (dvX/dvgTX )±

1
2n , (dvY /dvgTY )±

1
2n , and their derivatives of order ≤ 2r, all evaluated at

y0, such that for the functions FE
r := JEr · En,m over R2n × R2m, the following holds.

There are ε, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0, such that for
any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), ZY , Z ′Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε, α ∈ N2n,
α′ ∈ N2m, |α|+ |α′| ≤ l, for Q1

k,l,l′ := 6(16(n+ 2)(k + 1) + l′) + 2l, the following bound holds

∣∣∣∣ ∂|α|+|α
′|

∂Zα∂Z ′Y
α′

(
1

pm
Ep

(
ψy0(Z), ψy0(Z

′
Y )
)
−

k∑
r=0

p−
r
2FE

r (
√
pZ,
√
pZ ′Y )κ

− 1
2

X (Z)κ
− 1

2
Y (Z ′Y )

)∣∣∣∣
C l′ (Y )

≤ Cp−
k+1−l

2

(
1 +
√
p|Z|+√p|Z ′Y |

)Q1
k,l,l′

exp
(
− c√p

(
|ZY − Z ′Y |+ |ZN |

))
, (1.21)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

JE0 (Z,Z ′Y ) = IdFy0 · κ
1
2
N(y0). (1.22)

Moreover, under assumption (1.8), we have

JE1 (Z,Z ′Y ) = IdFy0 · π · g
TX
y0

(
zN , A(zY − z′Y )(zY − z′Y )

)
, (1.23)

where we implicitly identified Z ∈ R2n to an element in Ty0X as Z :=
∑
Zi · ei, similar notations

have been used for ZY , ZN , Z ′Y , and zY , zN , z′Y are the induced complex coordinates.

The operator Ep is very much related to the orthogonal Bergman projector. The last operator
is defined as the orthogonal projector onto the holomorphic sections of Lp ⊗ F over X , which
are orthogonal to those vanishing along Y . To prove Theorems 1.5, 1.6, and out of independent
interest, we establish analogous results for this projector. More precisely, consider the vector space

H0,0
(2) (X,Lp ⊗ F ) :=

{
f ∈ H0

(2)(X,L
p ⊗ F ) : f |Y = 0

}
. (1.24)

An easy verification shows that (1.24) is a closed subspace. LetH0,⊥
(2) (X,Lp⊗F ) be the orthogonal

complement of H0,0
(2) (X,Lp ⊗ F ) in H0

(2)(X,L
p ⊗ F ) with respect to the L2-scalar product.

Denote by B⊥p , B0
p , BX

p the orthogonal projection from L2(X,Lp ⊗ F ) to H0,⊥
(2) (X,Lp ⊗ F ),

H0,0
(2) (X,Lp⊗F ) andH0

(2)(X,L
p⊗F ) respectively. As we shall explain in Lemma 5.14, there is an

algebraic relation between Ep and B⊥p . Similarly to (1.14), we denote by B⊥p (x1, x2), B0
p(x1, x2),

BX
p (x1, x2) the Schwartz kernels of B⊥p , B0

p , BX
p with respect to dvX .

Theorem 1.7. There are c > 0, p1 ∈ N∗, such that for any k ∈ N, there is C > 0, such that for
any p ≥ p1, x1, x2 ∈ X , the following estimate holds∣∣∣B⊥p (x1, x2)

∣∣∣
C k(X×X)

≤ Cpn+ k
2 exp

(
− c√p

(
dist(x1, x2) + dist(x1, Y ) + dist(x2, Y )

))
, (1.25)

where the norm C k is interpreted in the same way as in Theorem 1.5.
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Hence, for the asymptotics of the Schwartz kernel of B⊥p , it is only left to study it in the
neighborhood of a fixed point (y0, y0) ∈ Y × Y in X ×X . To state our result in this direction, we
define the function P⊥

n,m over R2n × R2n as follows

P⊥
n,m(Z,Z ′) = exp

(
− π

2

n∑
i=1

(
|zi|2 + |z′i|2

)
+ π

m∑
i=1

ziz
′
i

)
, (1.26)

where Z,Z ′ ∈ R2n, and zi, z′i are given by zi = Z2i−1 +
√
−1Z2i, z′i = Z ′2i−1 +

√
−1Z ′2i, for

i = 1, . . . , n. As we show in Section 3.2, P⊥
n,m(Z,Z ′) is the Schwartz kernel of the orthogonal

Bergman projector for the model space. The following theorem shows that the general situation is
comparable to this model one. We use the same trivialization of F, F ∗ and L,L∗ in the neighbor-
hood of y0 as in Theorem 1.6, and interpret B⊥p (x1, x2) as an element of End(Fy0), for x1, x2 ∈ X
in a min(r⊥, rY )-neighborhood of y0.

Theorem 1.8. For any r ∈ N, y0 ∈ Y , there are polynomials J⊥r (Z,Z ′) ∈ End(Fy0), Z,Z ′ ∈ R2n,
with the same properties as in Theorem 1.6, such that for F⊥r := J⊥r ·P⊥

n,m, the following holds.
There are ε, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0, such that for

any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), Z ′ = (Z ′Y , Z
′
N), ZY , Z ′Y ∈ R2m, ZN , Z ′N ∈ R2(n−m),

|Z|, |Z ′| ≤ ε, α, α′ ∈ N2n, |α|+ |α′| ≤ l, for Q2
k,l,l′ := 3(8(n+ 2)(k + 1) + l′) + l, we have

∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
B⊥p
(
ψy0(Z), ψy0(Z

′)
)
−

k∑
r=0

p−
r
2F⊥r (

√
pZ,
√
pZ ′)κ

− 1
2

X (Z)κ
− 1

2
X (Z ′)

)∣∣∣∣
C l′ (Y )

≤ Cp−
k+1−l

2

(
1 +
√
p|Z|+√p|Z ′|

)Q2
k,l,l′

exp
(
− c√p

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
, (1.27)

where the C l′-norm is taken with respect to y0. Also, we have

J⊥0 (Z,Z ′) = IdFy0 . (1.28)

Moreover, under the assumptions (1.8) and notations as in (1.23), we have

J⊥1 (Z,Z ′) = IdFy0 · π · g
TX
y0

(
zN + z′N , A(ZY − Z ′Y )(ZY − Z ′Y )

)
. (1.29)

Remark 1.9. We present an algorithmic way to compute the polynomials JEr , J
⊥
r .

In the final part of the introduction, we describe an application of Theorem 1.6 to the L∞-
estimates of holomorphic extensions. Remark that Theorem 1.6 only studies the holomorphic
extensions which are optimal for the L2-norm. Nevertheless, as an explicit asymptotic formula is
given, our theorem can be applied to study extension problems associated with other norms.

Theorem 1.10. There are C > 0, p1 ∈ N∗, such that for any p ≥ p1, f ∈ H0
(2)(Y, ι

∗(Lp ⊗ F )),

∥∥Epf
∥∥
L∞(X)

≤
(

1 +
C
√
p

)
·
∥∥f∥∥

L∞(Y )
. (1.30)

Remark 1.11. a) Clearly, for any extension f̃ of f to X , we have ‖f̃‖L∞(X) ≥ ‖f‖L∞(Y ). Hence,
the theorem above tells that Epf saturates the optimal L∞-bound asymptotically.
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b) Theorem 1.10 refines the results of Zhang [44, Theorem 2.2] and Bost [8, Proposition 3.6,
Theorem A.1], cf. also Randriambololona [38, Théorème B], which prove in various settings and
generalities that for any ε > 0, there is p1 ∈ N∗, such that for any f ∈ H0

(2)(Y, ι
∗(Lp ⊗ F )),

p ≥ p1, there is a holomorphic extension f̃ of f to X , verifying ‖f̃‖L∞(X) ≤ exp(εp)‖f‖L∞(Y ).
As explained in [44], [8], [38], these L∞-bounds are important in Arakelov geometry.

c) In realms of non-Archimedean geometry, a related extension problem has been considered
by Chen-Moriwaki [10].

d) It is interesting to study to which extent the L2-optimal extension becomes optimal for other
Lp-norms, p ∈ [1,+∞[. See Beatrous [1] for related results.

Let us finally say few words about the tools we use in this article. The proofs of Theorems 1.5,
1.7 rely on the exponential estimate for the Bergman kernel, cf. Ma-Marinescu [32, Theorem 0.1],
and the refinement – in our asymptotic setting – of the Ohsawa-Takegoshi extension theorem, see
Theorem 4.1, the proof of which is inspired by Bismut-Lebeau [4] and Demailly [12].

The proofs of Theorems 1.6, 1.8 rely on some techniques from spectral analysis, inspired
by [4]; on the existence of the so-called uniform Stein atlases (see Definition 2.21) over Kähler
manifolds of bounded geometry, which we establish using Hörmander’s L2-estimates; on the full
off-diagonal asymptotic expansion of the Bergman kernel due to Dai-Liu-Ma [11], and on some
technical results about the algebras of operators with Taylor-type expansion of the Schwartz ker-
nel, which are inspired by the work of Ma-Marinescu [31], cf. [30, §7]. The general strategy for
dealing with semi-classical limits here is inspired by Bismut [3] and Bismut-Vasserot [5].

The technical novelty of this paper, compared to [11], is that, unlikeBX
p , the operatorB⊥p is not

the spectral projector associated to the Kodaira Laplacian. This breaks apart most of the techniques
used in [11], [30], as, for example, the relation with the heat kernel is no longer available. To
remedy this, instead of Laplacian, we construct an “ad hoc” operator, see (5.2), based on the
restriction map and BX

p , so that B⊥p is the spectral projector associated to this new operator.
A similar idea of using spectral theory of operators other than Laplacian in the study of

Bergman kernel has been used in symplectic reduction setting by Ma-Zhang [33]. The role of
normal direction in the decay of Schwartz kernels as in Theorems 1.6 and 1.8 was already present
in [33], even though the contexts of the two problems are completely different. In their manuscript,
authors use the deformation of Laplacian by the Casimir operator, coming from Hamiltonian action
of a compact Lie group. This deformation, differently from our setting, is a differential operator
itself. This makes technical details of our article different, as here the spectral theory is applied to
an operator, which is no longer local, and actually has a smooth Schwartz kernel.

We note that Theorems 1.7, 1.8 can be reformulated in terms of the so-called logarithmic
Bergman kernel, which corresponds to the Schwartz kernel of B0

p . This is due to the obvious
relation BX

p = B0
p + B⊥p , and the fact that the Schwartz kernel of BX

p is already well-understood
by the results of Tian [42], Catlin [9], Zelditch [43], Dai-Liu-Ma [11] and Ma-Marinescu [32].

This paper is organized as follows. In Section 2, we recall the definitions of manifolds (resp.
pairs of manifolds, vector bundles) of bounded geometry. We compare Fermi coordinates to
geodesic coordinates. We then introduce and study the notion of a uniform Stein atlases. In Section
3, we prove that the set of operators over manifolds of bonded geometry, admitting certain bounds
on the Schwartz kernels, forms an algebra under the composition. In Section 4, we establish a
spectral bound for the restriction operator. Finally, in Section 5, by using all the above results, we
establish the results announced in this section.

Notations. We use notations X, Y for complex manifolds and M,H for real manifolds. The
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complex (resp. real) dimensions of X, Y (resp. M,H) are denoted here by n,m. An operator ι
always means an embedding ι : Y → X (resp. ι : H →M ). We denote by ResY (resp. ResH) the
operator of restriction of sections of a certain vector bundle over X to Y (resp. M to H).

For a Riemannian manifold (M, gTM), we denote the Levi-Civita connection by ∇TM , and
by dvgTM the Riemannian volume form. For a closed subset W ⊂ M , r ≥ 0, let BMW (r) be the
geodesic tubular neighborhood of radius r around W . For a Hermitian vector bundle (E, hE), note
Br(E) := {Z ∈ E : |Z|hE < r}.

For a fixed volume form dvM on M , we denote by L2(dvM , h
E) the space of L2-sections of E

with respect to dvM and hE . When dvM = dvgTM , we also use the notation L2(gTM , hE). When
there is no confusion about the data, we also use the simplified notation L2(M) or even just L2.

We denote by dvCn the standard volume form on Cn. We view Cm (resp. R2m) embedded
in Cn (resp. R2n) by the first m coordinates. For Z ∈ Rk, we denote by Zl, l = 1, . . . , k, the
coordinates of Z. If Z ∈ R2n, we denote by zi, i = 1, . . . , n the induced complex coordinates zi =
Z2i−1+

√
−1Z2i. We frequently use the decompositionZ = (ZY , ZN), whereZY = (Z1, . . . , Z2m)

and ZN = (Z2m+1, . . . , Z2n). For a fixed frame (e1, . . . , e2n) in TyX , y ∈ Y , we implicitly identify
Z (resp. ZY , ZN ) to an element in TyX (resp. TyY , Ny) by

Z =
2n∑
i=1

Ziei, ZY =
2m∑
i=1

Ziei, ZN =
2n∑

i=2m+1

Ziei. (1.31)

If the frame (e1, . . . , e2n) satisfies (1.17), we denote ∂
∂zi

:= 1
2
(e2i−1 −

√
−1e2i), ∂

∂zi
:= 1

2
(e2i−1 +√

−1e2i), and identify z, z to vectors in TyX ⊗R C as follows

z =
n∑
i=1

zi ·
∂

∂zi
, z =

n∑
i=1

zi ·
∂

∂zi
. (1.32)

Clearly, in this identification, we have Z = z+z, (Id−
√
−1J)Z = 2z, and (Id+

√
−1J)Z = 2z.

We define zY , zY ∈ TyY ⊗R C, zN , zN ∈ Ny ⊗R C in a similar way.
For α = (α1, . . . , αk) ∈ Nk, B = (B1, . . . , Bk) ∈ Ck, we note

|α| =
k∑
i=1

αi, α! =
k∏
i=1

αi!, Bα =
k∏
i=1

Bαi
i . (1.33)
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enlightening discussions with whom inspired this article. We also thank Jingzhou Sun for his
interest in this article and for pointing out several misprints. Finally, we would like to thank the
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Council grant ALKAGE number 670846 managed by Jean-Pierre Demailly.

2 Manifolds of bounded geometry and uniform Stein atlases
We recall the definitions of manifolds (resp. pairs of manifolds, vector bundles) of bounded geom-
etry and study some of their properties. Then, we introduce and study uniform Stein atlases.

Manifolds of bounded geometry are certain complete manifolds for which some uniform bound-
ness conditions on the curvature and injectivity radii are assumed. The reason for considering those
types of manifolds in this article is twofold.
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First, they appear naturally already in the study of compact manifolds. This is due to the fact
that our main philosophy here is to reduce all the statements from general manifolds to Cn. As we
would like our theory to work with Cn as well, which is no longer compact, the setting of compact
manifolds is not appropriate for our needs. It turns out that the class of manifolds of bounded
geometry is wide enough to contain both compact manifolds and Cn, and restrictive enough to
satisfy some essential estimates in our approach.

Second, the full force of Ohsawa-Takegoshi extension theorem comes from the fact that it can
be applied to local problems over general weakly pseudoconvex domains. Also, many geometric
applications of the extension theorem, as [15] (which partially motivated the current article), are
formulated for non-compact manifolds, see Remark 1.4. As we would like our theorems to be
useful in these contexts as well, we need to abandon the compactness assumption.

This section is organized as follows. In Section 2.1, we recall the definitions of manifolds
(resp. pairs of manifolds, vector bundles) of bounded geometry. In Section 2.2, we compare the
geodesic and Fermi coordinates. In Section 2.3, we calculate the holonomy of the vector bundle
along the paths, adapted to the two coordinate systems. In Section 2.4, we give a formula for the
complex structure in Fermi coordinates and study quasi-plurisubharmonicity of some functions on
manifolds of bounded geometry. Finally, in Section 2.5, we introduce and study uniform Stein
atlases, and prove that any Kähler manifold of bounded geometry admits uniform Stein atlas.

A reader, willing to understand only the compact case, might safely skip Sections 2.1 and 2.5,
and skim through most of Section 2.4, as for compact manifolds, the statements are well-known.

2.1 Coordinate-free and coordinate-wise descriptions of bounded geometry
In this section, we recall the definitions of manifolds (resp. pairs of manifolds, vector bundles) of
bounded geometry. There are mainly two ways to define objects of bounded geometry. Either one
uses some bounds on the curvature (and related objects) – this is the coordinate-free description
– or one uses charts constructed by geodesics and bounds the relevant structures (as the metric
tensor) and its derivatives in these coordinates – the coordinate-wise description. The equivalence
of these two perspectives is established in the works of Eichhorn [17], Schick [39] and Große-
Schneider [23]. In this section, we recall these statements precisely.

Definition 2.1. We say that a Riemannian manifold (M, gTM) is of bounded geometry if the fol-
lowing two conditions hold.

(i) The injectivity radius of (M, gTM) is bounded below by a positive constant rM .
(ii) Every covariant derivative of the Riemann curvature tensor RTM of M is bounded, i.e. for

any k ∈ N, there is a constant Ck > 0 such that for any l = 0, . . . , k, we have

|(∇TM)lRTM | ≤ Ck, (2.1)

where ∇TM is the connection induced by the Levi-Civita connection, and the pointwise norm is
taken with respect to gTM .

Remark 2.2. The condition (i) from Definition 2.1 implies that (M, gTM) is complete.

Let us fix x0 ∈ M and an orthonormal frame (e1, . . . , en) of (Tx0M, gTMx0 ). We identify Rn to
Tx0M implicitly as in (1.31). We introduce the map φx0 : Rn →M , x0 ∈M , as follows

φx0(Z) := expMx0(Z). (2.2)
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As a general rule, whenever the point x0 is implicit, we drop it out from the subscript. As it
was proved, for example, in [17, Theorem A] and [39, Proposition 3.3], the metric tensor, written
in geodesic coordinates, has bounded derivatives, and the transition maps between two different
geodesic coordinates can be bounded uniformly in a similar way. This gives us the coordinate-wise
approach through geodesic coordinates to manifolds of bounded geometry.

Now, let (H, gTH) be an embedded submanifold of (M, gTM), gTH := gTM |H . We identify the
normal bundle N of H in M as an orthogonal complement of TH in TM as in (1.6). We denote
by gN the metric on N induced by gTM , and define ∇N as after (1.6). We denote by A the second
fundamental form of the embedding of H in M , defined as in (1.16).

Definition 2.3. We say that the triple (M,H, gTM) is of bounded geometry if the following condi-
tions are fulfilled.

(i) The manifold (M, gTM) is of bounded geometry.
(ii) The injectivity radius of (H, gTH) is bounded below by a positive constant rH .
(iii) There is a collar around H (a tubular neighborhood of fixed radius), i.e. there is r⊥ > 0

such that for any x, y ∈ H , the normal geodesic balls B⊥r⊥(x), B⊥r⊥(y), obtained by the application
of the exponential mapping to vectors, orthogonal to H , of norm, bounded by r⊥, are disjoint.

(iv) Every covariant derivative of A of M is bounded, i.e. for all k ∈ N, there is a constant
Ck > 0 such that for any l = 0, . . . , k, we have

|∇lA| ≤ Ck, (2.3)

where∇ is the connection induced by the Levi-Civita connection∇TH and∇N , and the pointwise
norm is taken with respect to gTM .

Clearly, condition (iii) from Definition 2.3 means that the map Br⊥(N) → M , (y, ZN) 7→
expMy (ZN), y ∈ H , ZN ∈ Ny, |ZN | < r⊥, is a diffeomorphism onto a tubular neighborhood
U := BMH (r⊥) of H in M . We define the projection

π0 : U → H, expMy (ZN) 7→ y. (2.4)

We now fix a point y0 ∈ H and an orthonormal frame (e1, . . . , em) (resp. (em+1, . . . , en)) in
(Ty0H, g

TH) (resp. in (N, gN)). We define the Fermi coordinates, ψy0 , at y0 as in (1.18). Again,
as both manifolds (M, gTM), (H, gTH), are complete, one can extend the domain of ψx0 to Rn. As
it was established, for example in [39, Lemma 3.9] and [23, Theorem 4.9], the derivatives of the
metric tensor in ψx0 coordinates are uniformly bounded. Similarly, the derivatives of the transition
maps are uniformly bounded. From this, we see directly that the function κN , defined as in (1.7),
is uniformly bounded on the submanifold.

Define R > 0 as follows
R := min

{rM
2
,
rH
4
,
r⊥
4

}
. (2.5)

Now, there is a diffeomorphism hy0 : BRn
0 (R)→ Rn, such that the following holds

ψy0 = φy0 ◦ hy0 . (2.6)

As it was established, for example, in [23, Lemma 4.7], the derivatives of hy0 are then uniformly
bounded. All in all, this gives the coordinate-wise approach through Fermi coordinates to triples
of bounded geometry.
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Definition 2.4. Let (E,∇E, hE) be a Hermitian vector bundle with a fixed Hermitian connection
over a manifold (M, gTM) of bounded geometry. We say that (E,∇E, hE) is of bounded geometry
if for any k ∈ N, there is a constant Ck > 0 such that for any l = 0, . . . , k, we have

|∇lRE| < Ck, (2.7)

where∇ is the connection induced by the Levi-Civita connection∇TM and∇E , and the pointwise
norm is taken with respect to gTM .

If (E, hE) is a Hermitian vector bundle over a complex manifold, we say that it is of bounded
geometry if (E,∇E, hE) is of bounded geometry for the Chern connection∇E on (E, hE).

Let us now give the coordinate-wise description for vector bundles of bounded geometry. Let
us first construct a trivialization of vector bundle (E,∇E), rk(E) = r, as follows. We fix a point
x0 ∈M and an orthonormal frame f1, . . . , fr ∈ Ex0 . Let f̃ ′1, . . . , f̃

′
r be a frame of E over BMx0(rM),

obtained by the parallel transport of f1, . . . , fr along the curve φx0(tZ), t ∈ [0, 1], Z ∈ Tx0M ,
|Z| < rM . Clearly, as ∇E is Hermitian, f̃ ′1, . . . , f̃

′
r is an orthonormal frame over BMx0(rM). We

denote by ΓE ′ the connection form of (E,∇E) with respect to this frame. As it was established,
for example in [17, Theorem B], the derivatives of ΓE ′ are uniformly bounded for vector bundles
of bounded geometry.

Now, let us consider another trivialization of (E,∇E). We place ourselves in a setting where
(M,H, gTM) is a triple of bounded geometry. We fix a point y0 ∈ H and an orthonormal frame
f1, . . . , fr ∈ Ey0 . We define f̃1, . . . , f̃r by the parallel transport as it was done before Theorem
1.6. We denote by ΓE the connection form of (E,∇E) with respect to this frame. As it was
established, for example in [23, Lemma 5.13], the derivatives of ΓE are uniformly bounded for
triples of bounded geometry. Let ξE be the function, defined in BMy0 (R), with values in End(Cr),
such that

(f̃1, . . . , f̃r) = exp(ξE) · (f̃ ′1, . . . , f̃ ′r), (2.8)

where we view (f̃1, . . . , f̃r) and (f̃ ′1, . . . , f̃
′
r) as r × 1 matrices. Clearly, for triples of bounded

geometry, the derivatives of ξE are uniformly bounded.

2.2 Diffeomorphism between Fermi and geodesic coordinates
In this section, we study the Taylor expansion of the diffeomorphism comparing geodesic and
Fermi coordinates.

We conserve the notations from Section 2.1 and we place ourselves in the setting of a triple
(M,H, gTM) of bounded geometry. Let A ∈ C∞(H,T ∗H ⊗ End(TM |H)) be as in (1.16). We
define an auxiliary form B ∈ C∞(H, Sym2(T ∗M |H)⊗ TM |H) in the notations (1.16) by

B(u) := B(u, u) :=
1

2
A(PHu)PHu+ A(PHu)PNu, u ∈ TM |H , (2.9)

where PH : TM |H → TH is the orthogonal projection.
We fix a point y0 ∈ H and an orthonormal frame (e1, . . . , em) (resp. (em+1, . . . , en)) in

(Ty0H, g
TH) (resp. in (N, gN)). Recall that in (1.18) and (2.2), we defined two coordinate sys-

tems ψy0 , φy0 in a neighborhood of y0, and in (2.6), we defined a diffeomorphism hy0 : BRn
0 (R)→

U ⊂ Rn, for R from (2.5) and a certain open subset U . We drop out y0 from the subscripts from
now on. The main goal of this section is to study the Taylor expansion of h at 0 ∈ R2n.
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Proposition 2.5. The diffeomorphism h has the following Taylor expansion

h(Z) = Z +B(Z) +O(|Z|3). (2.10)

Moreover, the coefficients of order r ∈ N in the above Taylor expansion can be expressed in terms
of RTM , A, and their derivatives up to order r − 2 with respect to∇TM , evaluated at y0.

Before presenting the proof of Proposition 2.5, let us prove some auxiliary results.

Lemma 2.6. Let γ(t) be a geodesic in (M, gTM), and let v := γ′(t). Then for any k ∈ N, the
following identity between operators on smooth functions on M holds

v⊗k · (∇TM)⊗k =
( ∂
∂v

)k
, (2.11)

where we view (∇TM)⊗k as an operator (∇TM)⊗k : C∞(M) → C∞(M, (T ∗M)⊗k), and · on the
left-hand side of (2.11) means the contraction.

Proof. The proof is a consequence of the simple fact that∇TM
v v = 0 and the formula

(∇TMα)(X1, . . . , Xk+1) = X1α(X2, . . . , Xk+1)−
k+1∑
i=2

α(X2, . . . ,∇TM
X1

Xi, . . . , Xk+1), (2.12)

where α is a k-form and X1, . . . , Xk+1 are some vector fields.

Corollary 2.7. Let u be a smooth function on M . Then for any smooth function u on M on the
level of formal Taylor expansions, the following identity holds

u
(

expMy0 (Z)
)

=
∞∑
k=0

1

k!
Z⊗k · (∇TM)ku(y0). (2.13)

Proof. We have the following formal identity

u
(

expMy0 (Z)
)

=
∞∑
k=0

1

k!

dn

dtn
u
(

expMy0 (tZ)
)
. (2.14)

The proof now is a direct consequence of Lemma 2.6.

Both Lemma 2.6 and Corollary 2.7 appeared in Gavrilov [20, §2]. Let us now define the
connection∇a on TM |H as follows

∇a = ∇TH ⊕∇N , (2.15)

where we used the notation as in (1.16).

Lemma 2.8. Let γ(t) be a geodesic in (H, gTH), and let v := γ′(t). Let Z1(t), . . . , Zl(t) ∈ N ,
l ∈ N be vector fields along γ(t), which are parallel with respect to ∇N . Then for any k ∈ N, the
following identity between operators on smooth functions on M holds(

v⊗k · (∇TH)⊗k
)
◦ ResH ◦

(
(Z1 ⊗ · · · ⊗ Zl) · (∇TM)⊗l

)
= ResH ◦

(
(v⊗k ⊗ Z1 ⊗ · · · ⊗ Zl) · (∇a)⊗k(∇TM)⊗l

)
, (2.16)

where the compositions of the connections are interpreted in the same way as in Lemma 2.6, and
ResH is a map restricting sections over M to sections over H .
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Proof. The proof is a direct consequence of∇a
vZi = ∇N

v Zi = 0, ∇TH
v v = 0 and (2.12).

Proof of Proposition 2.5. The main idea is to fix a smooth function u on M and to use Lemmas
2.6, 2.8 to get two different expressions for the Taylor expansion of u(ψ(Z)). By comparing the
two expansions, we will get the Taylor expansion (2.10).

In one way, since ψ(ZH , ZN) = φ(h(ZH , ZN)), we may apply Lemma 2.6 to get

u(ψ(ZH , ZN)) =
∞∑
k=0

1

k!

(
h(ZH , ZN)⊗k · (∇TM)ku

)
(y0). (2.17)

In another way, let us first apply Lemma 2.6 to get

u
(
ψ(ZH , ZN)

)
=
∞∑
k=0

1

k!

(
τZH (ZN)⊗k · (∇TM)ku

)(
ψ(ZH , 0)

)
, (2.18)

where τZH (ZN) is the parallel transport of ZN along the curve expHy0(tZH), t ∈ [0, 1], with respect
to ∇N . We now apply Lemma 2.6 again, but this time on H , to get(

τZH (ZN)⊗k · (∇TM)⊗ku
)(
ψ(ZH , 0)

)
=
∞∑
l=0

1

l!
Z⊗lH · (∇

TH)⊗l
(
τZH (ZN)⊗k · (∇TM)⊗ku

)
(y0). (2.19)

Finally, let us apply Lemma 2.8, (2.18) and (2.19), to get

u(ψ(ZH , ZN)) =
∞∑
l=0

∞∑
k=0

1

l!

1

k!

(
(Z⊗lH ⊗ Z

⊗k
N ) · (∇a)⊗l(∇TM)⊗ku

)
(y0). (2.20)

Now, we denote by h[r](Z), r ∈ N, the homogeneous polynomial in (Z) of degree r such that
the Taylor expansion of h(Z) is given by

∑∞
r=0 h

[r](Z). Let us now take the homogeneous parts of
(2.17) and compare them with (2.20). The comparison of the first degree gives us(

h[1](Z)u
)
(y0) = (Zu)(y0). (2.21)

By comparing now the second degree, we get(
h[2](ZH , ZN) · ∇TM

)
u(y0) +

1

2

(
h[1](ZH , ZN)⊗2 · (∇TM)⊗2

)
u(y0)

=
(1

2
Z⊗2
H · (∇

a)⊗2 + ZH ⊗ ZN · ∇a∇TM +
1

2
Z⊗2
N · (∇

TM)⊗2
)
u(y0). (2.22)

From (1.16), (2.12), (2.22) and the fact that∇TM has no torsion, we deduce

h[2](ZH , ZN) =
1

2
Ay0(ZH)ZH + Ay0(ZH)ZN . (2.23)

From (2.21) and (2.23), we deduce (2.10).
Now, by the definition of curvature, we also have

U ⊗ V ⊗W · (∇TM)⊗3 = U ⊗W ⊗ V · (∇TM)⊗3

= V ⊗ U ⊗W · (∇TM)⊗3 −RTM(U, V )W · ∇TM . (2.24)

From (2.17), (2.20) and (2.24), we see that the coefficients of h[r](ZH , ZN) can be expressed in
terms of A,RTM , and their derivatives up to order r − 2.
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2.3 Holonomy along the paths adapted to the two coordinate systems
This section is devoted to the comparison of two different trivializations of vector bundles, done in
a neighborhood of a submanifold. One is for the parallel transport adapted to the Fermi coordinate
system, another one is for the geodesic coordinates.

We conserve the notations and assumptions from Section 2.2. Let (E,∇E, hE) be a Hermitian
vector bundle of bounded geometry and rank r over (M, gTM). We fix y0 ∈ H and an orthonormal
frame f1, . . . , fr ∈ (Ey0 , h

E
y0

). Recall that in Section 2.1, over BMy0 (R), for R defined as in (2.5),
using the parallel transports, we defined two orthonormal frames f̃ ′1, . . . , f̃

′
r and f̃1, . . . , f̃r. In (2.8),

we defined the matrix function ξE which relates them.

Proposition 2.9. The following bound holds

ξE(ψ(Z)) = O(|Z|2). (2.25)

If, moreover, we assume that (E,∇E, hE) := (L,∇L, hL) is a line bundle, and that there is a
skew-adjoint endomorphism Q of TM , which is parallel with respect to ∇TM (i.e. ∇TMQ = 0),
which commutes with A, the restriction of which to H respects the decomposition (1.6), and such
that for the curvature RL of∇L, and for any u, v ∈ TM , we have

√
−1

2π
RL(u, v) = gTM(Qu, v), (2.26)

then the following more precise bound holds

ξL(ψ(Z)) = −1

6
RL
y0

(
Z,B(Z)

)
+O(|Z|4). (2.27)

Moreover, the coefficients of order r, r ∈ N, in above Taylor expansions can be expressed in terms
of RTM , RE , RL, A, and their derivatives up to order r − 2 with respect to∇TM , ∇E ,∇L, at y0.

Remark 2.10. Assume (M, gTM) is endowed with a complex structure J , and gTM is invariant
under the action of it. Assume, moreover, that (2.26) holds for Q := J as in (1.2). Then all the
requirements are satisfied for Q := J . This is because the invariance of gTM under the action
of J , and the fact that H is a complex submanifold, imply that the restriction of J to H respects
the decomposition (1.6). Also (2.26) implies that (M,J, gTM) is Kähler, which implies that J
is parallel with respect to ∇TM , cf. [30, Theorem 1.2.8]. Finally, by the definition of A and the
fact that J |H preserves TH and N , we see that J commutes with A. Proposition 2.9 will only be
applied in this particular situation.

The proof is given in the end of this section. Before, let us state some auxiliary results.

Lemma 2.11 ( [30, Lemma 1.2.3] or [2, p. 38]). Let t̃′i, i = 1, . . . , n be the vector fields, con-
structed by the parallel transport of ei with respect to ∇TM along the curve φ(tZ), t ∈ [0, 1],
Z ∈ Ty0M , |Z| < rM . Then

∂φ

∂Zi
= t̃′i +

n∑
j=1

O(|Z|2)t̃′j, (2.28)

Moreover, the coefficients of order r, r ∈ N, of the Taylor expansion (2.28) can be expressed in
terms of RTM , and their derivatives up to order r − 2 with respect to∇TM , evaluated at y0.
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We denote by eH , e
′
H ∈ TM (resp. eN , e

′
N ) the vector fields ∂ψ

∂Zi
for i = 1, . . . ,m (resp.

i = m+ 1, . . . , n).

Lemma 2.12. For any endomorphism T of TM , which is parallel with respect to ∇TM , which
commutes with A, the restriction of which to H respects the decomposition (1.6), we have

gTMψ(ZH ,ZN )(TeN , e
′
N) = gTMy0 (TeN , e

′
N) +O(|Z|2),

gTMψ(ZH ,ZN )(TeN , eH) = O(|Z|2).

gTMψ(ZH ,ZN )(TeH , e
′
H) = gTMy0 (TeH , e

′
H) + gTMy0

(
TA(eH)ZN , e

′
H

)
+ gTMy0

(
TeH , A(e′H)ZN

)
+O(|Z|2).

(2.29)

Also, the following identity holds

gTMψ(ZH ,0)(TeN , e
′
N) = gTMy0 (TeN , e

′
N). (2.30)

Moreover, the coefficients of order r, r ∈ N, in above Taylor expansions can be expressed in terms
of RTM , A, their derivatives up to order r − 2 with respect to ∇TM , ∇L, evaluated at y0, and
endomorphism Ty0 .

Remark 2.13. For H = {y0} and T = Id, the result follows from [2, Proposition 1.28]. Similar
calculations were done by Ma-Zhang in [33] and Bismut-Lebeau [4].

Proof. First of all, since T is parallel with respect to∇TM , we see that

∂

∂eH
gTMψ(ZH ,0)(TeN , e

′
N) = gTMψ(ZH ,0)(T∇TM

eH
eN , e

′
N) + gTMψ(ZH ,0)(TeN ,∇TM

eH
e′N). (2.31)

However, by the definition of ψ, see (1.18), the restrictions of eN , e′N to H are parallel with respect
to∇N . By this, the fact that the form A exchanges N and TH , and the endomorphism T preserves
the decomposition (1.6), we deduce that ∂

∂eH
gTMψ(ZH ,0)(TeN , e

′
N) = 0, which readily implies (2.30).

Recall that the vector fields t̃′i, i = 1, . . . , n, were introduced in Lemma 2.11. As T is parallel,
T t̃′i is equal to the parallel transport of Tei, along the same curve as the one used in the definition
of t̃′i. From this and (2.28), we deduce that

gTMψ(ZH ,ZN )

(
T
∂φ

∂Zi
,
∂φ

∂Zj

)
= gTMy0

(
Tei, ej

)
+O(|Z|2). (2.32)

Now, we see that Proposition 2.5, along with the fact that A exchanges N with TH , implies
that for i = 1, . . . ,m and j = m+ 1, . . . , n, we have

∂ψ

∂Zj
=

∂φ

∂Zj
+

m∑
l=1

∂φ

∂Zl
gTMy0

(
A(ZH)ej, el

)
+O(|Z|2),

∂ψ

∂Zi
=

∂φ

∂Zi
+

m∑
l=1

∂φ

∂Zl
gTMy0

(
A(ei)ZN , el

)
+

n∑
l=m+1

∂φ

∂Zl
gTMy0

(
A
(
ei
)
ZH , el

)
+O(|Z|2).

(2.33)
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From this, Proposition 2.5 and (2.32), we establish the first equation in (2.29) and the remark after
it. We also deduce that

gTMψ(ZH ,ZN )(TeN , eH) = gTMy0 (TeN , eH)

+ gTMy0 (TA(ZH)eN , eH) + gTMy0 (TeN , A(eH)ZH) +O(|Z|2). (2.34)

Now, since both∇TM and ∇TH have no torsion, we have

A(u)v = A(v)u, for any u, v ∈ TH. (2.35)

From (2.35) and the fact that A is skew-adjoint and commutes with T , we deduce the second part
of (2.29). The third part of (2.29) follows directly from (2.32) and (2.33).

Recall that the projection π0 and the identification ofE to π∗0(E|H) in a tubular neighborhood U
of H were defined before (1.9). We define the 1-form ΓE with values in End(π∗0(E|H)) as follows

ΓE = ∇E − π∗0(∇E|H), (2.36)

where we implicitly used the above isomorphism. We introduce similar notations for L.

Lemma 2.14. Under the same assumptions as in Proposition 2.9, the following holds

ΓEψ(Z)(eN) =
1

2
RE
π0(ψ(Z))(ZN , eN) +O(|Z|2), ΓEψ(Z)(eH) = RE

π0(ψ(Z))(ZN , eH) +O(|Z|2),

ΓLψ(Z)(eN) =
1

2
RL
π0(ψ(Z))(ZN , eN) +O(|Z|3), ΓLψ(Z)(eH) = O(|Z|3).

(2.37)
Moreover, the coefficients of order r, r ∈ N, in above Taylor expansions can be expressed in terms
of RTM , RL, RE , A, and their derivatives up to order r − 2 with respect to ∇TM , ∇L, ∇E , ∇a,
evaluated at y0.

Remark 2.15. Similar identities were obtained in [4, (13.65)-(13.66)].

Proof. We follow closely the proof from [2, Proposition 1.18], cf. [30, Lemma 1.2.4], which es-
tablishes Lemma 2.14 for H = {y0}. First of all, by (2.36), we have

(π∗0(∇E|H)ΓE) + ΓE ∧ ΓE + π∗0(RE|H) = RE. (2.38)

We denote by R ∈ C∞(N, TN) the tautological section of TN . As we identified a neighbor-
hood U ofH inM with a neighborhood of the zero section inN , we may look atR as at the vector
in the tangent space of U . If we write it in Fermi coordinates, we get

R =
n∑

i=m+1

Zi
∂

∂Zi
. (2.39)

By our choice of the trivialization, ιRΓE = 0. Also, ιR(π∗0R
E|H) = 0. Hence, by (2.38), we get

LRΓE =
[
ιR, π

∗
0(∇E|H)

]
ΓE = ιRR

E. (2.40)
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From (2.39), for i = 1, . . . ,m, and j = m+ 1, . . . , n, we also obtain the following identities

LRdZi = 0, LRdZj = dZj. (2.41)

Using (2.41) and expanding both sides of (2.40) in Taylor series at ZN = 0, we get∑
α

(|α|+ 1)(∂αΓE)ψ(ZH ,0)(eN)
Zα
N

α!
=
∑
α

(∂αRE)ψ(ZH ,0)(R, eN)
Zα
N

α!
,

∑
α

|α|(∂αΓE)ψ(ZH ,0)(eH)
Zα
N

α!
=
∑
α

(∂αRE)ψ(ZH ,0)(R, eH)
Zα
N

α!
.

(2.42)

From (2.42), we deduce the first two equations of Lemma 2.14. From the fact that N is orthogonal
to TH , (2.26) and the fact that the restriction of Q to H respects the decomposition (1.6), we see
that RL

ψ(ZH ,ZN )(eN , eH) = O(|Z|). The last two equations of Lemma 2.14 follow directly from
Lemma 2.12, (2.26) and (2.42), applied for E := L.

Proof of Proposition 2.9. We denote by ∇ the standard covariant derivative in E, defined locally
in the frame f̃1, . . . , f̃r. We define the 1-form ΓE0 with values in End(Ey0) as follows

ΓE0 := ∇E −∇. (2.43)

By (2.36), we have the following identity

ΓE0,ψ(ZH ,ZN ) = π∗0(ΓE0,ψ(ZH ,0)) + ΓEψ(ZH ,ZN ), (2.44)

where we implicitly identified ΓEψ(ZH ,ZN ) with a 1-form with values in End(Ey0) using f̃1, . . . , f̃r.
By (2.26) and Lemma 2.14, applied once for the second summand in the right-hand side of (2.44),
and once for M := H,H := y0, to treat the first summand, we see that for e := ∂ψ

∂Zi
, i = 1, . . . , n,

ΓL0,ψ(Z)(e) =
1

2

(
RL
y0

(ZH , e) +RL
ψ(ZH ,0)(ZN , e)

)
+O(|Z|3),

ΓE0,ψ(Z)(e) = O(|Z|).
(2.45)

Now, by (2.30) and (2.45), we conclude that

ΓL0,ψ(Z)(e) =
1

2
RL
y0

(Z, e) +O(|Z|3), (2.46)

Now, we denote by γ(t) the geodesic φ(th(Z)), t ∈ [0, 1]. By the definition of h, we have
γ(1) = ψ(Z). From Proposition 2.5, we easily see

ψ−1(γ(t)) = h−1(th(Z)) = tZ + (t− t2)B(Z) +O(|Z|3). (2.47)

Directly from the definition of ξE , the fact that∇E
γ′(t)f̃

′
i = 0, (2.8), and the usual law of deriva-

tion of the exponential, we have∫ 1

0

exp
(
(1− s)ξE(γ(t))

)
·
( ∂
∂t
ξE(γ(t))

)
· exp

(
(s− 1)ξE(γ(t))

)
ds = ΓE0,γ(t)(γ

′(t)). (2.48)
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From (2.48) and the last equation from (2.45), we deduce (2.25). The statement about the coef-
ficients of the Taylor expansions readily follows from (2.48) and the respective statement from
Proposition 2.9.

Now, it is only left to establish (2.27). Since now E := L is a line bundle, (2.48) simplifies to

∂

∂t
ξL(γ(t)) = ΓL0,γ(t)(γ

′(t)). (2.49)

From (2.47), we deduce the following asymptotics∫ 1

0

RL
y0

(
ψ−1(γ(t)),

∂ψ−1(γ(t))

∂t

)
dt = −1

3
RL
y0

(
Z,B(Z)

)
+O(|Z|4). (2.50)

From (2.46), (2.49) and (2.50), we deduce the result. The statement about the form of the coeffi-
cients follows from the respective statements in Proposition 2.5 and Lemma 2.14.

2.4 Complex structure in Fermi coordinates and quasi-plurisubharmonicity
The main goal of this section is to give for Kähler manifolds of bounded geometry an approximate
formula for the complex structure in Fermi coordinates. As a consequence, we establish quasi-
plurisubharmonicity of several functions, crucial for certain L2-estimates.

More precisely, assume (X, Y, gTX) is a Kähler triple of bounded geometry. We fix a point
y0 ∈ Y and an orthonormal frame (e1, . . . , e2m) (resp. (e2m+1, . . . , e2n)) in (Ty0Y, g

TY
y0

) (resp. in
(Ny0 , g

N
y0

)), satisfying (1.17). Recall that in (1.18) and (2.2), we defined two coordinate systems
ψy0 , φy0 in a neighborhood of y0. We denote by J the complex structure ofX , and by J = (Jij)2n

i,j=1

its coordinates with respect to the basis ∂ψ
∂Zi

, i = 1, . . . , 2n. It is a function, defined in BR2n

0 (R),
where R is as in (2.5), with matrix values of size 2n × 2n. We write J in a block form

( J0 J1
J2 J3

)
,

where J0 has size 2m× 2m. The first result of this section goes as follows.

Lemma 2.16. The matrix J has the following Taylor expansion

J = J0 +

(
J1 0
0 0

)
+O

(
|Z|2

)
, (2.51)

where J0 is the diagonal block matrix with blocks
(

0 −1
1 0

)
, and J1 = (J1

ij)
2m
i,j=1 is given by

J1
ij = −2gTXy0 (A(Jei)ZN , ej), (2.52)

for A defined in (1.16). Moreover, the constant in the O-terms is uniform on y0 ∈ Y , and depends
only on C1 from the bounds (2.1), (2.3) for k = 1.

Proof. The proof is essentially based on Lemma 2.11 and (2.33). Recall that the vector fields t̃′i,
i = 1, . . . , 2n, were constructed in Lemma 2.11 by the parallel transport of ei with respect to∇TX

along the curve φ(tZ), t ∈ [0, 1], Z ∈ Ty0X . As (X, gTX) is Kähler, by [30, Theorem 1.2.8], J is
parallel with respect to∇TX . This means that by (1.17), for i = 1, . . . , n, we have

Jt̃′2i−1 = t̃′2i. (2.53)
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From (2.28) and (2.53), we conclude that

J
∂φ

∂Z2i−1

=
∂φ

∂Z2i

+O(|Z|2). (2.54)

Remark that (2.54) already implies Lemma 2.16 for Y := {x0}. Now, let us establish the general
case. By the fact that A takes values in skew-adjoint matrices and commutes with J , the J-
invariance of gTX and (2.35), we deduce that for i = 1, . . . , 2m, j = 2m+1, . . . , 2n, l = 1, . . . , 2n,
for ZY ∈ R2m, ZN ∈ R2(n−m), we have

gTXy0
(
A(ZY )ej, el

)
= gTXy0

(
A(ZY )Jej, Jel

)
,

gTXy0
(
A(ei)ZY , el

)
= gTXy0

(
A(Jei)ZY , Jel

)
,

gTXy0
(
A(ei)ZN , el

)
= −gTXy0

(
A(Jei)ZN , Jel

)
,

(2.55)

By (2.33), (2.54) and (2.55), we deduce (2.51).

Now, recall that a function f : X → [−∞,+∞[ on a complex Hermitian manifold (X,ω) is
called quasi-plurisubharmonic if it is upper-semicontinuous, and there is a constant C ∈ R, such
that the following inequality holds in the distributional sense

√
−1∂∂f ≥ −Cω. (2.56)

We denote by PSH(X,Cω) the set of quasi-plurisubharmonic functions f , verifying (2.56).
Recall that by standard properties of the plurisubharmonic functions, cf. [14, Theorem I.5.6],

for any convex function χ : R→ R, verifying 0 ≤ χ′ ≤ 1, f ∈ PSH(X,Cω), C ≥ 0, we have

χ ◦ f ∈ PSH(X,Cω) for any f ∈ PSH(X,Cω). (2.57)

Later on, on several occasions, we will need the following lemma.

Lemma 2.17 ( [25, Proposition 4.2]). Suppose that J is an almost complex structure on an open
subset Ω ⊂ R2n. Let v be a constant coefficient vector field on Ω (i.e. v =

∑
vi

∂
∂Zi

where vi are
constants). Then for any smooth function f : Ω→ R, the following identity holds

∂∂f
(
v −
√
−1Jv, v +

√
−1Jv

)
= (D2f)(v, v) + (D2f)(Jv, Jv)

+ (Df)
(
DJvJ(v)−DvJ(Jv)

)
, (2.58)

where D2f is the standard double derivative of f , and DuJ is the derivative in the direction u ∈
R2n, of the almost complex structure, written in the standard coordinates of R2n.

For any x0 ∈ X , we consider the function αx0 : BXx0(rX)→ R, given by

αx0(x) := distX(x0, x)2. (2.59)

The proof of the following lemma is a direct consequence of Lemmas 2.16 and 2.17.

Lemma 2.18. Assume that a Kähler manifold (X, gTX) is of bounded geometry. Then there is
r0 > 0, such that for any x0 ∈ X , αx0 ∈ PSH(BXx0(r0),−1

2
ω). Moreover, r0 depends only on C1

from the bound (2.1) and rX .
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Assume that a Kähler triple (X, Y, gTX) is of bounded geometry. Let us consider δY : X \Y →
R, αY : X → R, defined as

δY (x) := log
(
distX(x, Y )

)
· ρ
(distX(x, Y )

r⊥

)
,

αY (x) := distX(x, Y )2 · ρ
(distX(x, Y )

r⊥

)
+
(

1− ρ
(distX(x, Y )

r⊥

))
,

(2.60)

where ρ was defined in (1.10). Remark that since distX(x, Y )2 is smooth over BXY (r⊥), both
functions δY and αY are smooth.

Lemma 2.19. There is C > 0, such that δY ∈ PSH(X,Cω), αY ∈ PSH(X,Cω), −αY ∈
PSH(X,Cω). Moreover, C depends only on C1 from the bounds (2.1), (2.3) and r⊥.

Proof. The proofs for δY , αY , −αY are similar, so we concentrate on δY , which is slightly more
difficult than the other two. From Lemma 2.16 and bounded geometry condition, we see that√
−1∂∂δY is uniformly bounded away from in BXY ( r⊥

4
). So it is enough to study this quantity only

on BXY ( r⊥
4

). We fix a point y0 ∈ Y , consider Fermi coordinates ψy0 , and introduce the vector field

v =
2m∑
i=1

ai
∂ψ

∂Zi
+

2n∑
j=2m+1

bj
∂ψ

∂Zj
, (2.61)

where ai, bj ∈ C, i = 1, . . . , 2m, j = 2m+1, . . . , 2n, are certain constants,
∑
|ai|2 +

∑
|bj|2 = 1.

It is enough to verify that there is a constant C > 0, as described in the statement of the proposition
we’re proving, such that for any choice of ai, bj above, over {ψy0(ZN) : |ZN | < r⊥

4
}, we have

∂∂δY

(
v −
√
−1Jv, v +

√
−1Jv

)
≥ −C. (2.62)

Let us now calculate each term on the right-hand side of (2.58) up to negligible terms. First of
all, remark that in Fermi coordinates, over BXY ( r⊥

4
), δY has particularly simple form

δY (Z) = log |ZN | =
1

2
log
( 2n∑
j=2m+1

|Zj|2
)
. (2.63)

Hence, by (2.61), we deduce

(D2δY )(v, v) =
1

|ZN |4
(( 2n∑

j=2m+1

|bj|2
)
|ZN |2 − 2

( 2n∑
j=2m+1

bjZj

)2)
. (2.64)

A similar calculation, using Lemma 2.16, gives that over {ψy0(ZN) : |ZN | < r⊥
4
}, we have

(D2δY )(Jv, Jv) =

1

|ZN |4
(( 2n∑

j=2m+1

|bj|2
)
|ZN |2 − 2

( n∑
j=m+1

(
b2j−1Z2j − b2jZ2j−1

))2)
+O(1), (2.65)
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where the O-term can be bounded uniformly in terms of C1 from the bounds (2.1), (2.3) and r⊥.
From Lemma 2.16, we see that the last two terms in (2.58) are negligible. From this (2.58), (2.64)
and (2.65), we see that to deduce (2.62), it is now only left to prove the bound( 2n∑

j=2m+1

|bj|2
)
|ZN |2 ≥

( n∑
j=m+1

(
b2j−1Z2j − b2jZ2j−1

))2

+
( 2n∑
j=2m+1

bjZj

)2

. (2.66)

But (2.66) follows easily from the fact that the vectors (Z2m+2,−Z2m+1, . . . , Z2n,−Z2n−1) and
(Z2m+1, . . . , Z2n) are orthogonal.

2.5 Existence of uniform Stein atlases and related extension theorems
The main goal of this section is to introduce and study manifolds and submanifolds with uniform
Stein atlases. In particular, we prove that any Kähler manifold of bounded geometry admits a
uniform Stein atlas and we make a relation between the existence of a uniform Stein atlas and the
existence of holomoprhic coordinates, defined on sufficiently big geodesic balls.

Before this, recall that by Cauchy formula, the L2-bound on holomoprhic functions on the
complex plane implies C k-bounds for any k ∈ N. As the following lemma shows, an analogous
statement holds for general Kähler manifolds of bounded geometry.

Lemma 2.20. Assume that a Kähler manifold (X, gTX) and a Hermitian vector bundle (E, hE)
over it have bounded geometry. Then for any k ∈ N, r1 > r0 > 0, r1 <

rX
2

, there is C > 0, such
that for any x0 ∈ X , for any f ∈ H0

(2)(BXx0(r1), E), we have

‖f‖C k(BXx0 (r0)) ≤ C‖f‖L2(BXx0 (r1)). (2.67)

Moreover, C depends only on r0, r1 and Ck+n+4 from (2.1) and (2.7).

Proof. It is a direct consequence of Sobolev embedding and elliptic estimates, cf. [30, (A.1.15),
(A.1.17)].

Recall that a complex manifold is said to be Stein if it is holomorphically convex, its global
holomorphic functions separate points and give local coordinates at every point, cf. [14, Definition
1.6.16]. One can see, cf. [14, Theorem 1.6.18], that any Stein manifold is strongly pseudoconvex,
meaning that it carries a smooth strictly plurisubharmonic exhaustion function. The famous result
of Grauert from [21, Theorem 2], states that the converse for relatively compact subdomains of
complex manifolds holds as well. In this section, we will use this perspective through strictly
plurisubharmonic exhaustions on Stein manifolds.

Definition 2.21. We say that a Hermitian manifold (X, gTX) admits a uniform Stein atlas if there
are r1 > r0 > 0, c, C > 0, such that for any x0 ∈ X , there is a Stein neighborhood Ω of x0, such
that BXx0(r0) ⊂ Ω ⊂ BXx0(r1), and a smooth strictly plurisubharmonic exhaustion function δ on Ω,
verifying the following bounds

δ > 0 over Ω, δ < C over BXx0(r0),
√
−1∂∂δ > cω,

(2.68)

where ω is the Hermitian form associated to gTX .
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Proposition 2.22. Any Kähler manifold of bounded geometry (X, gTX) admits uniform Stein
atlas. Moreover, r1 > r0 > 0, c, C > 0 from Definition 2.21 depend only on C1 from the bound
(2.1) and rX .

Proof. Recall that αx0 was defined in (2.59). By Lemma 2.18, there is a uniform constant r1 >
0, which depends only on C1 from the bound (2.1) and rX , such that

√
−1∂∂αx0 > 1

2
ω over

BXx0(r1). We now take r0 := r1
2

, and let δ := 1
r21−αx0

. By the above and (2.57), we deduce that δ is
strictly plurisubharmonic. Since it is clearly exhaustive, we deduce that Ω := BXx0(r1) is strongly
pseudoconvex. By (2.57), we conclude that the requirements of Definition 2.21 are satisfied for
the above choice and c := 1

2r21
, C := 2

r21
.

Proposition 2.23. For any Kähler manifold of bounded geometry (X, gTX), there are rc, C > 0,
such that for any x0 ∈ X , there are holomorphic coordinates χ := (h1, . . . , hn) : BXx0(rc) → Cn,
verifying hi(x0) = 0, |hi| < C, i = 1, . . . , n, and such that dhi(x0) form an orthonormal frame of
(T (1,0)∗X, gT

∗X). Moreover, rc, C > 0, depend only on Cn+7 from the bound (2.1) and rX .

Proof. The main idea of the proof is to first construct smooth functions h′i, i = 1, . . . , n, as in
Proposition 2.23 and then by using Hörmander’s L2-estimates to perturb h′i to holomorphic coor-
dinates hi.

Let r0, r1 > 0, Ω, δ be as in Definition 2.21. First, we define h′i in geodesic coordinates φx0 by

h′i := ziρ
( |Z|
r0

)
, (2.69)

where ρ is a bump function as in (1.10). By bounded geometry condition, there is C1 > 0, which
depends only on r0 and C0 from (2.1), such that∫

Ω

|h′i|2dvgTX ≤ C1. (2.70)

Directly from Lemma 2.16, applied for Y := {x0}, we see that there is C2 > 0, which depends
only on r0 and C1 from (2.1), such that over BXx0(r0), we have

|∂h′i| ≤ C2|Z|2. (2.71)

From this, the fact that supp ∂h′i ⊂ BXx0(r0) and the first estimate from (2.68), we conclude that
for any c > 0, there is a uniform constant C3, which depends only on r0, C from the first line in
(2.68), and C1 from (2.1), such that for δ{x0}, from Lemma 2.19, we have∫

Ω

|∂h′i|2 exp(−cδ) · exp(−(2n+ 1)δ{x0})dvgTX ≤ C3. (2.72)

Now, as (X, gTX) is of bounded geometry, by Lemma 2.19, there is c > 0 depending only on
C1 from (2.1) and c from the second line of (2.68), such that for E := K−1

X , hE := (hKX )−1 ·
exp(−cδ) ·exp(−(2n+1)δ{x0}), the curvature RE of (E, hE) over Ω satisfies

√
−1RE ≥ ω⊗ IdE ,

where the positivity here is in the sense of Nakano, cf. [14, Definition VII.6.3]. By (2.72) and the
result [12, Théorème 0.2], which states that Ω admits a complete Kähler metric, we may apply [12,
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Théorème 5.1] for X := Ω, g := ∂h′i and (E, hE) as above to deduce that there are sections
fi ∈ L2(Ω, KΩ ⊗ E), such that we have ∂fi = g, and∫

Ω

|fi|2 exp(−cδ) · exp(−(2n+ 1)δ{x0})dvgTX

≤
∫

Ω

|∂h′i|2 exp(−cδ) · exp(−(2n+ 1)δ{x0})dvgTX . (2.73)

We now put hi := h′i−fi. We trivially have ∂hi = 0. Also, by (2.68), (2.70), (2.72) and (2.73),
we obtain ∫

BXx0 (r0)

|hi|2dvgTX ≤ C4, (2.74)

whereC4 depends only on r0,C from the first line in (2.68), andC1 from (2.1). By the standard reg-
ularity result, [12, Lemme 6.9], hi is smooth and holomorphic on Ω, and the equation ∂hi = 0 holds
in the usual sense. From this, (2.72), (2.73) and the non-integrability of |Z| exp(−(2n + 1)δ{x0})
and exp(−(2n + 1)δ{x0}) near x0, we deduce that fi(x0) = 0 and dfi(x0) = 0. Hence hi(x0) =
h′i(x0) and dhi(x0) = dh′i(x0). Thus, ∂hi(x0) form an orthonormal basis of (T (1,0)∗X, gT

∗X).
From Lemma 2.20 and (2.74), we conclude that there is a constant C5 > 0, which depends

only on r0, r1 and Cn+7 from (2.1), such that ‖hi‖C 3(BXx0 (r0)) ≤ C5. We conclude that there is
rc > 0, which depends only on Cn+7 from the bound (2.1) and rX , such that (h1, . . . , hn) form
holomorphic coordinates over BXx0(rc). This finishes the proof.

Lemma 2.24. Let (E, hE) be a Hermitian vector bundle of bounded geometry over a Kähler man-
ifold of bounded geometry (X, gTX). Then there are r0, C > 0, such that for any x0 ∈ X , there is
a local holomorphic frame (f1, . . . , fr) ∈ H0(BXx0(r0), E) of E, such that∥∥fi∥∥L2(BXx0 (r0))

≤ C, (2.75)

and (f1(x0), . . . , fr(x0)) is an orthonormal frame of (Ex0 , h
E
x0

). Moreover, C depends only on r0,
c, C from (2.68) and Cn+7 from (2.1) and (2.7).

Proof. The proof can be deduced from Hörmander’s L2-estimates and Lemmas 2.14, 2.16, 2.19 in
exactly the same way as in the proof of Proposition 2.23.

Theorem 2.25. Assume that the Kähler triple (X, Y, gTX) is of bounded geometry. Then there
are rc, C > 0, such that for any y0 ∈ Y , there are holomorphic coordinates χ := (h1, . . . , hn) :
BXy0(rc) → C, hi(x0) = 0, |hi| < C, i = 1, . . . , n, hm+1|Y , . . . , hn|Y = 0, and such that ∂hi(x0)

form an orthonormal frame of (T (1,0)∗X, gT
∗X). Moreover, rc, C depend only on rX and Cn+7

from (2.1) and (2.3).

Remark 2.26. We see that there is r1
c > 0, which depends only on Cn+7 from the bounds (2.1),

(2.3), rY , rX , r⊥, such that BCn
0 (r1

c ) ⊂ Imχ.

Proof. The proof is very similar to the proof of Proposition 2.23. The only difference is that instead
of the weight (2n+ 1)δ{x0} in (2.72), one has to consider (2m+ 1)δ{x0} + 2(n−m)δY .
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3 Operator algebras on manifolds of bounded geometry
In this section, we prove that the set of operators on manifolds of bounded geometry, admitting
certain bounds on the Schwartz kernels, forms an algebra under the composition.

This section is organized as follows. In Section 3.1, we show that the set of operators with
exponential decay of the Schwartz kernel forms an algebra on manifolds of bounded geometry.
Then in Section 3.2, we give explicit formulas for the Schwartz kernels of the orthogonal Bergman
projector and the extension operator on the pair (Cn,Cm). We also state the composition rules for
operators with related kernels. Finally, in Section 3.3, we prove that the set of operators, whose
Schwartz kernel admits Taylor-type expansion, forms an algebra under the composition.

3.1 Algebra of operators with exponential decay of the Schwartz kernel
In this section, we show that the set of operators with exponential decay essentially forms an
algebra on manifolds of bounded geometry.

Let (M, gTM) be a complete manifold with a positive bound on the injectivity radius, rM > 0.
We note n := dimM . We fix an arbitrary sequence of Hermitian vector bundles (Ep,∇Ep , hEp),
p ∈ N∗, on M , endowed with a fixed connection. We fix s > 0 and assume that the Ricci curvature
RicgTM of (M, gTM) satisfies the bound

RicgTM ≥ −(n− 1)s. (3.1)

Clearly, (3.1) is satisfied for some s > 0 once (M, gTM) is of bounded geometry.
Let us fix a volume form dvM on M , such that the condition, analogous to (1.4), is satisfied

with respect to the metric gTM . Let us fix q ∈ N∗, and a sequence of operators A1
p, . . . , A

q
p, p ∈

N∗, acting on C∞(M,Ep) by the convolutions with smooth kernels A1
p(x1, x2), . . . , Aqp(x1, x2) ∈

Ep,x1 ⊗ E∗p,x2 , x1, x2 ∈ X , with respect to the volume form dvM . We assume that for any k ∈ N,
there are c, Ch > 0, h = 1, . . . , q, such that for any x1, x2 ∈ X , we have∣∣Ahp(x1, x2)

∣∣
C k(M×M)

≤ Ch · p
n+k
2 · exp

(
− c√p · dist(x1, x2)

)
, (3.2)

and there is h among 1, . . . , q, such that even stronger bound holds∣∣Ahp(x1, x2)
∣∣
C k(M×M)

≤ Ch · p
n+k
2 · exp

(
− c√p ·

(
dist(x1, x2) + dist(x1,W ) + dist(x2,W )

))
, (3.3)

where W is a closed subset in M , and the C k-norm is taken in the sense of Theorem 1.5.

Lemma 3.1. There is C0 > 0, which depends only on s, rM , n and c from (3.2) and (3.3), such
that for any p ∈ N∗,√p > 4(n− 1)

√
s
c

, the following operator is well-defined

Dp := A1
p ◦ · · · ◦ Aqp, (3.4)

and for C :=
∏q

h=1Ch, the following bound holds∣∣Dp(x1, x2)
∣∣
C k(X×X)

≤ Cq
0Cp

n+k
2 · exp

(
− c

8

√
p ·
(
dist(x1, x2) + dist(x1,W ) + dist(x2,W )

))
. (3.5)
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In the proof of Lemma 3.1 and elsewhere, the following proposition plays a crucial role.

Proposition 3.2. There is a constant C ′ > 0, which depends only on n, s, rM , such that for any
x0 ∈M , l > 2(n− 1)

√
s, the following bound holds∫

M

exp
(
− ldist(x0, x)

)
dvgTM (x) <

C ′

ln
. (3.6)

Proof. The main idea of our proof is to use Bishop-Gromov inequality to bound the volumes of
balls and spheres in our manifold. We denote by v(n, s, r) the volume of a ball of radius r in the
space form of constant curvature −s, s > 0, cf. [36, p. 69]. From [36, pp. 69, 269], we see that

v(n, s, r) = Vol(Sn−1) ·
∫ r

0

(sinh(
√
sr)√

s

)n−1

dr, (3.7)

where Vol(Sn−1) is the volume of the unit sphere Sn−1, endowed with the standard Riemannian
metric. From (3.7), we see that for any s > 0, there is C > 0, such that for any r > 0, we have

v(n, s, r) ≤ C exp
(
(n− 1)

√
sr
)
. (3.8)

Bishop-Gromov inequality [36, Lemma 9.36] states that the following function is non-increasing

R 3 r 7→
Vol(BMx0(r))
v(n, s, r)

. (3.9)

Moreover, the limit of (3.9), as r → 0, is equal to 1. In particular, for any r ≥ 0, we have

Vol(BMx0(r)) ≤ v(n, s, r). (3.10)

We now decompose the integral in (3.6) into two parts: over BMx0(rM) and over its complement,
V . For the second part, we have the following bound∫

V

exp
(
− ldist(x0, x)

)
dvgTM (x) ≤

∞∑
i=1

exp(−ilrM)Vol
(
BMx0((i+ 1)rM) \ BMx0(irM)

)
. (3.11)

However, from (3.8) and (3.10), we see that

Vol
(
BMx0((i+ 1)rM) \ BMx0(irM)

)
≤ C exp

(
(i+ 1)(n− 1)

√
srM

)
. (3.12)

By combining (3.11) and (3.12), for l > 2(n− 1)
√
s, we easily get the bound∫

V

exp
(
− ldist(x0, x)

)
dvgTM (x) ≤ C exp

(
− lrM

2

)
. (3.13)

It is now only left to bound the integral over BMx0(rM). The coarea formula gives us for r < rM
the following identity

Vol(BMx0(r)) =

∫ r

0

Vol(SMx0 (r′))dr′, (3.14)
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where SMx0 (r) is the volume of the r-sphere around x0. By differentiating the function (3.9), and
using (3.14), we see that (3.9) is equivalent to the following bound

Vol(SMx0 (r))

Vol(BMx0(r))
≤ t(n, s, r)

v(n, s, r)
, (3.15)

where t(n, s, r) = d
dr
v(n, s, r). From (3.7), (3.10) and (3.15), we deduce

Vol(SMx0 (r)) ≤ Vol(Sn−1) ·
(sinh(

√
sr)√

s

)n−1

. (3.16)

From (3.16), we see that there is C0 > 0, which depends only on s and rM , such that∫ rM

0

exp(−lr)Vol(SMx0 (r))dr ≤ C0

ln
. (3.17)

Now, from the coarea formula as in (3.14), we have∫
BMx0 (rM )

exp
(
− ldist(x0, x)

)
dvgTM (x) =

∫ rM

0

exp(−lr)Vol(SMx0 (r))dr. (3.18)

From (3.13), (3.17) and (3.18), we conclude.

Proof of Lemma 3.1. For simplicity of the presentation, we only present the proof for k = 0, as
the general case is treated in an analogous way. We trivially have the following identity

Dp(x1, x2) =

∫
M×(q−1)

A1
p(x1, z1) ·A2

p(z1, z2) · . . . ·Aqp(zq−1, x2)dvM(z1) · . . . · dvM(zq−1). (3.19)

Now, the triangle inequality readily implies

dist(x1, z1) + dist(z1, z2) + · · ·+ dist(zq−1, x2) ≥ dist(x1, x2),

dist(x1, z1) + · · ·+ dist(zq−1, x2) + dist(zi,W ) ≥ dist(x1,W ).
(3.20)

Then for C as in (3.5), by (3.2), (3.3), (3.19) and (3.20), the following bound holds∣∣Dp(x1, x2)
∣∣ ≤ Cp

n
2 · exp

(
− c

4

√
p ·
(
dist(x1,W ) + dist(x1, x2)

))
·

·
∫
M

p
n
2 exp

(
− c

2

√
p · dist(zq−1, x2)

)
·
∫
M

p
n
2 exp

(
− c

2

√
p · dist(zq−2, zq−1)

)
· . . .

·
∫
M

p
n
2 exp

(
− c

2

√
p · dist(z1, z2)

)
dvM(z1) · · · dvM(zq−1). (3.21)

By triangle inequality, we also have

dist(x1,W ) + dist(x1, x2) ≥ dist(x2,W ). (3.22)

By applying Proposition 3.2 and (1.4), for the integrals over z1, . . . , zq−1 from (3.21), and (3.22),
we get (3.5) for k = 0 from (3.21) for C0 := C ′ from Proposition 3.2.
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We fix a smooth submanifold H ⊂M such that (M,H, gTM) is of bounded geometry. We will
use the following consequence of Proposition 3.2 in what follows.

Corollary 3.3. There are c, C ′ > 0, which depend only on n, m, rM , rN , r⊥ s, rM , and C0 from
(2.1) and (2.3), such that for any y0 ∈ H , l > c, the following bound holds∫

H

exp
(
− ldistM(y0, y)

)
dvgTH (y) <

C ′

lm
. (3.23)

Remark 3.4. One can easily construct an example of a triple (M,H, gTM) of bounded geometry,
for which the immersion ι : H → M is not a quasi-isometry. Hence Corollary 3.3 doesn’t follow
directly from Proposition 3.2.

Proof. Directly from the coordinate-wise description of bounded geometry condition, cf. Section
2.1, we see that there are ε0, c > 0, depending only on R from (2.5) and C0, for which (2.1), (2.3)
hold, such that for any y0, y1 ∈ H , verifying distM(y0, y1) < ε0, we have

distM(y0, y1) > cdistH(y0, y1). (3.24)

We let ε := 1
2

min{ε0, R}. Similarly to the proof of Proposition 3.2, we decompose the integration
into two parts: over BHy0(ε) and over its complement, V . From (3.24), we then conclude that there
is a constant C ′′, depending only on R and C0, for which (2.1), (2.3) hold, such that∫

BHy0 (ε)

exp
(
− ldistM(y0, y)

)
dvgTH (y) <

C ′′

lm
. (3.25)

Now, let us estimate the integral over V . For this, remark that for x ∈ BMH ( ε
2 max(1,c)

) and
y1 := π0(x), where π0 is as introduced before (1.7), we have

distM(y0, y1) ≥ distM(y0, x)− ε

2 max(1, c)
. (3.26)

But since for any x ∈ BMH ( ε
2 max(1,c)

), such that y1 ∈ V , we have distM(y0, y1) ≥ ε
max(1,c)

by (3.24),
we conclude by (3.26) that we have

distM(y0, y1) ≥ 1

2
distM(y0, x). (3.27)

From this, we deduce that there is a constant C ′′′, depending only on R and C0, for which (2.1),
(2.3) hold, such that∫

V

exp
(
−ldistM(y0, y)

)
dvgTH (y) < C ′′′ ·

∫
BMV ( ε

2max(1,c)
)

exp
(
− l

2
distM(y0, x)

)
dvgTM (x). (3.28)

We conclude by (3.13), (3.25) and (3.28).
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3.2 Model operators; Fock-Bargmann space and kernel calculus
In this section, we consider the model situation of the complex vector space, for which an explicit
formula for the Schwartz kernels of Bergman projectors and the extension operator can be given.
We then use those explicit formulas to give a description for the compositions of the operators, the
Schwartz kernels of which can be expressed using the above kernels. This section (as well as the
next one) is motivated in many ways by the works of Ma-Marinescu [31], [30], and it motivates
the formulation of Theorems 1.6.

Endow X := Cn with the standard metric and consider a trivialized complex line bundle L0 on
Cn. We endow L0 with the Hermitian metric hL0 , given by

‖1‖hL0 (Z) = exp
(
− π

2
|Z|2

)
, (3.29)

where Z is the natural real coordinate on Cn, and 1 is the trivializing section of L0. An easy
verification shows that (3.29) implies that (1.2) holds in our setting. Recall that [30, §4.1.6] shows
that the Kodaira Laplacian L on C∞(X,L0), multiplied by 2, and viewed as an operator on
C∞(X) using the orthonormal trivialization, given by 1 · exp(π

2
|Z|2), is given by

L =
n∑
i=1

bib
+
i , (3.30)

where bi, b+
i are creation and annihilation operators, defined as

bi = −2
∂

∂zi
+ πzi, b+

i = 2
∂

∂zi
+ πzi. (3.31)

A classical calculation, cf. [30, Theorem 4.1.20], shows that the orthonormal basis with respect
to the induced L2-norm of ker L is given in the orthonormal trivialization above by(π|β|

β!

)1/2

zβ exp
(
− π

2
|Z|2

)
, β ∈ Nn. (3.32)

In particular, [30, (4.1.84)], the Bergman kernel Pn of Cn is given by

Pn(Z,Z ′) = exp
(
− π

2

n∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

))
, for Z,Z ′ ∈ Cn. (3.33)

Also, we see that the Schwartz kernel of the orthogonal Bergman kernel, corresponding to the
projection onto holomoprhic sections orthogonal to those which vanish along Cm, is given by

P⊥
n,m(Z,Z ′) =

∑
β∈Nm

(π|β|
β!

)
zβz′β exp

(
− π

2
(|Z|2 + |Z ′|2)

)
. (3.34)

By simplifying the above expression using (3.33), we see that P⊥
n,m(Z,Z ′) corresponds precisely

to the quantity, defined in (1.26).
Let us calculate the L2-extension operator En,m, extending each element from (ker L )|Y to an

element from ker L with the minimal L2-norm. From (3.32), we easily see that for ZY ∈ Cm,
ZN ∈ Cn−m and g ∈ (ker L )|Y , we have

(En,mg)(ZY , ZN) = g(ZY ) exp
(
− π

2
|ZN |2

)
. (3.35)
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We extend En,m to the whole L2-space by g 7→ (En,m ◦Pm)g. From (3.35), we see that the kernel
of En,m corresponds precisely to the quantity, defined in (1.20).

Now, a lot of calculations in this article will have something to do with compositions of opera-
tors having Schwartz kernels, given by the product of polynomials with the above kernels. For that
reason, the following lemma will be of utmost importance in what follows.

Lemma 3.5. For any polynomials A1(Z,Z ′), A2(Z,Z ′), Z,Z ′ ∈ R2n, there is a polynomial A3 :=
Kn,m[A1, A2], the coefficients of which are polynomials of the coefficients of A1, A2, such that

(A1 ·P⊥
n,m) ◦ (A2 ·P⊥

n,m) = A3 ·P⊥
n,m. (3.36)

Moreover, degA3 ≤ degA1 + degA2. Also, if both polynomials A1, A2 are even or odd (resp.
one is even, another is odd), then the polynomial A3 is even (resp. odd).

Similarly, there is a polynomial A′3 := K′n,m[A1, A2] with the same properties as A3, such that

(A1 ·Pn) ◦ (A2 ·P⊥
n,m) = A′3 ·P⊥

n,m. (3.37)

Also, for any polynomials A1(Z,Z ′), A2(ZY , Z
′
Y ), where Z,Z ′ ∈ R2n, ZY , Z ′Y ∈ R2m, there

is a polynomial A′′3 := K′′n,m[A1, A2] in (Z,Z ′Y ), with the same properties as A3, such that

(A1 ·P⊥
n,m) ◦ En,m ◦ (A2 ·Pm) = A′′3 · En,m. (3.38)

Finally, for any polynomials A1(Z,Z ′Y ), A2(ZY , Z
′
Y ), where Z ∈ R2n, ZY , Z ′Y ∈ R2m, there is a

polynomial A′′′3 := K′′′n,m[A1, A2] in (Z,Z ′Y ), with the same properties as A3, such that

(A1 · E ⊥n,m) ◦ (A2 ·Pm) = A′′′3 · En,m. (3.39)

Proof. First of all, since P⊥
n,n = Pn, for n = m, (3.36) was proved in [30, Lemma 7.1.1, (7.1.6)]

by the use of so-called kernel calculus. Let us now show that the general case of (3.36) can be
reduced to this special one. For this, remark that by (1.26), we have

P⊥
n,m(Z,Z ′) = P⊥

n,m(Z,Z ′Y ) · exp
(
− π

2
|Z ′N |2

)
, P⊥

n,m(Z,Z ′Y ) = Pn(Z,Z ′Y ),

P⊥
n,m(Z,Z ′) = Pn(ZY , Z

′) · exp
(
− π

2
|ZN |2

)
, P⊥

n,m(ZY , Z
′) = Pn(ZY , Z

′).
(3.40)

We decompose the polynomials A1, A2 as follows

A1(Z,Z ′) =
∑
α

Zα
N · Aα1 (ZY , Z

′), A2(Z,Z ′) =
∑
α′

Aα
′

2 (Z,Z ′Y )Z ′N
α′ , (3.41)

where α, α′ ∈ N2(n−m), |α| ≤ degA1, |α′| ≤ degA2. Now, by (3.40) and (3.41), we have(
(A1 ·P⊥

n,m) ◦ (A2 ·P⊥
n,m)

)
(Z,Z ′) = exp

(
− π

2

(
|ZN |2 + |Z ′N |2

))
·

·
∑
α

∑
α′

Zα
NZ

′
N
α′ ·
(

(Aα1 ·Pn) ◦ (Aα
′

2 ·Pn)
)

(ZY , Z
′
Y ). (3.42)

From (3.40) and (3.42), we conclude

Kn,m[A1, A2](Z,Z ′) =
∑
α

∑
α′

Zα
NZ

′
N
α′ · Kn,n[Aα1 , A

α′

2 ](ZY , Z
′
Y ). (3.43)
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Now, (3.36) follows from (3.43) and the fact that (3.36) holds for n = m.
Along the same lines, from (3.40), we obtain

K′n,m[A1, A2](Z,Z ′) =
∑
α′

Z ′N
α′ · Kn,n[A1, A

α′

2 ](Z,Z ′Y ), (3.44)

which implies (3.37) since (3.36) holds for n = m.
Now, by (3.35), we can write

En,m(Z,Z ′Y ) = exp
(
− π

2
|ZN |2

)
·Pm(ZY , Z

′
Y ). (3.45)

From (3.36), (3.40) and (3.45), we deduce

K′′n,m[A1, A2](Z,Z ′Y ) = Kn,m
[
A1,Km,m[1, A2]

]
(Z,Z ′Y ). (3.46)

Now, (3.38) follows from (3.46) and the fact that (3.36) holds.
Similarly, using the notations from (3.41), we deduce

K′′′n,m[A1, A2](Z,Z ′Y ) =
∑
α

Zα
N · Km,m

[
Aα1 , A2

]
(ZY , Z

′
Y ), (3.47)

which clearly implies (3.39).

Remark 3.6. Directly from the definitions, for a polynomial P , we have

Kn,m[A1 · P (Z ′), A2] = Kn,m[A1, P (Z) · A2],

Kn,m[A1, A2 · P (Z ′)] = Kn,m[A1, A2] · P (Z ′).
(3.48)

Using the kernel calculus from [30, §7.1] or the explicit calculations, one can verify, cf. [30,
(7.1.10)], that for i, j ≤ m, the following holds

Kn,m[1, zizj] = zizj, Kn,m[1, zizj] =
1

π
δij + ziz

′
j,

Kn,m[1, zizj] = z′iz
′
j,

Kn,m[1, Pi(Z)zi] = Kn,m[1, Pi(Z)]zi, Kn,m[1, Pi(Z)zi] = Kn,m[1, Pi(Z)]z′i,

(3.49)

where the polynomial Pi(Z) doesn’t involve the variables zi and zi. Finally, for any k = 2m +
1, . . . , 2n, from the trivial fact

∫
R Z exp(−π|Z|2)dZ = 0, we get

Kn,m
[
A1(ZY , Z

′
Y ), Zk · A2(ZY , Z

′
Y )
]

= 0. (3.50)

3.3 Algebra of operators with Taylor-type expansion of the Schwartz kernel
The main goal of this section is to prove that the set of operators, acting on the sections of a trivial
vector bundle over Cn by the convolution with Schwartz kernel admitting Taylor-type expansion
and exponential decay away from Cm ⊂ Cn, forms an algebra under composition. We also extend
this result for operators on general triples of bounded geometry.
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Let us now state precisely our results. The proofs will be given in the end of this section.
We fix q ∈ N, q ≥ 2, and operators Gt, A1

t , . . . ,A
q
t , t ∈ [0, 1], acting on the sections of

the trivial vector bundle Cr0 × Cn over Cn by the convolutions with smooth kernels Gt(Z,Z ′),
A1
t (Z,Z

′), . . . ,Aqt (Z,Z ′) ∈ End(Cr0) with respect to the volume form dvCn on Cn. We assume
that there are c0, q1 > 0, such that for any l ∈ N, there are C > 0, Qh,1 ≥ 0, h = 1, . . . , q, such
that for any t ∈ [0, 1], Z,Z ′ ∈ R2n, α, α′ ∈ N2n, |α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

Aht (Z,Z ′)
∣∣∣∣ ≤ C

(
1 + |Z|+ |Z ′|

)Qh,1+q1l

exp
(
− c0

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
,∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

Gt(Z,Z ′)
∣∣∣∣ ≤ C

(
1 + |Z|+ |Z ′|

)Q1,1+q1l

exp
(
− c0|Z − Z ′|

)
. (3.51)

Lemma 3.7. The operatorsDt := A1
t ◦ · · · ◦A

q
t ,D′t := Gt ◦A2

t ◦ · · · ◦A
q
t are well-defined and have

smooth Schwartz kernels Dt(Z,Z ′), D′t(Z,Z ′) with respect to dvCn . Moreover, for any l ∈ N,
there is C > 0, such that for any t ∈ [0, 1], Z,Z ′ ∈ R2n, α, α′ ∈ N2n, |α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

Rt(Z,Z
′)

∣∣∣∣ ≤ C
(

1 + |Z|+ |Z ′|
)Q1,1+···+Qq,1+q1l

·

· exp
(
− c0

8

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
, (3.52)

whereRt designates either Dt or D′t.

Now, assume, in addition to (3.51), that for any r ∈ N, h ∈ 1, . . . , q, there are J h
r (Z,Z ′) ∈

End(Cr0) polynomials in Z,Z ′ ∈ R2n, such that Fhr := J h
r ·P⊥

n,m (resp. F ′r := J 1
r ·Pn) appear

as coefficients of Taylor-type expansion for Aht (resp. Gt). More precisely, we assume that there
are ε0, c1, q1, q2 > 0, such that for any k, l ∈ N, h = 1, . . . , q, there are C > 0, Qh,2 ≥ 0, such that
for any t ∈ [0, 1], Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε0

t
, α, α′ ∈ N2n, |α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
Aht (Z,Z ′)−

k∑
r=0

trFhr (Z,Z ′)

)∣∣∣∣
≤ Ctk+1

(
1 + |Z|+ |Z ′|

)Qh,2+q1l+q2k

exp
(
− c1

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (3.53)∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
Gt(Z,Z ′)−

k∑
r=0

trF ′r(Z,Z ′)
)∣∣∣∣

≤ Ctk+1
(

1 + |Z|+ |Z ′|
)Q1,2+q1l+q2k

exp
(
− c1|Z − Z ′|

)
. (3.54)

Define polynomials Jr,0(Z,Z ′) ∈ End(Cr) (resp. J ′r,0(Z,Z ′) ∈ End(Cr)), r ∈ N, in Z,Z ′ ∈ R2n,
as follows

Jr,0 =
∑
λ

Kn,m
[
J 1
λ1
,Kn,m

[
J 2
λ2
, · · · ,Kn,m

[
J q−1
λq−1

,J q
λq

]
· · ·
]
,

J ′r,0 =
∑
λ

K′n,m
[
J 1
λ1
,Kn,m

[
J 2
λ2
, · · · ,Kn,m

[
J q−1
λq−1

,J q
λq

]
· · ·
]
,

(3.55)

where λ runs over all partitions (λ1, · · · , λq) of r by natural numbers λi, and Kn,m, K′n,m are as in
Lemma 3.5. We let Fr,0 := Jr,0 ·P⊥

n,m (resp. F ′r,0 := J ′r,0 ·P⊥
n,m).
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Lemma 3.8. In the notations of (3.51), (3.53), for any k, l ∈ N, there is C > 0, such that
for any t ∈]0, 1], Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε0

2t
, α, α′ ∈ N2n, |α| + |α′| ≤ l, and for Q :=

max{
∑q

h=1Qh,1,
∑q

h=1Qh,2}, c2 := min{c0, c1}, the following estimate holds

∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
Rt(Z,Z

′)−
k∑
r=0

trGr,0(Z,Z ′)

)∣∣∣∣
≤ Ctk+1

(
1 + |Z|+ |Z ′|

)Q+q1l+q2k

exp
(
− c2

8

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
, (3.56)

whereRt (resp. Gr,0) designates either Dt or D′t (resp. either Fr,0 or F ′r,0).

Now, let us formulate similar results for general complex manifolds. More precisely, let
(X, Y, gTX) be a triple of bounded geometry. Let dvX be a volume form over X , satisfying (1.4).
We fix a Hermitian line (resp. vector) bundle (L, hL) (resp. (F, hF )) on X .

Let us fix q ∈ N∗, and a sequence of operators A1
p, . . . , A

q
p, p ∈ N∗, acting on C∞(X,Lp ⊗ F )

by the convolutions with smooth kernels A1
p(x1, x2), . . . , Aqp(x1, x2) ∈ (Lp ⊗ F )x1 ⊗ (Lp ⊗ F )∗x2

with respect to the volume form dvX . We assume thatA1
p, . . . , A

q
p satisfy the assumptions (3.2) and

(3.3) for n := 2n and W := Y .
We fix y0 ∈ Y and trivialize (L, hL) (resp. (F, hF )) and associated dual vector bundles in a

neighborhood of y0 using Fermi coordinates and parallel transport with respect to ∇L (resp. ∇F )
as we did before Theorem 1.6. Assume that for any h = 1, . . . , q, r ∈ N, there are J⊥r,h(Z,Z

′) ∈
End(Fy0) polynomials in Z,Z ′ ∈ R2n, such that for F⊥r,h := J⊥r,h ·P⊥

n,m, the following holds.
There are ε0, c1, q1, q2 > 0, p1 ∈ N∗, such that for any k, l ∈ N, h = 1, . . . , q, there are

C > 0, Qh,3 ≥ 0, such that for any p ≥ p1, Z = (ZY , ZN), Z ′ = (Z ′Y , Z
′
N), ZY , Z ′Y ∈ R2m,

ZN , Z
′
N ∈ R2(n−m), |Z|, |Z ′| ≤ ε0, α, α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
Ahp
(
ψy0(Z), ψy0(Z

′)
)
−

k∑
r=0

p−
r
2F⊥r,h(

√
pZ,
√
pZ ′)κ

− 1
2

X (Z)κ
− 1

2
X (Z ′)

)∣∣∣∣
≤ Cp−

k+1−l
2

(
1 +
√
p|Z|+√p|Z ′|

)Qh,3+q1l+q2k

·

· exp
(
− c1
√
p
(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (3.57)

Define polynomials J⊥r,D(Z,Z ′) ∈ End(Fy0), r ∈ N, in Z,Z ′ ∈ R2n, as follows

J⊥r,D =
∑
λ

Kn,m
[
J⊥λ1,1,Kn,m

[
J⊥λ2,2, · · · ,Kn,m

[
J⊥λq−1,q−1, J

⊥
λq ,q

]
· · ·
]
, (3.58)

where λ runs over all partitions (λ1, · · · , λq) of r by natural numbers λi, and let F⊥r,D := J⊥r,D·P⊥
n,m.

Lemma 3.9. In the notations of (3.2), (3.3), (3.57), for any k, l ∈ N, there is C > 0, such that for
any p ≥ p1, Z = (ZY , ZN), Z ′ = (Z ′Y , Z

′
N), ZY , Z ′Y ∈ R2m, ZN , Z ′N ∈ R2(n−m), |Z|, |Z ′| ≤ ε0

2
,

α, α′ ∈ N2n, |α|+ |α′| ≤ l, for Dp as in (3.4), Q :=
∑q

h=1Qh,3, c2 = min{c0, c1}, we have

∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
Dp

(
ψy0(Z), ψy0(Z

′)
)
−

k∑
r=0

p−
r
2F⊥r,D(

√
pZ,
√
pZ ′)κ

− 1
2

X (Z)κ
− 1

2
X (Z ′)

)∣∣∣∣
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≤ Cp−
k+1−l

2

(
1 +
√
p|Z|+√p|Z ′|

)Q+q1l+q2k

·

· exp
(
− c2

8

√
p
(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (3.59)

Let dvY be a volume form over Y , satisfying (1.4). We fix an operator Cp, p ∈ N∗, acting on
C∞(Y, ι∗(Lp ⊗ F )) by the convolution with smooth kernel Cp(y1, y2), y1, y2 ∈ Y , with respect to
the volume form dvY . Assume there is c2 > 0, such that for any k ∈ N, there is C > 0, such that∣∣Cp(y1, y2)

∣∣
C k(Y×Y )

≤ Cpm+ k
2 exp

(
− c2
√
pdist(y1, y2)

)
. (3.60)

Assume that for a fixed y0 ∈ Y , for any r ∈ N, there are Jr,C(ZY , Z
′
Y ) ∈ End(Fy0) polynomials

in ZY , Z
′
Y ∈ Rm, such that for Fr,C := Jr,C · Pm, the following condition holds. There are

ε0, c3, q1, q2 > 0, p1 ∈ N∗, such that for k, l ∈ N, there are C > 0, QC ≥ 0, such that for p ≥ p1,
ZY , Z

′
Y ∈ R2m, |ZY |, |Z ′Y | ≤ ε0, α, α′ ∈ N2m, |α|+ |α′| ≤ l, the following bound holds∣∣∣∣ ∂|α|+|α

′|

∂Zα
Y ∂Z

′
Y
α′

(
1

pm
Cp
(
ψy0(ZY ), ψy0(Z

′
Y )
)
−

k∑
r=0

p−
r
2Fr,C(

√
pZY ,

√
pZ ′Y )κ

− 1
2

Y (ZY )κ
− 1

2
Y (Z ′Y )

)∣∣∣∣
≤ Cp−

k+1−l
2

(
1 +
√
p|ZY |+

√
p|Z ′Y |

)QC+q1l+q2k

exp
(
− c3
√
p|ZY − Z ′Y |

)
. (3.61)

Recall that κN and E0
p were defined in (1.7) and (1.9) respectively. We denote

Dp := A1
p ◦ (κ

− 1
2

N · E
0
p) ◦ Cp. (3.62)

Define polynomials JEr,D(Z,Z ′) ∈ End(Fy0), r ∈ N, in Z ∈ R2n, Z ′ ∈ R2m, by

JEr,D =
r∑

r0=0

K′′n,m[J⊥r0,1, Jr−r0,C ], (3.63)

and let FE
r,D := JEr,D · En,m.

Lemma 3.10. In the notations of (3.2), (3.57), (3.60), (3.61), for any k, l ∈ N, there is C > 0,
such that for any p ≥ p1, Z = (ZY , ZN), ZY , Z ′Y ∈ R2m, ZN ∈ R2(n−m) |Z|, |Z ′Y | ≤ ε0

2
, α ∈ N2n,

α′ ∈ N2m, |α|+ |α′| ≤ l, Q := Q1,3 +QC , c4 := min{c0, c1, c2, c3}, we have∣∣∣∣ ∂|α|+|α
′|

∂Zα∂Z ′Y
α′

(
1

pm
Dp

(
ψy0(Z), ψy0(Z

′
Y )
)
−

k∑
r=0

p−
r
2FE

r,D(
√
pZ,
√
pZ ′Y )κ

− 1
2

X (Z)κ
− 1

2
Y (Z ′Y )

)∣∣∣∣
≤ Cp−

k+1−l
2

(
1 +
√
p|Z|+√p|Z ′Y |

)Q+q1l+q2k

exp
(
− c4

8

√
p
(
|ZY − Z ′Y |+ |ZN |

))
. (3.64)

Proof of Lemma 3.7. The proof is completely analogous to the proof of Lemma 3.1, done forW :=
Cm. The only change needed in the proof is that instead of Proposition 3.2, one has to use that for
any c > 0, Q ≥ 0, there is a constant C, such that for any A ∈ Cn, we have∫

Cn
|Z|Q exp(−c|Z − A|)dZ1 ∧ · · · ∧ dZ2n ≤ C(1 + |A|Q). (3.65)

This fact can be shown easily by the change of variables Z 7→ Z + A.
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Proof of Lemma 3.8. To simplify the presentation, we restrict ourselves to the case l = 0, as the
general case is treated in an analogous way. We present first the proof that the asymptotic expansion
(3.56) holds for k = 0. We only treat the asymptotic expansion of Dt, as for D′t the proof is
analogous. Analogously to (3.19), we have

Dt(Z,Z ′) =

∫
(R2n)×(q−1)

A1
t (Z,Z1)A2

t (Z1, Z2) · . . . · Aqt (Zq−1, Z
′)·

· dvR2n(Z1) · . . . · dvR2n(Zq−1) (3.66)

We decompose the integral (3.66) into a sum of two integrals. The first one is over the set Qt :=
BR2n

0 ( ε0
t

)×(q−1), and the second one is over its complement Qc
t . Let us bound the contribution in

(3.66) coming from the integral on Qc
t . Similarly to (3.20), for any Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε0

2t
,

and any (Z1, . . . , Zs−1) ∈ Qc
t , we have

dist(Z,Z1) + dist(Z1, Z2) + · · ·+ dist(Zs−1, Z
′) ≥ ε0

2t
. (3.67)

By (3.51), similarly to the proof of Lemma 3.1 and (3.65), there is C > 0, such that∣∣∣∣ ∫
Qct

A1
t (Z,Z1) · A2

t (Z1, Z2) · . . . · Aqt (Zq−1, Z
′)dvCn(Z1) · . . . · dvCn(Zq−1)

∣∣∣∣
≤ C(1 + |Z|+ |Z ′|)

∑q
h=1Qh,1 exp

(
− c

8

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |+

ε0
2t

))
. (3.68)

From the fact that for any c, ε > 0, k ∈ N, there is a constant C > 0, such that exp(−cε/t) < Ctk,
for any t ∈]0, 1], implies that the right-hand side of, (3.68) is majorated by the right-hand side of
(3.53), and hence, the contribution of the integral over Qc

t is negligible.
Now, let A1, A2, A3 be as in Lemma 3.5. By (3.68), we see that for any ε > 0, there is C > 0,

which depends only on k,A1, A2, such that for Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε
2t

, we have∣∣∣∣(A3 ·P⊥
n,m)(Z,Z ′)−

∫
|Z1|< ε

t

(A1 ·P⊥
n,m)(Z,Z1) · (A2 ·P⊥

n,m)(Z1, Z
′)dvCn(Z1)

∣∣∣∣
≤ C(1 + |Z|+ |Z ′|)degA1+degA2 exp

(
− c

8

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |+

ε

2t

))
. (3.69)

Of course, an estimate as in (3.69), holds for any number of polynomials. From this and (3.68),
we deduce the first part of Lemma 3.8 for k = 0.

Now, let us extend the argument for general k ∈ N. For k′ ∈ N, in the notations of (3.53), let
us denote

Bl,k
′

t (Z,Z ′) :=
k′∑
r=0

trF lr(Z,Z ′). (3.70)

Then we decompose Dt into a sum of elements C1
t ◦ · · · ◦ C

q
t , where each Clt, l = 1, . . . , q, is either

equal to Alt − B
l,k′

t or to Bl,k
′

t , and the sum of k′ for all the multiplicands adds up to k. For the
term, which consists of the compositions of Blt, we apply (3.68) and (3.69) to conclude that it has
an asymptotic expansion of the form (3.56) up to the error term of the form as in the right-hand
side of (3.68). From (3.69) and the definition of Kn,m[·, ·] from Lemma 3.5, the coefficients of this
asymptotic expansion are given by polynomials Jr,0, defined in (3.55).
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For other terms, we decompose the integral into two parts: over Qt and over Qc
t . To bound the

contribution from Qt, we use (3.53) and Lemma 3.7. To bound the contribution from Qc
t , we use

(3.51) and proceed as in (3.68). By combining the two bounds, we see that they contribute no more
than the right-hand side of (3.53). This finishes the proof.

Proof of Lemma 3.9. The proof is very similar to the proof of Lemma 3.8, so we only highlight the
main steps. We fix Z,Z ′ ∈ R2n, |Z|, |Z ′| < ε0

2
, and let x = ψy0(Z), x′ = ψy0(Z

′). We decompose
the integral in the formula (3.19), into two parts. The first one is over the set Q := BXy0(ε0)×(q−1),
and the second one is over its complement Qc. Similarly to (3.68), but relying on Proposition 3.2,
we deduce the bound∣∣∣∣ ∫

Qc
A1
p(x, x1) · A2

p(x1, x2) · . . . · Aqp(xq−1, x
′)dvX(x1) · . . . · dvX(xq−1)

∣∣∣∣
≤ Cpn+ k

2 · exp
(
− c

8

√
p ·
(
dist(x, x′) + dist(x, Y ) + dist(x′, Y ) +

ε0
2

))
, (3.71)

But since for any c, ε > 0, k ∈ N, there is C > 0, such that exp(−cε√p) < Cp−k, for any p ∈ N∗,
the right-hand side of (3.71) is majorated by the right-hand side of (3.59) and, hence, negligible.
Now, to deal with the integration over Q, we pass to ψy0-coordinates. The change of the variables
introduces the κX factor for every volume form. It will be canceled with the two κ−1/2

X factors,
which appear in the asymptotic expansion (3.57). Once two factors are canceled, and we make a
change of the variables Z 7→ Z√

p
, we reduce the problem to the estimates of the form (3.69). The

proof is now finished exactly as in the proof of Lemma 3.8.

Proof of Lemma 3.10. The proof is analogous to the proof of Lemma 3.9 with only one change:
instead of relying on (3.36) in the estimate (3.69), one has to rely on (3.38). The reason why the
factor κ

− 1
2

N appears in (3.62) is due to the identity

κX(Z) = κN(ψy0(Z)) · κY (ZY ), (3.72)

which implies that the term κX , appearing after the passage to ψy0-coordinates, disappear with the

terms κ
− 1

2
X and κ

− 1
2

Y , which appear in the Taylor-type expansions of Ap and Cp.

4 Spectral bound for the restriction operator
The main goal of this section is to prove a spectral bound for the restriction operator.

More precisely, we conserve the notation from Section 1 and assume that the triple (X, Y, gTX)
is of bounded geometry. Consider the restriction operator Resp : H0,⊥

(2) (X,Lp ⊗ F ) →
C∞(Y, ι∗(Lp ⊗ F )), defined as f 7→ f |Y . As we prove in Proposition 4.8, the restriction to Y
of an element from H0,⊥

(2) (X,Lp ⊗ F ) lies in H0
(2)(Y, ι

∗(Lp ⊗ F )). Hence, we may view Resp as

Resp : H0,⊥
(2) (X,Lp ⊗ F )→ H0

(2)(Y, ι
∗(Lp ⊗ F )). (4.1)

The main result of this section goes as follows.
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Theorem 4.1. There are c, C > 0, p1 ∈ N∗ such that for any p ≥ p1, we have

cp
n−m

2 ≤
∥∥Resp

∥∥ ≤ Cp
n−m

2 , (4.2)

where‖·‖ is the operator norm with respect to the L2-scalar products (1.3) on X and Y .

Remark 4.2. a) For compact manifolds, a similar statement appeared in Sun [41, Theorem 3.3] for
(F, hF ) trivial. However, only the lower bound was discussed there, and there is a gap in the proof.
See Sun [41] for the explanation of the error and its correction, relying on the current article.

b) A more precise version of (4.2), containing the asymptotics of ‖Resp‖, will be given in [18].

This section is organized as follows. In Section 4.1, we calculate the first two terms of the
Taylor expansion of the ∂-operator in a shrinking tubular neighborhood of Y . This will play a
crucial role in our proof of the lower bound of Theorem 4.1 in Section 4.2. In Section 4.3, we
establish the upper bound of Theorem 4.1. Throughout the section the variables p ∈ N∗ and t ∈ R
are related by

t =
1
√
p
. (4.3)

4.1 Taylor expansion of the holomorphic differential near submanifold

The main goal of this section is to calculate the first two terms of the Taylor expansion of ∂
Lp⊗F

-
operator, considered in a shrinking neighborhood of Y of size 1√

p
, as p → ∞. Our result is

motivated by the Taylor expansions of the associated Dirac operator due to Bismut-Lebeau [4,
Theorem 8.18], which corresponds to trivial (L, hL) in our setting, and the Taylor expansion due
to Dai-Liu-Ma [11, Theorem 4.6], which corresponds to Y equal to a point in our setting.

More precisely, as in Section 1, we consider a triple (X, Y, gTX) of bounded geometry. By
means of the exponential map as in (1.7), we identify a neighborhood of the zero section Br⊥(N)
in the normal bundle N , to a neighborhood U := BXY (r⊥) of Y in X .

Recall that the projection π0 : U → Y and the identifications of L, F to π∗0(L|Y ), π∗0(F |Y ) in
BXY (r⊥) were defined before (1.9). We similarly identify TX to π∗0(TX|Y ) over BXY (r⊥) using the
parallel transport with respect to the Levi-Civita connection∇TX . Remark that since gTX is Kähler
by (1.2), the decomposition TX⊗RC = T (1,0)X⊕T (0,1)X is preserved by∇TX , cf. [30, Theorem
1.2.8]. In other words, the identification of TX with π∗0(TX|Y ) induces the identifications

τ : π∗0(T (1,0)X|Y )→ T (1,0)X|U , τ : π∗0(T (0,1)X|Y )→ T (0,1)X|U . (4.4)

We define the 1-forms ΓF , ΓL with values in End(π∗0(F |Y )), End(π∗0(L|Y )) as in (2.36) using
the above isomorphisms. Recall also that the connection ∇N on N was introduced before (1.16).
The connection∇N induces the splitting

TN = N ⊕ THN (4.5)

of the tangent space of the total space of N . Here THN is the horizontal part of N with respect to
the connection∇N . If U ∈ TY , we denote by UH ∈ THN the horizontal lift of U in THN .

For ε > 0, we denote by E(ε) (resp. E) the set of smooth sections of π∗0(Lp|Y ⊗F |Y ) on Bε(N)
(resp. on the total space of N ). We also denote by E(0,1)(ε) (resp. E(0,1)) the set of smooth sections
of π∗0(T ∗(0,1)X|Y )⊗ π∗0(Lp|Y ⊗ F |Y ) on Bε(N) (resp. on the total space of N ).
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Clearly, the above isomorphisms allow us to see ∂
Lp⊗F

as an operator

∂
Lp⊗F

: E(r⊥)→ E(0,1)(r⊥). (4.6)

We fix a point y0 ∈ Y and an orthonormal frame (e1, . . . , e2m) (resp. (e2m+1, . . . , e2n)) in
(Ty0Y, g

TY ) (resp. in (Ny0 , g
N
y0

)) such that (1.17) is satisfied. Using the exponential coordinates on
Y and the parallel transport of (e2m+1, . . . , e2n) along the geodesics on Y , as in Fermi coordinates
ψy0 in (1.18), we introduce complex coordinates z1, . . . , zm on Y and linear “vertical” coordinates
zm+1, . . . , zn on N . Using those coordinates, we define the operators

∂
Lp⊗F
H ,LLp⊗FN : E→ E(0,1), (4.7)

by prescribing their action at a point (y0, ZN), ZN ∈ R2(n−m), as follows

∂
Lp⊗F
H =

m∑
i=1

dzi|y0 ·
( ∂

∂zi

∣∣
y0

)H
, LLp⊗FN =

n∑
i=m+1

dzi|y0 ·
( ∂

∂zi
+
πzi
2

)
. (4.8)

The first differentiation in (4.8) is well-defined because π0∗(
∂
∂zi
|y0)H = ∂

∂zi
|y0 is of type (0, 1), and

the second derivation is well-defined because the vector bundles are trivialized along fibers of π0.
We use notation (4.3), and for any ε > 0 define the rescaling operator Ft : E(ε) → E( ε

t
) for

f ∈ E(ε) as follows

(Ftf)(y, ZN) := f
(
y, tZN

)
, (y, ZN) ∈ B ε

t
(N). (4.9)

The operator Ft : E(0,1)(ε)→ E(0,1)( ε
t
) is defined in an analogous way.

Theorem 4.3. As p→∞, we have

Ft ◦ ∂
Lp⊗F ◦ F−1

t =
1

t
LLp⊗FN + ∂

Lp⊗F
H +O

(
t|ZN |2∇N + t|ZN |∇H + t|ZN |

)
, (4.10)

where O(t|ZN |2∇N + t|ZN |∇H + t|ZN |) is an operator of the form
∑2m

i=1 ai(t, y, ZN) · dxi|y0 ·
( ∂
∂xi
|y0)H +

∑2n
j=2m+1 bj(t, y, ZN) · dxj|y0 · ∂

∂xj
+ c(t, y, ZN), such that there is a constant C > 0,

for which |ai(t, y, ZN)| ≤ Ct|ZN |2, |bj(t, y, ZN)| ≤ Ct|ZN |, |c(t, y, ZN)| ≤ Ct|ZN | holds for any
y ∈ Y , |ZN | < r⊥, i = 1, . . . ,m, and j = m+ 1, . . . , n.

Proof. To simplify the notations, we denote τ∂
∂zi

:= τ( ∂
∂zi
|y0) and τ∂

∂Zi
:= τ( ∂

∂Zi
|y0). By (4.4), the

action of the operator ∂
Lp⊗F

, viewed as in (4.6), at a point (y0, ZN), |ZN | < r⊥, is given by

∂
Lp⊗F

=
n∑
i=1

dzi|y0 ·
τ∂

∂zi
+

n∑
i=1

dzi|y0 ·
(
pΓL(y0,ZN )

( τ∂
∂zi

)
+ ΓF(y0,ZN )

( τ∂
∂zi

))
. (4.11)

A calculation from Bismut-Lebeau [4, p. 94-96] shows

Ft ◦
( n∑
i=1

dzi|y0 ·
τ∂

∂zi

)
◦ F−1

t =
1

t

( n∑
i=m+1

dzi|y0 ·
∂

∂zi

)
+ ∂

Lp⊗F
H

− dimY · ν∗(y) ∧+O(t|ZN |2∇N + t|ZN |∇H), (4.12)
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where the O-term is interpreted as in (4.10), and ν ∈ C∞(Y,N) is the dual of the mean curvature
of ι, defined as follows

ν :=
1

2m

2m∑
i=1

A(ei)ei, (4.13)

where the sum runs over an orthonormal basis e1, . . . , e2m of (TY, gTY ) as in (1.17). However, as
the manifolds are Kähler (hence, J commutes with A), by (2.35), for i = 1, . . . ,m, we have

A(e2i−1)e2i−1 = A(Je2i)Je2i = JA(Je2i)e2i = JA(e2i)Je2i = −A(e2i)e2i. (4.14)

Hence, we have
ν = 0. (4.15)

Remark that in [4], no assumption of bounded geometry was made, and (4.12) was stated
locally in Y . However, in the proof of Bismut-Lebeau, the O-term comes from the expansion of
the Christoffel symbols and the connection forms, and hence it can be bounded uniformly in Y by
the results of Section 2.1.

Now, from Lemma 2.11 and (2.33), we see that for i = 1, . . . , 2m, j = 2m+ 1, . . . , 2n, at the
point (y0, ZN), we have

τ∂

∂Zj
=

∂ψ

∂Zj
+O(|ZN |2),

τ∂

∂Zi
=

∂ψ

∂Zi
−

2m∑
l=1

∂ψ

∂Zl
gTMy0

(
A(ei)ZN , el

)
+O(|ZN |2).

(4.16)

From Lemma 2.14 and (4.16), we deduce

ΓF(y0,ZN )

( τ∂
∂zi

)
= O(|ZN |), ΓF(y0,ZN )

( τ∂
∂zj

)
= O(|ZN |),

ΓL(y0,ZN )

( τ∂
∂zi

)
= O(|ZN |3), ΓL(y0,ZN )

( τ∂
∂zj

)
=

1

2
RL
y0

(
ZN ,

∂

∂zj

)
+O(|ZN |3).

(4.17)

Now, from (4.11), (4.12), (4.15) and (4.17), we get

Ft ◦ ∂
Lp⊗F ◦ F−1

t =
1

t

n∑
i=m+1

dzi ·
( ∂

∂zi
+

1

2
RL
y0

(
ZN ,

∂

∂zi

))
+ ∂

Lp⊗F
H

+O(t|ZN |2∇N + t|ZN |∇H + t|ZN |). (4.18)

Finally, by (1.1), we have RL
y0

(ZN ,
∂
∂zi

) = πzi. By this and (4.18), we conclude.

4.2 Extension theorem, a proof of the lower bound in Theorem 4.1
In this section, we establish the lower bound in Theorem 4.1. For this, in the notations from Section
4.1, we show that the following refined version of Ohsawa-Takegoshi extension theorem holds.
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Theorem 4.4. There are C > 0, p1 ∈ N∗, such that for any p ≥ p1 and g ∈ H0
(2)(Y, ι

∗(Lp ⊗ F )),
there is f ∈ H0

(2)(X,L
p ⊗ F ), such that f |Y = g and

‖f‖L2(X) ≤
C

p
n−m

2

‖g‖L2(Y ) . (4.19)

Proof of the lower bound in Theorem 4.1. Let C be as in (4.19). As Ep is defined as the minimal
extension with respect to the L2-norm, for any g ∈ H0

(2)(Y, ι
∗(Lp ⊗ F )), by Theorem 4.4, we have

∥∥Epg
∥∥
L2(X)

≤ C

p
n−m

2

‖g‖L2(Y ) . (4.20)

This means exactly that the lower bound in Theorem 4.1 holds for c := C−1.

By the above, to settle the main goal of this section, we need to establish Theorem 4.4. The
main idea of the proof of Theorem 4.4 is to pass through the general framework of the proof of
Ohsawa-Takegoshi extension theorem, cf. [13, §11]. We choose a smooth extension of g over
X , and then obtain the holomorphic extension by modifying the smooth one using a solution of
∂-equation with singular weight, which forces the solution to annihilate along Y .

The novelty here is that instead of choosing an arbitrary smooth extension, as it is done in [13,
§11], we choose a specific one, given by the operator (1.9). The incentive for doing so comes from
the fact that we would like to get some estimates, related to this extension, which would be uniform
in p, and this doesn’t seem doable for an arbitrary choice of the extension. Choosing a specific
extension allows us to use Theorem 4.3 to prove the uniform versions of some L2-estimates, which
are indispensable in the proof. For those estimates and after, we need the following proposition.

Proposition 4.5. For any k ∈ N, there are C > 0, p1 ∈ N∗, such that for any p ≥ p1 and
f ∈ H0

(2)(X,L
p ⊗ F ), we have ∥∥∇kf

∥∥
L2(X)

≤ Cp
k
2

∥∥f∥∥
L2(X)

, (4.21)

where∇ is the covariant derivative with respect to the induced Chern and Levi-Civita connections.

For the proof of Proposition 4.5 and in many places later, the following result will be crucial.

Theorem 4.6 (Ma-Marinescu [32, Theorem 1]). For any k ∈ N, there are c, C > 0, p1 ∈ N∗ such
that for p ≥ p1, we have∣∣∣BX

p (x1, x2)
∣∣∣
C k(X×X)

≤ Cpn+ k
2 · exp

(
− c√p · dist(x1, x2)

)
, (4.22)

where C k-norm here is interpreted as in Theorem 1.5.

Proof of Proposition 4.5. For compact manifolds, the statement is very classical. For manifolds
of bounded geometry, the proof can be obtained by a slight modification of the argument in [32,
Lemma 2]. We present here an alternative proof, based on Theorem 4.6. First of all, by Proposition
3.2 and Theorem 4.6, there are C > 0, p1 ∈ N∗ such that for any x0 ∈ X , for p ≥ p1, we have∫

X

∣∣(∇kBX
p )(x0, x)

∣∣dvX(x) ≤ Cp
k
2 ,

∫
X

∣∣(∇kBX
p )(x, x0)

∣∣dvX(x) ≤ Cp
k
2 . (4.23)
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Also, since f = BX
p f , ∇kf admits the integral representation

∇kf(x1) =

∫
X

(∇kBX
p )(x1, x2) · f(x2)dvX(x2). (4.24)

We deduce (4.21) directly from (4.23), (4.24) and Young’s inequality for integral operators, cf. [40,
Theorem 0.3.1] applied for p, q = 2, r = 1 in the notations of [40].

Proof of Theorem 4.4. Recall that the operator E0
p was defined in (1.9). We would like to verify

that for any g ∈ H0
(2)(Y, ι

∗(Lp ⊗ F )), y0 ∈ Y , we have

α(y0) = 0, where α := ∂
Lp⊗F

(E0
pg). (4.25)

Indeed, let us work in a neighborhood V := BXY ( r⊥
4

) of Y in X . Recall that t ∈ R+ and Ft
were defined in (4.9). Then in the notations of (1.9), on V , we have

E0
pg = F−1

t g̃, g̃(y, ZN) = g(y) exp
(
− π

2
|ZN |2

)
. (4.26)

Recall that ∂
Lp⊗F
H ,LLp⊗FN were defined in (4.8). A trivial calculation shows that on V , we have

LLp⊗FN g̃ = 0. (4.27)

Also, since∇N preserves gN , in the notations of (4.8), similarly to [4, (8.97)], we have(( ∂

∂zi

∣∣
y0

)H
g̃
)

(y0, ZN) =
( ∂

∂zi
g
)

(y0) exp
(
− π

2
|ZN |2

)
. (4.28)

As a consequence of (4.28) and the fact that g is holomorphic, we obtain

∂
Lp⊗F
H g̃ = 0. (4.29)

From (4.26), (4.27), (4.29) and the fact that all the residue terms in Theorem 4.3 contain |ZN |, we
deduce (4.25).

Now, using the L2-estimates, let us construct a holomorphic perturbation of E0
pg, satisfying the

assumptions of Theorem 4.4. Recall that δY : X \ Y → R, αY : X → R, were defined in (2.60).
For ε > 0, let us now define the weight δp : X \ Y → R as follows

δp := 2(n−m)δY − εpαY . (4.30)

By taking ε small, by Lemma 2.19, we see that there exists p1 ∈ N∗, such that for any p ≥ p1, over
X , the following inequality holds in the distributional sense

pω +

√
−1

2π
∂∂δp >

p

2
ω. (4.31)

Let us fix ε small enough, such that for any |ZN | < r⊥, we have

π

2
|ZN |2 − εαY (y, ZN) ≥ π

4
|ZN |2. (4.32)
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We will now prove that there areC1 > 0, p1 ∈ N∗, such that for any p ≥ p1, g ∈ H0
(2)(Y, ι

∗(Lp⊗
F )) and α defined in (4.25), we have∫

X

|α|2e−δpdvX ≤ C1‖g‖2
L2(Y ). (4.33)

Since α has support over BXY (r⊥), we have∫
X\BXY (

r⊥
4

)

|α|2e−δpdvX =

∫
BXY (r⊥)\BXY (

r⊥
4

)

|α|2e−δpdvX (4.34)

From this, by (1.9) and (4.32), there are c, C2 > 0, p1 ∈ N∗, such that for any p ≥ p1, we have∫
X\BXY (

r⊥
4

)

|α|2e−δpdvX ≤ C2 exp(−cp)
(
‖g‖2

L2(Y ) + ‖∇g‖2
L2(Y )

)
. (4.35)

Now, as α has support in BXY ( r⊥
2

), it is enough to work in (y, ZN), y ∈ Y , ZN ∈ Ny coordinates.
To estimate the integral over BXY ( r⊥

4
), we use (4.26) and make the change of variables by Ft to get∫

BXY (
r⊥
4

)

|α|2e−δpdvY ∧ dvN

=

∫
B r⊥

4t
(N)

∣∣∣(Ft ◦ ∂Lp⊗F ◦ F−1
t

)
g̃
∣∣∣2(y, tZN)

eεpαY (y,ZN )

|ZN |2(n−m)
dvY ∧ dvN . (4.36)

By (4.27), (4.28), (4.29), (4.32), (4.36), and the fact that for j = 1, 2,∫
R2(n−m)

|ZN |j exp(−π
4
|ZN |2)dvR2(n−m)(ZN)

|ZN |2(n−m)
< +∞, (4.37)

we conclude that there are C3 > 0, p1 ∈ N, such that for any p ≥ p1, g ∈ H0
(2)(Y, ι

∗(Lp ⊗ F )) and
α as in (4.25), we have∫

BXY (
r⊥
4

)

|α|2e−δpdvX ≤ C3 · t2 ·
(
‖g‖2

L2(Y ) + ‖∇g‖2
L2(Y )

)
. (4.38)

From Proposition 4.5 and (4.38), we deduce (4.33).
From (4.31), the fact that we may resolve the ∂-equation, see [12, Théorème 5.1], the trivial

fact that ∂
Lp⊗F

α = 0 and (4.33), we see that there are C > 0, p1 ∈ N∗, such that for any p ≥ p1,
g ∈ H0

(2)(Y, ι
∗(Lp ⊗ F )), there is f0 ∈ L2(X,Lp ⊗ F ), such that

∂
Lp⊗F

f0 = α,

∫
X\Y
|f0|2e−δpdvX ≤

C

p
‖g‖2

L2(Y ). (4.39)

Let us prove that f := E0
pg − f0 verifies the assumptions of Theorem 4.4.

From the L2-condition and the standard regularity results, [12, Lemme 6.9], f is a smooth
holomorphic section. In particular, f0 is smooth as well. However, since exp(−2(n−m)δY ) is not
integrable, the L2-bound (4.39) implies that f0|Y = 0. Hence, we conclude that f |Y = g. It is only
left to verify that f satisfies the needed L2-bound (4.19).
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From the Gauss integral calculation, and the fact that our triple is of bounded geometry, there
is C4 > 1, such that we have

C−1
4

p
n−m

2

‖g‖L2(Y ) ≤
∥∥E0

pg
∥∥
L2(X)

≤ C4

p
n−m

2

‖g‖L2(Y ) . (4.40)

Let us now prove that there is C5 > 0 such that for any p ≥ p1, g ∈ H0
(2)(Y, ι

∗(Lp ⊗ F )), the
following bound holds ∫

X

|f0|2e−δpdvX ≥ C5p
n−m

∫
X

|f0|2dvX . (4.41)

This will be clearly enough for our needs, as from the L2-bound in (4.39), (4.40) and (4.41), we
would deduce the L2-bound (4.19).

First of all, since αY ≥ min{1
2
( r⊥

4
)2, 1

2
} on X \ BXY ( r⊥

4
), there are c, C6 > 0, such that∫

X\BXY (
r⊥
4

)

|f0|2e−δpdvX ≥ C6 exp(εcp)

∫
X\BXY (

r⊥
4

)

|f0|2dvX (4.42)

It is now only left to give the lower bound for the integrand on the left-hand side of (4.41),
where the integration is done over BXY ( r⊥

4
). But remark that from (2.60) and (4.30), over BXY ( r⊥

4
),

there is C7 > 0, such that for any p ∈ N∗, we have e−δp ≥ C7p
n−m. From this, we deduce∫

BXY (
r⊥
4

)

|f0|2e−δpdvX ≥ C7p
n−m

∫
BXY (

r⊥
4

)

|f0|2dvX . (4.43)

From (4.42) and (4.43), we obtain (4.41).

Remark 4.7. Our proof shows that there is E1
p : H0

(2)(Y, ι
∗(Lp⊗F ))→ H0

(2)(X,L
p⊗F ), verifying

(E1
pg)|Y = g for g ∈ H0

(2)(Y, ι
∗(Lp ⊗ F )), and such that (1.11) holds for E1

p instead of E0
p.

4.3 Asymptotic trace theorem, a proof of the upper bound in Theorem 4.1
The main goal of this section is to show that the restriction to Y of an element from H0,⊥

(2) (X,Lp⊗
F ) lies inH0

(2)(Y, ι
∗(Lp⊗F )) and to give a proof of the upper bound in Theorem 4.1. The main idea

of our proof is to study the Schwartz kernel of the restriction operator and to use the exponential
bound on the Bergman kernel.

Let us explain more precisely how to relate the Schwartz kernel Resp(y, x), y ∈ Y , x ∈ X , of
the restriction operator, evaluated with respect to the volume form dvX , with the Bergman kernel.
In fact, directly from the identity ResY ◦BX

p = Resp, we obtain that

Resp(y, x) = BX
p (y, x). (4.44)

Proposition 4.8. There is p1 ∈ N∗, such that the restriction to Y of any element fromH0,⊥
(2) (X,Lp⊗

F ) lies in H0
(2)(Y, ι

∗(Lp ⊗ F )).

Proof. By Proposition 3.2 and Theorem 4.6, there are C > 0, p1 ∈ N∗ such that for any x0 ∈ X ,
for p ≥ p1, we have ∫

Y

∣∣BX
p (y, x0)

∣∣dvY (y) ≤ Cpn−m, (4.45)
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We deduce directly from (4.23), (4.44), (4.45) and Young’s inequality for integral operators, cf. [40,
Theorem 0.3.1] applied for p, q = 2, r = 1 in the notations of [40], that Proposition 4.8 holds, and,
moreover, there are C > 0 and p1 ∈ N∗, such that for p ≥ p1, ‖Resp‖ ≤ Cpn−m.

Proof of the upper bound in Theorem 4.1. The proof is essentially identical to the proof of Propo-
sition 4.8 with only one change: instead of looking at Resp, we consider the operator Resp ◦Res∗p.
In fact, directly from (4.44) and the fact that BX

p ◦ BX
p = BX

p , we conclude that the Schwartz
kernel (Resp ◦ Res∗p)(y, y

′), y, y′ ∈ Y , of Resp ◦ Res∗p, evaluated with respect to the volume form
dvY , satisfies

(Resp ◦ Res∗p)(y, y
′) = BX

p (y, y′). (4.46)

The proof now proceeds in the same way as in Proposition 4.8 with an additional remark ‖Resp ◦
Res∗p‖ = ‖Resp‖2.

5 Asymptotic expansions of the two kernels
The main goal of this section is to study the asymptotics of the Schwartz kernels of the orthogonal
Bergman projector and the extension operator. This section is organized as follows. In Section 5.1,
we establish Theorem 1.7. We also show that despite the global nature of the orthogonal Bergman
kernel, the asymptotic expansion of it depends only locally on the geometry of the problem. In
Section 5.2, we prove that after certain reparametrization given by a homothety in Fermi coor-
dinates, Bergman kernel admits a complete asymptotic expansion. In Section 5.3, we establish
Theorem 1.8. Finally, in Section 5.4, we prove all the other results announced in Section 1. We
use the notation (4.3) throughout the section.

5.1 Exponential decay and localization of the orthogonal Bergman kernel
The first main goal of this section is to prove that the orthogonal Bergman kernel has exponential
off-diagonal decay, i.e. to establish Theorem 1.7. The second main goal is to establish that the
asymptotic expansion of the orthogonal Bergman kernel is localized.

The main difficulty here is that the projection B⊥p is not the spectral projection associated to
the Laplacian. Hence, the methods, developed by Dai-Liu-Ma in [11], cf. [30, Proposition 4.1.5],
based on the finite propagation speed property for the wave equation, cannot be applied.

One can remedy this by extending a slightly more technical approach through the L2-estimates
with varying weights, similar to what has been done by Lindholm [29, Proposition 9]. We follow
here an alternative approach. The main idea of our proof of Theorem 1.7 is to construct the “ap-
proximate projection” B⊥,ap onto the H0,⊥

(2) (X,Lp ⊗ F ) (the precise meaning of this is given after
(5.4)), such that the Schwartz kernel of it verifies the estimate analogous to (1.25). Then by means
of the spectral theory, essentially relying on Theorem 4.1, we relate B⊥,ap and B⊥p , and show that
the exponential estimate of the Schwartz kernel persist through this relation. An exponential esti-
mate of the Bergman kernel, see Theorem 4.6, plays a crucial role in our approach. The advantage
of this approach over the one of Lindholm is that it introduces some of the techniques, which will
later play a crucial role in our proof of Theorem 1.8, where L2-estimates, it seems, do not apply.

We use the notations and assumptions from Theorem 1.7. The next proposition is crucial for
our further estimates.
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Proposition 5.1 (Ma-Marinescu [32, Lemma 2]). For any k ∈ N, there is C > 0, such that for any
p ∈ N∗, f ∈ H0

(2)(X,L
p ⊗ F ) and x ∈ X , we have∣∣∇kf(x)

∣∣ ≤ Cp
n+k
2 ‖f‖L2(X). (5.1)

Let us first explain the construction of the approximate projection. Define Ap := E0
p ◦ ResY ◦

BX
p , where E0

p is as in (1.9). Then define B⊥,ap as follows

B⊥,ap : L2(X,Lp ⊗ F )→ L2(X,Lp ⊗ F ), B⊥,ap := A∗p ◦ Ap. (5.2)

Clearly, for any f ∈ L2(X,Lp ⊗ F ), we have
〈
B⊥,ap f, f

〉
L2 =

〈
Apf, Apf

〉
L2 . Hence in the

notations of (1.24), we have

kerB⊥,ap = H0,0
(2) (X,Lp ⊗ F )⊕ kerBX

p . (5.3)

By Theorem 4.1 and (4.40), the operators B⊥,ap , p ∈ N, posses a uniform spectral gap, i.e. there
are a, b > 0, p1 ∈ N∗, such that for any p ≥ p1, we have

Spec(B⊥,ap ) ⊂ {0} ∪ [a, b]. (5.4)

The properties (5.3) and (5.4) justify the name “approximate projection”, as B⊥p is the only
self-adjoint operator on H0

(2)(X,L
p⊗F ), satisfying (5.3) and (5.4) for a, b = 1. The property (5.4)

is what we call by “spectral relation” between B⊥,ap and B⊥p .

Proof of Theorem 1.7. Clearly, by Lemma 3.1, Theorem 4.6 and (1.9), we see that there are c > 0,
p1 ∈ N∗, such that for any k ∈ N, there is C1 > 0, such that for any p ≥ p1 and x1, x2 ∈ X ,∣∣B⊥,ap (x1, x2)

∣∣
C k(X×X)

≤ C1p
n+ k

2 exp
(
−c√p·

(
dist(x1, x2)+dist(x1, Y )+dist(x2, Y )

))
. (5.5)

We will now show that the estimate (1.25) follows formally from (5.3), (5.4) and (5.5). To do
so, from (5.3) and (5.4), we see that for ε := 1− a

2b
, and for any r ∈ N∗, the following bound holds

∥∥∥(BX
p −

B⊥,ap

2b

)r
−BX

p +B⊥p

∥∥∥ ≤ εr. (5.6)

Since the operator under the norm of (5.6) vanishes on the orthogonal complement of
H0

(2)(X,L
p⊗F ) and takes values inside of H0

(2)(X,L
p⊗F ), Proposition 5.1 and (5.6) then imply

that for any k ∈ N, there are C2 > 0, l ∈ N, such that for any p ≥ p1, r ∈ N∗, we have∣∣∣((BX
p −

B⊥,ap

2b

)r
−BX

p +B⊥p

)
(x1, x2)

∣∣∣
C k(X×X)

≤ C2p
n+k/2εr. (5.7)

Now, using the trivial identity (BX
p )r = BX

p , we expand (BX
p −

B⊥,ap

2b
)r − BX

p into 2r − 1
summands, such that each summand contains B⊥,ap as a multiple. By Theorem 4.6 and (5.5), we
may apply Lemma 3.1 for W := Y , to bound each of those summands. Hence, there are C3 > 0,
p1 ∈ N∗, such that for any x1, x2 ∈ X , p ≥ p1, r ∈ N, we have
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∣∣∣((BX
p −

B⊥,ap

2b

)r
−BX

p

)
(x1, x2)

∣∣∣
C k(X×X)

≤ Cr
3p

n+k/2 · exp
(
− c

8

√
p ·
(
dist(x1, x2) + dist(x1, Y ) + dist(x2, Y )

))
. (5.8)

Now, we fix x1, x2 ∈ X , and let

r :=

⌈
c

16 log(max(C3, 2))

√
p ·
(

dist(x1, x2) + dist(x1, Y ) + dist(x2, Y )
)⌉
, (5.9)

where d·e is the ceil function. Then in the right-hand side of (5.8), for this choice of r, the power
of C3 becomes negligible with respect to the last multiplicand. Hence, (1.25) holds by (5.7), (5.8),
(5.9) and the inequality ε < 1.

Now, in the second part of this section, we show that despite the global nature of the orthogonal
Bergman kernel, the asymptotic expansion of it depends only on the local geometry of the problem.

More precisely, we fix X, Y, (L, hL), (F, hF ), dvX , dvY as in Section 1. We denote by
X ′, Y ′, (L′, hL

′
), (F ′, hF

′
), dvX′ , dvY ′ some other manifold, submanifold, etc. We define gTX ,

gTX
′ as in (1.2). We fix y0 ∈ Y , y′0 ∈ Y ′ and assume that there is a biholomorphism between

U := BXy0(r0) and U ′ := BX′y′0 (r0) for r0 < rX , rY , such that it induces a biholomorphism of Y ∩ U
to Y ′∩U ′ and sends dvX , dvY to dvX′ , dvY ′ respectively. We also assume that the biholomorphism
can be extended to holomorphic isometries between (L, hL), (F, hF ) and (L′, hL

′
), (F ′, hF

′
). In

particular, it is a local isometry between (X, gTX , y0) and (X ′, gTX
′
, y′0).

We denote by BX
p
′, B′p

⊥ the Bergman projector and the orthogonal Bergman projector associ-
ated with X ′, (L′, hL′), (F ′, hF ′), dvX′ . For x1, x2 ∈ X , we denote by BX

p
′(x1, x2), B′p

⊥(x1, x2)
the Schwartz kernels of those operators, evaluated with respect to dvX′ .

Theorem 5.2. There is p1 ∈ N∗, such that for any r0 > 0 as above, there is c > 0, such that for
any k ∈ N, there is C > 0, such that for V := BXy0(r0/2), x, x′ ∈ V , and any p ≥ p1, we have∣∣(B⊥p −B′p⊥)(x, x′)

∣∣
C k(V×V )

≤ C exp(−c√p). (5.10)

The proof of Theorem 5.2 is based on the following proposition.

Proposition 5.3. There is p1 ∈ N∗, such that for any r0 > 0 as above, there is c > 0, such that for
any k ∈ N, there is C > 0, such that for V := BXy0(r0/2), x, x′ ∈ V , and any p ≥ p1, we have∣∣(BX

p −BX
p
′)(x, x′)

∣∣
C k(V×V )

≤ C exp(−c√p). (5.11)

Proof. Our proof here is an easy modification of the proof of [32, Theorem 1], so we only briefly
explain the main steps. First, we denote by �p (resp. �′p) the Kodaira Laplacians on C∞(X,Lp ⊗
F ) (resp. C∞(X ′, L′p⊗F ′)). We would like to prove that there are constants a, c1, c2 > 0 such that
for any k ∈ N, u0 > 0, there is C > 0, such that for any u ≥ u0, p ∈ N∗, x1, x2 ∈ V := BXy0(r0/2),
the following estimates hold∣∣∣( exp

(
− u

p
�p

)
− exp

(
− u

p
�′p
))

(x1, x2)
∣∣∣
C k(V×V )

≤ Cpn+k/2 · exp
(
c1u−

ap

u
·
(
dist(x1, x2) + 1

))
. (5.12)
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∣∣∣(�p exp
(
− u

p
�p

)
−�′p exp

(
− u

p
�′p
))

(x1, x2)
∣∣∣
C k(V×V )

≤ Cpn+1+k/2 · exp
(
− c2u−

ap

u
·
(
dist(x1, x2) + 1

))
. (5.13)

The proof is a direct modification of the proof of [32, (3.1), (3.2)], which states in the same nota-
tions that∣∣∣ exp

(
− u

p
�p

)
(x1, x2)

∣∣∣
C k(X×X)

≤ Cpn+k/2 · exp
(
c1u−

ap

u
· dist(x1, x2)

)
, (5.14)∣∣∣�p exp

(
− u

p
�p

)
(x1, x2)

∣∣∣
C k(X×X)

≤ Cpn+1+k/2 · exp
(
− c2u−

ap

u
· dist(x1, x2)

)
. (5.15)

More precisely, remark first that, (5.12), (5.13) are consequences of (5.14) and (5.15) for
dist(x1, x2) > r0

2
. Now, in the case dist(x1, x2) < r0

2
, the proof of (5.12), (5.13) is the same

as the proof of (5.14), (5.15) in [32, proof of Theorem 4] with only one change. In the notations
of [32, proof of Theorem 4], for h instead of

√
pdist(x1, x2)/ε, one should take

√
p r0

2ε
. Then, again

in the notations of [32, proof of Theorem 4], due to finite propagation speed of solutions of hy-
perbolic equations, cf. [32, (3.9)], and the fact that the Laplacians �p and �′p coincide in U , the
difference (Hu,h(

1√
p
�p) − Hu,h(

1√
p
�′p))(x1, ·) vanishes. Once (5.12) and (5.13) are established,

the proof now proceeds in exactly the same way as in [32, proof of Theorem 4] with one final
modification: the estimates of the quantities associated to �p should be replaced by the estimates
of the difference of the same quantities associated to �p and �′p.

Now, (5.11) follows from (5.12), (5.13) and the following identity, cf. [32, (3.14)],

BX
p −BX

p
′ =
(

exp
(
− u

p
�p

)
− exp

(
− u

p
�′p
))

+

∫ +∞

u

(1

p
�′p exp

(
− u1

p
�′p
)
− 1

p
�p exp

(
− u1

p
�p

))
du1, (5.16)

by using exactly the same estimates as in [32, proof of Theorem 1].

Proof of Theorem 5.2. The proof is an easy modification of the proof of Theorem 1.7. The only
essential difference is that instead of working with the approximate projection, we work with the
difference of the two operators associated to different geometries. We use the notation from the
proof of Theorem 1.7. We denote by B′p

⊥,a the operator, constructed as B⊥,ap in (5.2), but for
X ′, Y ′, (L′, hL

′
), (F ′, hF

′
), dvX′ , dvY ′ . We fix a smooth cut-off function ρ0 : U → [0, 1] (resp. ρ1),

equal to 1 on V (resp. on BXy0(
3
4
r0)), and 0 on ∂BXy0(

2
3
r0) (resp. on ∂BXy0(r0)). Since U and U ′ are

identified by a fixed diffeomorphism, we may regard ρ0, ρ1 as functions, defined on X or X ′ by
extending them by zero. For r ∈ N, we consider the difference

Dp := ρ0

((
BX
p −

B⊥,ap

2b

)r
−BX

p

)
ρ0 − ρ0

((
BX
p
′ −

B′p
⊥,a

2b

)r
−BX

p
′
)
ρ0. (5.17)

Once the brackets in (5.17) are opened, one can replace each multiplicand A in the resulting ex-
pression by the sum ρ1Aρ1 + (1 − ρ1)Aρ1 + ρ1A(1 − ρ1) + (1 − ρ1)A(1 − ρ1). We denote by
Rp the sum of the terms, which contain at least one (1− ρ1)-term. Clearly, by Lemma 3.1 applied
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for W := ∂BXy0(
5
7
r0), there is p1 ∈ N∗, x, x′ ∈ V such that for p ≥ p1, for any r0 > 0, there are

c1, C1 > 0, such that ∣∣Rp(x, x
′)
∣∣
C k(V×V )

≤ Cr
1p

n+k/2 · exp(−c1
√
p). (5.18)

As supp ρ1 ⊂ U , using the diffeomorphism between U and U ′, we may interpret all the opera-
tors ρ1B

⊥,a
p ρ1, ρ1(B′p

⊥,a)ρ1, ρ1B
X
p ρ1, ρ1B

X
p
′ρ1 as operators, acting over the same space, X . Let us

now study the terms, where only ρ1 appear. For those terms, it is easy to see that one can rearrange
the summands so that the terms in (5.17) with ρ1 can be expressed as a sum of (2r−1)2r elements,
each of which would contain as a multiplicand either ρ1(B⊥,ap − B′p

⊥,a)ρ1, or ρ1(BX
p − BX

p
′)ρ1

and one of ρ1(B⊥,ap )ρ1 or ρ1(B′p
⊥,a)ρ1. Then by Lemma 3.1 applied for W := ∂U , Theorem 4.6,

Proposition 5.3 and (5.5), we see that there are c2, C2 > 0, such that for any p ≥ p1, x, x′ ∈ V , we
get the bound ∣∣(Dp −Rp)(x, x

′)
∣∣
C k(V×V )

≤ Cr
2p

n+k/2 · exp(−c2
√
p). (5.19)

We assume for simplicity that C2 > C1 and c2 < c1. By summing up (5.18) and (5.19), we finally
deduce that for any p ≥ p1, x, x′ ∈ V , we have∣∣Dp(x, x

′)
∣∣
C k(V×V )

≤ 2Cr
2p

n+k/2 · exp(−c2
√
p). (5.20)

Now, by taking a sum of (5.7) and the analogous estimate for
X ′, Y ′, (L′, hL

′
), (F ′, hF

′
), dvX′ , dvY ′ , we get that for any k ∈ N, there is C3 > 0, such

that for any p ≥ p1, r ∈ N∗, x, x′ ∈ V , we have∣∣(Dp +B⊥p −B′p⊥)(x, x′)
∣∣
C k(V×V )

≤ C3p
n+k/2εr. (5.21)

We now adjust r as follows
r :=

⌈ c

4 log(max(C2, 2))

√
p
⌉
. (5.22)

Then the contribution of Cr
2 in (5.20) gets eliminated by the last multiplicand in the right-hand side

of (5.20). The proof is now finished by (5.20) and (5.21).

5.2 Bergman kernel asymptotics in Fermi coordinates
The main goal of this section is to prove that after a reparametrization given by a homothety
with factor

√
p in Fermi coordinates, Bergman kernel admits a complete asymptotic expansion in

powers of
√
p, as p → ∞. The proof relies on the analogous result of Dai-Liu-Ma [11], stated in

geodesic coordinates, and the calculations from Sections 2.2, 2.3.
We use notations from Section 1 and assume that (X, gTX) is of bounded geometry. Recall that

A ∈ C∞(Y, T ∗Y⊗End(TX|Y )),R > 0,B ∈ C∞(Y, Sym2(T ∗X|Y )⊗TX|Y ), and ν ∈ C∞(Y,N)
were defined in (1.16), (2.5), (2.9) and (4.13) respectively.

We fix a point y0 ∈ Y and an orthonormal frame (e1, . . . , e2m) (resp. (e2m+1, . . . , e2n)) in
(Ty0Y, g

TY ) (resp. in (Ny0 , g
N
y0

)) as in (1.17). Recall that Fermi coordinates, ψy0 , were defined
in (1.18). Recall that the function κX in a neighborhood of y0, was defined in (1.19). We fix
an orthonormal frame (f1, . . . , fr) of (Fy0 , h

F
y0

) and define the orthonormal frame (f̃1, . . . , f̃r) of
(F, hF ) in a neighborhood of y0, as in Section 2.1. Similarly, we trivialize (L, hL). The choice
of those frames and the associated dual frames allows us to interpret BX

p (x1, x2) as an element of
End(Fy0) for x1, x2 ∈ X in a neighborhood of y0. Recall that Pn was defined in (3.33).
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Proposition 5.4. For any r ∈ N, there are Jr(Z,Z ′) ∈ End(Fy0) polynomials in Z,Z ′ ∈ R2n,
satisfying the same assumptions as polynomials from Theorem 1.8, such that for Fr := Jr ·Pn, the
following holds. There are ε, c > 0, such that for any k, l, l′ ∈ N, there is C > 0, such that for any
y0 ∈ Y , p ∈ N∗, Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε, α, α′ ∈ N2n, |α|+|α′| ≤ l,Q3

k,l,l′ := 3(n+k+l′+2)+l,
the following bound holds∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
BX
p

(
ψy0(Z), ψy0(Z

′)
)
−

k∑
r=0

p−
r
2Fr(
√
pZ,
√
pZ ′)κ

− 1
2

X (Z)κ
− 1

2
X (Z ′)

)∣∣∣∣
C l′ (Y )

≤ Cp−(k+1−l)/2
(

1 +
√
p|Z|+√p|Z ′|

)Q3
k,l,l′

exp
(
− c√p|Z − Z ′|

)
, (5.23)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

J0(Z,Z ′) = IdFy0 . (5.24)

Moreover, under the assumptions (1.8), we have

J1(Z,Z ′) = IdFy0 ·π
(
gTXy0

(
zN , A(zY −z′Y )(zY −z′Y )

)
+gTXy0

(
z′N , A(zY −z′Y )(zY −z′Y )

))
. (5.25)

Before describing the proof of Proposition 5.4, let us recall the relevant asymptotic expansion
of Dai-Liu-Ma. Recall first that for x0 ∈ X , the coordinates φx0 in a neighborhood of x0 were
defined in (2.2). Let us define the function κ′X in a neighborhood of x0 by the following formula

(φ∗x0dvX)(Z) = κ′X(Z)dZ1 ∧ · · · ∧ dZ2n. (5.26)

We use the orthonormal frame (f̃ ′1, . . . , f̃
′
r) of (F, hF ), defined in (2.8) in a neighborhood of y0.

Similarly, we trivialize (L, hL). The choice of those frames as well as the associated dual ones
allows us to interpret the Schwartz kernel of BX

p as an element of End(Fy0) for x1, x2 ∈ X in a
neighborhood of y0. We denote this element here byBXφ

p (x1, x2) to distinguish it fromBX
p (x1, x2)

previously defined.

Theorem 5.5 (Dai-Liu-Ma [11, Theorem 4.1.18], cf. [30, Theorems 4.2.9 and Problem 6.1] and
[27, Theorem 4.3] ). For any r ∈ N, x0 ∈ X , there are Jφr (Z,Z ′) ∈ End(Fx0) polynomials in
Z,Z ′ ∈ R2n, satisfying the same assumptions as polynomials from Theorem 1.8, such that for
F φ
r := Jφr ·Pn, the following holds. There are ε, c > 0, such that for any k, l, l′ ∈ N, there exists
C > 0, such that for any x0 ∈ X , p ∈ N∗, Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε, α, α′ ∈ N2n, |α| + |α′| ≤ l,
and Q4

k,l,l′ := 2(n+ k + l′ + 2) + l, we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
BXφ
p

(
φx0(Z), φx0(Z

′)
)
−

k∑
r=0

p−
r
2F φ

r (
√
pZ,
√
pZ ′)κ′X

− 1
2 (Z)κ′X

− 1
2 (Z ′)

)∣∣∣∣
C l′ (X)

≤ Cp−(k+1−l)/2
(

1 +
√
p|Z|+√p|Z ′|

)Q4
k,l,l′

exp
(
− c√p|Z − Z ′|

)
, (5.27)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

Jφ0 (Z,Z ′) = IdFy0 . (5.28)

Moreover, under the assumptions (1.8), we have

Jφ1 (Z,Z ′) = 0. (5.29)
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Proof of Proposition 5.4. Recall that the diffeomorphism h was defined in (2.6), and the functions
ξL, ξF were defined in (2.8). Directly from the definitions, we obtain the following relation between
the Schwartz kernels

BX
p

(
ψ(Z), ψ(Z ′)

)
= exp

(
− pξ∗L − ξ∗F

)
(ψ(Z ′))·

BXφ
p

(
φ(h(Z)), φ(h(Z ′))

)
· exp

(
− pξL − ξF

)
(ψ(Z)). (5.30)

From (5.30), we see that to establish Proposition 5.4, it is necessary to study the Taylor expansions
of each term in (5.27) for Z := h(Z), Z ′ := h(Z ′).

From Theorem 5.5, (5.30), the fact that from Proposition 2.5, h(Z) = Z + O(|Z|2), the fact
that from Proposition 2.9, ξF (ψ(Z)) = O(|Z|) and ξL(ψ(Z)) = O(|Z|3), the fact that the above
O-terms are uniform by the coordinate description of bounded geometry, and the fact that the
coefficients of the higher order Taylor expansions can be expressed in terms of RTX , A, RF , as
described in Propositions 2.5, 2.9, we deduce (5.23) and (5.24).

To establish (5.25), let us place ourselves in coordinates as in (3.33). By (1.32), we see that

2
n∑
i=1

ziz
′
i = gTXy0

(
(Id−

√
−1J)Z, (Id +

√
−1J)Z ′

)
. (5.31)

From this, Proposition 2.5 and (1.32), we get

|h(Z)|2 = |Z|2 + 2gTXy0 (B(Z), Z) +O(|Z|4),

2
n∑
i=1

(ziz
′
i)(h(Z), h(Z ′)) = 2

n∑
i=1

ziz
′
i + 4gTXy0

(
B(Z), z′

)
+ 4gTXy0

(
z,B(Z ′)

)
+O(|Z|4).

(5.32)

From (3.33) and (5.32), we conclude that

Pn(
√
ph(Z),

√
ph(Z ′)) = Pn(

√
pZ,
√
pZ ′)·

·
(

1− π
√
p

(
gTXy0 (B(

√
pZ),

√
pZ) + gTXy0 (B(

√
pZ ′),

√
pZ ′)

− 2gTXy0
(
B(
√
pZ),

√
pz′
)
− 2gTXy0

(√
pz,B(

√
pZ ′)

))
+O

(1

p
|√pZ|4

))
.

(5.33)

Now, from Proposition 2.9 and (1.2), we get

exp
(
− pξL − ξF

)
(ψ(Z)) = 1−

√
−1π

3
√
p
gTXy0

(
J
√
pZ,B(

√
pZ)

)
+O

(
|Z|2 +

1

p
|√pZ|4

)
. (5.34)

By Lemma 2.12 and (4.15), applied for M := X , H := Y and T := Id, we get

κ
1/2
X (Z) = 1 +O(|Z|2), (5.35)

where ν ∈ C∞(Y,N) was defined (4.13). We now apply (5.35) for X := X and Y := {y0}, to get

κ′X
1/2(Z) = 1 +O(|Z|2). (5.36)



Semiclassical Ohsawa-Takegoshi extension theorem 51

From (5.27), (5.30), (5.33), (5.34), (5.35), (5.36) and an easy calculation, we deduce

J1(Z,Z ′) = −πIdFy0 ·
(
gTXy0 (B(Z), Z) + gTXy0 (B(Z ′), Z ′)

− 2
(
gTXy0

(
B(Z), z′

)
+ gTXy0

(
z,B(Z ′)

))
+

√
−1

3

(
gTXy0

(
JZ,B(Z)

)
− gTXy0

(
JZ ′, B(Z ′)

)))
.

(5.37)

By using the fact that A commutes with J and takes its values in skew-adjoint matrices, we get

gTXy0 (Z,B(Z)) = −1

2

(
gTXy0 (zN , A(ZY )zY ) + gTXy0 (zN , A(ZY )zY )

)
,

gTXy0 (JZ,B(Z)) =
3
√
−1

2

(
gTXy0 (zN , A(ZY )zY )− gTXy0 (zN , A(ZY )zY )

)
.

(5.38)

Now, we use (2.35) and the fact that A commutes with J to deduce

A(ZY )zY = A(zY )zY , A(ZY )zY = A(zY )zY . (5.39)

From (2.35), (5.37), (5.38) and (5.39), we deduce (5.25).

5.3 Orthogonal Bergman kernel asymptotics, a proof of Theorem 1.8
The main goal of this section is to prove Theorem 1.8. For this, we first use the localization
property of the orthogonal Bergman kernel, established in Theorem 5.2, to reduce our problem
to a special case X ′ := Cn, Y ′ := Cm and trivial L′, F ′ (but endowed with non trivial metrics).
Then on the pair X ′, Y ′ we make a homothety and show that the renormalization of the relevant
operators converges to the perturbations of the model operators from Section 3.2.

Let us first describe precisely the construction of X ′, Y ′, L′, F ′ and the metrics on them. As we
rely later on the complex structure of X ′, Y ′, L′, F ′ in an essential way, the construction through
geodesic coordinates, as in [30], wouldn’t suffice for our needs. We rely here in our non-compact
setting on the results of Section 2.5, and we propose an approach, which in the compact case
essentially coincides Dinh-Ma-Nguyen [16, after (2.23)].

The idea is to use holomorphic coordinates and holomoprhic frames of the vector bundles
around the fixed point y0 ∈ Y and construct the associated objects on the neighborhood of 0 ∈
Cn using those trivializations. Then we extend those objects by the partition of unity to Cn. A
special care has to be taken to preserve the positivity of the line bundle. As we would like to
compare the original setting with this localized one in a uniform way, according to Theorem 5.2,
it is fundamental to choose holomorphic coordinates and frames on geodesic balls of uniform size
around y0. At this point, the results from Section 2.5 will play a crucial role.

We fix y0 ∈ Y . Let rc, r1
c > 0 and χ : BXy0(rc)→ Cn, U := BXy0(rc), V := Imχ, as in Theorem

2.25 and Remark 2.26. We put X ′ := Cn, Y ′ := Cm.
Let holomorphic frame σ of L over BXy0(r0), r0 > 0, be constructed as in Lemma 2.24. Assume,

for simplicity, 4rc < r0 (if this is not the case, put rc := r0
8

). Define the function θ(Z) over V by

exp(−2θ(Z)) := hL(σ, σ). (5.40)
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From Lemma 2.20 and (2.75), we see that there is C > 0, which depends only on rc and Cn+6

from (2.1) and (2.7), such that ∥∥θ∥∥
C 2(V )

≤ C. (5.41)

Denote by θ[1]
0 and θ[2]

0 the first and the second order Taylor expansions of θ0 := θ ◦ χ−1 at 0. For
r1
c > ε > 0, we now define θε : Cn → R as follows

θε(Z) := ρ
( |Z|
ε

)
θ0(Z) +

(
1− ρ

( |Z|
ε

))
·
(
θ0(0) + θ

[1]
0 (Z) + θ

[2]
0 (Z)

)
, (5.42)

where ρ is a bump function as in (1.10). Let hL′ε be the metric on L′ := X ′ × C defined by

hL
′

ε (1, 1)(Z) := exp(−2θε(Z)). (5.43)

Let RL′
ε be the curvature of the Chern connection ∇L′

ε on (L′, hL
′

ε ). By (1.2), (5.41), it is easy to
see that there is a constant ε0 > 0, such that for any ε < ε0, we have

inf
{√
−1RL′

ε,Z(u, Ju)/|u|2 : u ∈ TZX ′, Z ∈ X ′
}
≥ π, (5.44)

where |u| is the norm of u ∈ TZX
′, calculated by a (trivial) identification of TZX ′ with T0X

′.
Moreover, ε0 depends only on rc and Cn+6 from (2.1) and (2.7). From now on, we fix such ε0
and remove it from all subsequent subscripts. We assume, for simplicity, that 4r1

c < ε0. From
(5.44), we see, in particular, that (L′, hL

′
) is positive. We denote by gTX′ the metric on X ′, defined

through (L′, hL
′
) as in (1.2). Of course, by (5.42), χ is then a local holomorphic isometry, defined

over BXy0(
rc
2

), between (X, gTX) and (X ′, gTX
′
).

Now, let r0 > 0 and a holomorphic frame (f1, . . . , fr) of F over BXy0(r0) be as in Lemma
2.24. Assume, for simplicity, that 4r1

c < r0. Define the function hFij(x) ∈ C, x ∈ U , as follows
hFij := hF (fi, fj). Define the metric hF ′ on F ′ := X ′ × Cr by

hF
′
(1i, 1j)(Z) := hFij

(
ρ
( |Z|
r1
c

)
· Z
)
. (5.45)

where 1l, l ∈ 1, . . . , r is the constant vector in F ′, given by (0, . . . , 0, 1, 0, . . . 0), where 1 is put in
the l-th place. The pair (F ′, hF

′
) is a Hermitian vector bundle on X ′.

Clearly, the triple (X ′, Y ′, gTX
′
) and the Hermitian vector bundles (L′, hL

′
), (F ′, hF

′
) are of

bounded geometry. Moreover, the corresponding constants Ck from (2.1), (2.3), (2.7), associated
to (X ′, Y ′, gTX

′
), (L′, hL

′
), (F ′, hF

′
), can be bounded in terms of the corresponding constants

Ck+n+6 from (2.1), (2.3), (2.7), associated to (X, Y, gTX), (L, hL), (F, hF ).
We denote by gTX′0 , hF ′0 the restrictions of gTX′ , hF ′ to 0 ∈ X ′. We interpret gTX′0 as metric

on X ′ by using the standard trivialization of TX ′ coming from the linear structure. Similarly, we
interpret hF ′0 as Hermitian metric on F ′ over X ′ by using the trivialization of F ′.

As the expansion from Theorem 1.8 is stated in Fermi coordinates, we need an analogue of
those coordinates on X ′. For technical reasons, which will become clear after (5.54), we need a
global diffeomorphism of X ′, which coincides with Fermi coordinates in a small neighborhood of
0. For 0 < ε < min{rc, R}, where R > 0 is as in (2.5), we define ψε(Z) for Z ∈ Cn as follows

ψε(Z) = ψ(Z)ρ
( |Z|
ε

)
+ Z

(
1− ρ

( |Z|
ε

))
, (5.46)



Semiclassical Ohsawa-Takegoshi extension theorem 53

where ψ(Z) ∈ X ′ is the Fermi coordinates, defined as in (1.18), but for the triple (X ′, Y ′, gTX
′
).

From bounded geometry condition, we see that there is ε2 > 0 such that for ε < ε2, the derivative
of ψε(Z) is invertible for all Z ∈ Cn, and |Dψε − Id| < 1

2
. Moreover, ε2 depends only on

rX , rY , r⊥ and C0 from (2.1) and (2.3). For simplicity, we assume that 4r1
c < ε2. We fix such ε2

and denote ψε2 by ψ0 from now on. As ψ0(Z) obviously satisfies ψ0(Z)→∞, as |Z| → ∞, by the
invertibility ofDψ0 and Hadamards global inverse function theorem, cf. [28, Theorem 6.2.4], ψ0 is
a diffeomorphism. Clearly, as Fermi coordinates preserve Y ′, by (5.46), ψ0|Cm is a diffeomorphism
on Cm.

We define the volume form dvX′ on X ′ as follows

dvX′ := ρ
( |Z|
rc

)
(χ−1)∗dvX +

(
1− ρ

( |Z|
rc

))
dZ1 ∧ · · · ∧ dZ2n. (5.47)

Similarly to (1.19), we define the function κX′ : X ′ → R as follows

(ψ∗0dvX′)(Z) = κX′(Z)dZ1 ∧ · · · ∧ dZ2n. (5.48)

Clearly, since ψ0(Z) = Z, as |Z| → ∞, we have κX′(Z) = 1, as |Z| → ∞.
Now, let us fix e ∈ L′0 and f1, . . . , fr ∈ F ′0, and consider the orthonormal frames ẽ and

f̃1, . . . , f̃r, constructed as in Theorem 1.6, for L′, F ′, but instead of ψ, using ψ0. As ψ0 is globally
defined, those frames become also globally defined.

Let us now consider the Bergman projector BX
p
′ (resp. the orthogonal Bergman projector B⊥p

′)
associated to X ′, L′, F ′. This is a self-adjoint operator, acting on the L2-space L2(dvX′ , h

L′⊗p⊗F ′).
The above orthonormal frames allow us to see BX

p
′ (resp. B⊥p

′) as a self-adjoint operator, acting
on the L2-space L2(dvX′ , h

F ′
0 ). We denote by BX

p
′(x1, x2), B′p

⊥(x1, x2) the Schwartz kernels of
those operators with respect to dvX′ . The following theorem essentially shows that it is enough to
establish our main result of this section for X ′, L′, F ′ instead of X,L, F .

Lemma 5.6. There are c > 0, p1 ∈ N∗, such that for any k ∈ N, there is C > 0, such that for any
y0 ∈ Y , p ≥ p1, x1, x2 ∈ BXy0(

rc
4

), the following estimate holds∣∣∣B⊥p (x1, x2)−B′p⊥(x1, x2)
∣∣∣
C k(X×X)

≤ C exp(−c√p), (5.49)

where we implicitly identified x1, x2 to points in X ′ using χ.

Proof. It follows from Theorem 5.2 and the fact that χ is a holomorphic diffeomorhism, which
extends to isometries between (L, hL), (F, hF ) and (L′, hL

′
), (F ′, hF

′
) over BXy0(

rc
2

).

The advantage of passing from X,L, F to X ′, L′, F ′ is twofold. First, since all the vector
bundles are now trivialized, the operators BX

p
′ and B⊥p

′ might be considered as operators, acting
on the same space (independent of p). Second, as X ′ is equal to Cn, we can use the homothety on
X ′ in our analysis. We will use both of those features in what follows.

We define t > 0 as in (4.3) and St : C∞(U, Fy0)→ C∞(BXy0(tR), Fy0) as follows

Stf(Z) := f
(Z
t

)
. (5.50)

Clearly, for any f, f ′ ∈ L2(gTX
′

0 , hF
′

0 ), we have〈
Stf, Stf

′〉
L2(gTX

′
0 )

= t2n
〈
f, f ′

〉
L2(gTX

′
0 )

. (5.51)
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We also consider a map U : L2(gTX
′

0 , hF
′

0 )→ L2(dvX′ , h
F ′
0 ), defined as follows

(Uf)(Z) = κ
−1/2
X′ (ψ−1

0 (Z)) · f(ψ−1
0 (Z)). (5.52)

An easy verification using (5.48) shows that U is well-defined and it is an isometry, i.e.〈
Uf, Uf ′

〉
L2(dvX′ )

=
〈
f, f ′

〉
L2(gTX

′
0 )

. (5.53)

We now consider another operators Bt, B⊥t , acting on L2(gTX
′

0 , hF
′

0 ) as follows

Bt := S−1
t ◦ U−1 ◦BX

p
′ ◦ U ◦ St,

B⊥t := S−1
t ◦ U−1 ◦B⊥p ′ ◦ U ◦ St.

(5.54)

From (5.51) and (5.53), we see that Bt, B⊥t are self-adjoint.
We denote by Bt(Z,Z ′), B⊥t (Z,Z ′) the Schwartz kernels of Bt, B⊥t with respect to the vol-

ume form dvgTX′0
on X ′. An easy calculation shows that they are related to the Schwartz kernels

BX
p
′(Z,Z ′), B⊥p

′(Z,Z ′) of BX
p
′, B⊥p

′, evaluated with respect to dvX′ as follows

Bt(Z,Z ′) = t2nBX
p
′(ψ0(tZ), ψ0(tZ ′)

)
κ

1
2

X′(tZ)κ
1
2

X′(tZ
′),

B⊥t (Z,Z ′) = t2nB⊥p
′(ψ0(tZ), ψ0(tZ ′)

)
κ

1
2

X′(tZ)κ
1
2

X′(tZ
′),

(5.55)

Lemma 5.7. There is ε > 0, such that for any l ∈ N, there existsC > 0, such that for any Z ∈ R2n,
|Z| ≤ ε

t
, p ∈ N∗, f ∈ Im(Bt), α ∈ N2n, |α| ≤ l, we have∣∣∣ ∂|α|

∂Zα
f(Z)

∣∣∣ ≤ C
∥∥f∥∥

L2(gTX
′

0 )
. (5.56)

Proof. Clearly, by (5.54), we have

ImBt ⊂ (S−1
t ◦ U−1)

(
H0

(2)(X
′, L′p ⊗ F ′)

)
. (5.57)

We conclude by this, Proposition 5.4 and (5.55).

We will now introduce the operator E0, sending the sections of F ′ over Y ′ to the sections of F ′

over X ′ by the following formula

(E0f)(ZY , ZN) = f(ZY ) exp
(
− π

2
|ZN |2

)
. (5.58)

Denote by At the operator, acting on L2(gTX
′

0 , hF
′

0 ), as follows

At := E0 ◦ ResY ′ ◦ Bt, (5.59)

where ResY ′ is the restriction operator (which is well-defined in the considered composition as Bt
has smooth Schwartz kernel). We define the operator Ct on L2(gTX

′
0 , hF

′
0 ), as follows

Ct := A∗t ◦ At, (5.60)

where A∗t is the adjoint of At. The operator Ct will be our main tool in the proof of Theorem 1.8.
Remark its similarity with (5.2). Let us study some of its properties.
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Lemma 5.8. The operator Ct is self-adjoint, and there are constants a, b > 0, p1 ∈ N, such that

Spec(Ct) ⊂ {0} ∪ [a, b], (5.61)

for any p ≥ p1. Moreover, we have the following

(ker Ct)⊥ = (S−1
t ◦ U)

(
H0,⊥

(2) (X ′, L′p ⊗ F ′)
)
. (5.62)

Proof. The proof is identical to (5.3) and (5.4).

Lemma 5.9. The Schwartz kernel Ct(Z,Z ′) of Ct with respect to dvCn satisfies the following
bound. There are c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0, such that for any
p ≥ p1, Z,Z ′ ∈ R2n, α, α′ ∈ N2n, |α|+ |α′| ≤ l, we have∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′
Ct(Z,Z ′)

∣∣∣
C l′ (Y )

≤ C exp
(
− c
(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
, (5.63)

where the C l′-norm is calculated with respect to y0, which was fixed in the beginning of the section.

Proof. From Theorem 4.6, (5.55) and (5.59), we conclude that a bound like (5.63) holds for
At(Z,Z ′) instead of Ct(Z,Z ′). It is uniform in C l′-norm with respect to the choice of y0 ∈ Y
because the construction of X ′, Y ′, (L′, hL

′
), etc. depends smoothly on y0 and the Bergman kernel

expansion depends also smoothly on y0. We now conclude by Lemma 3.1 and (5.60).

Lemma 5.10. For any r ∈ N, there are J ′r (Z,Z ′) ∈ End(F ′0) polynomials in Z,Z ′ ∈ R2n with the
same properties as in Theorem 1.6, such that for F ′r := J ′r ·P⊥

n,m, the following holds.
There are ε, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0, such that for p ≥ p1,

Z,Z ′ ∈ Ty0X , |Z|, |Z ′| ≤ ε
t
, α, α′ ∈ N2n, |α|+ |α′| ≤ l, we have

∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
Ct(Z,Z ′)−

k∑
r=0

trF ′r(Z,Z ′)
)∣∣∣∣

C l′ (Y )

≤ Ctk+1−m·

·
(

1 + |Z|+ |Z ′|
)Q5

k,l,l′
exp

(
− c
(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
, (5.64)

where Q5
k,l,l′ := 3(2n+ k + l′ + 4) + l. Also, the following identity holds

J ′0(Z,Z ′) = IdFy0 . (5.65)

Moreover, under the assumptions (1.8), we have

J ′1(Z,Z ′) = IdFy0 ·π·
(
gTXy0

(
zN , A(zY−z′Y )(zY−z′Y )

)
+gTXy0

(
z′N , A(zY−z′Y )(zY−z′Y )

))
. (5.66)

Remark 5.11. From (5.63), (5.64), (5.65) and the fact that P⊥
n,m is the orthogonal projector by the

results of Section 3.2, we see that for a, b from Lemma 5.8, we have a ≤ 1 ≤ b.

Proof. Recall that polynomials Jr(Z,Z ′) and ε, c > 0 were defined in Proposition 5.4. From
Proposition 5.4, (3.40), (5.55) and (5.59), we conclude that for

Jr,0(Z,Z ′) := Jr(ZY , Z
′), (5.67)
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we can define Fr,0 := Jr,0 ·P⊥
n,m, so that there is C > 0, such that for any |Z|, |Z ′| < ε

t
, p ∈ N∗,

we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
At(Z,Z ′)−

k∑
r=0

trFr,0(Z,Z ′)

)∣∣∣∣
C l′ (Y )

≤ Ctk+1−m ·
(

1 + |Z|+ |Z ′|
)Q3

k,l,l′
exp

(
− c
(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (5.68)

From Lemma 3.8, (5.60) and (5.68), we conclude that (5.64) holds for c := c
8
, ε := ε

4
and

J ′r (Z,Z ′) =
r∑

r′=0

Kn,m[Jr0,0(Z ′, Z),Jr−r0,0(Z,Z ′)], (5.69)

where we borrowed the notation from Lemma 3.5. From (5.24), (5.67) and (5.69), we deduce
(5.65). From (3.49) and (5.25), we deduce

Kn,m[J0,0(Z ′, Z),J1,0(Z,Z ′)] = IdFy0 · π · g
TX
y0

(
z′N , A(zY − z′Y )(zY − z′Y )

)
. (5.70)

Now, remark that the summands from the equation (5.69), for r = 1, are the adjoints of each other.
From this and (5.70), we deduce (5.66).

Proof of Theorem 1.8. Let us show that Theorem 1.8 follows from Lemmas 5.6, 5.7, 5.8, 5.9, 5.10.
More precisely, from Lemma 5.6 and (5.55), we see that it is enough to establish that there are
polynomials J⊥r , r ∈ N as in Theorem 1.8, and ε, c > 0, p1 ∈ N∗, such that for F⊥r as in Theorem
1.8 and any k, l, l′ ∈ N, there exists C > 0, such that for any p ≥ p1, Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε

t
,

α, α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds

∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
B⊥t (Z,Z ′)−

k∑
r=0

trF⊥r (Z,Z ′)

)∣∣∣∣
C l′ (Y )

≤ Ctk+1
(

1 + |Z|+ |Z ′|
)Q2

k,l,l′
exp

(
− c
(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (5.71)

We will establish now that there are polynomials J⊥r , r ∈ N, as described above, such that for
some constant C1 > 0, the following bound holds∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
B⊥t (Z,Z ′)−

2k+1∑
r=0

trF⊥r (Z,Z ′)

)∣∣∣∣
C l′ (Y )

≤ C1t
2k+2

(
1 + |Z|+ |Z ′|

)Q′′
2k+1,l,l′

, (5.72)

where Q′′k,l,l′ := 3(4(n + 2)(k + 1) + l′) + l. Before this, let us show that this will imply (5.71).
Remark that from Theorem 1.7, the bound on the degrees of J⊥r , r ∈ N, and the fact that the
polynomials J⊥r depend smoothly on y0, we see that there are c, C2 > 0, p1 ∈ N, such that for
p ≥ p1, Z,Z ′ ∈ R2n, α, α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds

∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
B⊥t (Z,Z ′)−

2k+1∑
r=0

trF⊥r (Z,Z ′)

)∣∣∣∣
C l′ (Y )
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≤ C2

(
1 + |Z|+ |Z ′|

)6k+l+l′+6

exp
(
− c
(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (5.73)

From (5.72), (5.73) and Cauchy inequality, we deduce (5.71). Hence, it is left to establish (5.72),
on which we concentrate from now on.

From (5.54), we see that B⊥t , Bt are the only self-adjoint operators on L2(gTX
′

0 , hF
′

0 ) such that

SpecB⊥t ⊂ {0, 1}, (kerB⊥t )⊥ = (S−1
t ◦ U)

(
H0,⊥

(2) (X ′, L′p ⊗ F ′)
)
,

SpecBt ⊂ {0, 1}, (kerBt)⊥ = (S−1
t ◦ U)

(
H0

(2)(X
′, L′p ⊗ F ′)

)
,

(5.74)

From this and Lemma 5.8, we see that for a, b as in Lemma 5.8, we have

B⊥t =

∫
Ω

1

λ− Ct
dλ, (5.75)

where Ω ⊂ C is a circle not containing {0} inside of it, but containing {a, b}. By Remark 5.11, we
see that Ω contains 1 inside of it.

Let us now show the existence of polynomials J⊥r (Z,Z ′) ∈ End(Fy0) as in Theorem 1.8
and provide an algorithmic way of constructing them. We denote by C0 the operator, acting on
L2(gTX

′
0 , hF

′
0 ) by the convolution with smooth kernel P⊥

n,m(Z,Z ′) · IdF ′0 . By the results of Section
3.2, the operator C0 is an orthogonal projection, hence we have

1

λ− C0

=
1− C0

λ
+
C0

λ− 1
. (5.76)

Now, let us apply the resolvent formula

1

λ− Ct
− 1

λ− C0

=
1

λ− Ct
(
Ct − C0

) 1

λ− C0

. (5.77)

By using (5.76) and (5.77) inductively, we see that for a given k ∈ N, we can represent

1

λ− Ct
=

1

λ− Ct
Ak +Bk, (5.78)

where the operators Ak (resp. Bk) are the linear combinations with coefficients given by some
universal rational functions (in λ) of the operators of the form

B
(
Ct − C0

)k1C0 · · · C0

(
Ct − C0

)klB′, (5.79)

where l ∈ N, k1, . . . , kl ∈ N∗, k1 + · · ·+ kl = k, (resp. k1 + · · ·+ kl ≤ k) and B, B′ are either the
identity operators or C0. Now, from Lemma 5.8 and (5.74), we deduce that

1

λ− Ct
= Bt

1

λ− Ct
+

1− Bt
λ

. (5.80)

We now rewrite (5.78) using (5.80) as follows

1

λ− Ct
= Bt

1

λ− Ct
Ak +

1− Bt
λ

Ak +Bk. (5.81)
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Now, by Lemmas 3.7, 5.10, each of the terms in (5.79) admit Taylor-type expansions as in
(5.64) for Z,Z ′ ∈ Cn, |Z|, |Z ′| < ε

2t
, where ε is as in Lemma 5.10. From this and Lemma 3.8, we

deduce that there are polynomials, having the same properties as described in Theorem 1.8, which
we denote by J⊥r (Z,Z ′) ∈ End(Fy0), r ≤ k, such that for F⊥r , defined as in Theorem 1.8, there are
ε, c > 0, p1 ∈ N∗, such that for any l, l′ ∈ N, there is C3 > 0, such that for p ≥ p1, Z,Z ′ ∈ Ty0X ,
|Z|, |Z ′| ≤ ε

2t
, α, α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds

∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

((∫
Ω

Bkdλ
)

(Z,Z ′)−
k∑
r=0

trF⊥r (Z,Z ′)

)∣∣∣∣
C l′ (Y )

≤ C3t
k+1
(

1 + |Z|+ |Z ′|
)Q′′

k,l,l′
. (5.82)

Also, since by Lemma 5.10, the first term of the Taylor-type expansion of Ct − C0 vanishes, and
each term in Ak has exactly k multiplicands Ct − C0, by Lemma 3.7, we conclude that there is
c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C4 > 0, such that for p ≥ p1, Z,Z ′ ∈ Ty0X ,
|Z|, |Z ′| ≤ ε

2t
, α, α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

((∫
Ω

1− Bt
λ

Akdλ
)

(Z,Z ′)

)∣∣∣∣
C l′ (Y )

≤ C4t
k
(

1 + |Z|+ |Z ′|
)Q′′

k,l,l′
. (5.83)

We will now show that the first summand on the right-hand side of (5.81) is bounded by the
term in the right-hand side of (5.72). For this, let us fix Z ′ ∈ Cn, |Z ′| < ε

2t
. From Lemma 3.7,

similarly to (5.83), we deduce that there is C5 > 0, such that we have∣∣∣ ∂|α′|
∂Z ′α

Ak(Z,Z
′)
∣∣∣ ≤ C5t

k(1 + |Z|+ |Z ′|)Q
′′
k,l,l′ exp

(
− c

8

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (5.84)

From (3.65) and (5.84), we readily deduce that there is C6 > 0, such that∥∥∥ ∂|α′|
∂Z ′α′

Ak(·, Z ′)
∥∥∥
L2(gTX

′
0 )
≤ C6t

k(1 + |Z ′|)Q
′′
k,l,l′ . (5.85)

However, by the choice of Ω, there exists c > 0, such that for any λ ∈ Ω, we have

Spec
(
Bt

1

λ− Ct

)
⊂ BC

0 (c). (5.86)

From (5.85) and (5.86), we deduce that there is C7 > 0, such that∥∥∥ ∂|α′|
∂Z ′α′

(
Bt

1

λ− Ct
Ak

)
(·, Z ′)

∥∥∥
L2(gTX

′
0 )
≤ C7t

k(1 + |Z ′|)Q
′′
k,l,l′ . (5.87)

From Lemma 5.7 and (5.87), we deduce that there is C8 > 0, such that for any Z,Z ′ ∈ Cn,
|Z|, |Z ′| < ε

2t
, we have∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′

(
Bt

1

λ− Ct
Ak

)
(Z,Z ′)

∣∣∣ ≤ C8t
k(1 + |Z ′|)Q

′′
k,l,l′ . (5.88)
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From (5.75), (5.78), (5.81), (5.82), (5.83) and (5.88), we deduce (5.72). Also, from (5.82), we
deduce the general algorithm for the construction of the polynomials J⊥r .

Now it only left to prove (1.28) and (1.29). For this, let us find explicit formula for B1, as the
polynomials J⊥0 , J⊥1 , can be then read off from (5.82). For this, we apply once (5.80) and then
twice (5.77) to get

1

λ− Ct
=

1

λ− C0

+
1

λ− C0

(
Ct − C0

) 1

λ− C0

+
1

λ− Ct
(
Ct − C0

) 1

λ− C0

(
Ct − C0

) 1

λ− C0

. (5.89)

From (5.76), (5.78) and (5.89), we deduce that

B1 =
(1− C0

λ
+
C0

λ− 1

)
+
(1− C0

λ
+
C0

λ− 1

)(
Ct − C0

)(1− C0

λ
+
C0

λ− 1

)
. (5.90)

Now, by Remark 5.11 and the choice of Ω, we have the identities∫
Ω

1

λ
dλ = 0,

∫
Ω

1

λ− 1
dλ = 1,

∫
Ω

1

λ2
dλ = 0,∫

Ω

1

(λ− 1)2
dλ = 0,

∫
Ω

1

λ(λ− 1)
dλ = 1.

(5.91)

From (5.90) and (5.91), we deduce∫
Ω

B1dλ = C0 + (1− C0)(Ct − C0)C0 + C0(Ct − C0)(1− C0). (5.92)

Hence, by using the fact that C2
0 = C0, the fact that by Lemma 5.10, the first term of the Taylor-type

expansion of Ct − C0 vanishes, and (5.92), we deduce (1.28).
Now, let us establish (1.29). By using the notations from Proposition 5.4, Remark 3.6 and

(5.66), we deduce from (5.82) and (5.92) the following identity

J⊥1 (Z,Z ′) = Kn,m
[
J ′1 ,J

′

0

]
− 2Kn,m

[
J ′0 ,Kn,m

[
J ′1 ,J

′

0

]]
+Kn,m

[
J ′0 ,J

′

1

]
. (5.93)

We will now calculate each term in (5.93). From (3.49), (3.50) and (5.66), we deduce

Kn,m
[
J ′1 ,J

′

0

]
(Z,Z ′) = IdFy0 · πg

(
zN , A(zY − z′Y )(zY − z′Y )

)
. (5.94)

From (3.50) and (5.94), we deduce

Kn,m
[
J ′0 ,Kn,m

[
J ′1 ,J

′

0

]]
(Z,Z ′) = 0. (5.95)

Now, (1.29) follows directly from (5.93), (5.94) and (5.95).

5.4 Asymptotics of the extension, proofs of Theorems 1.1, 1.5, 1.6, 1.10
The main goal of this section is to prove Theorem 1.1, Corollary 1.3 and Theorems 1.5, 1.6, 1.10.
Theorem 1.1, Corollary 1.3 and Theorem 1.10 will follow almost directly from Theorems 1.5, 1.6.
The main idea for the proof of Theorems 1.5, 1.6, is to find an algebraic expression for Ep in
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terms of B⊥p , BY
p and ResY and then to get the needed results by transferring the statements from

Theorems 1.7, 1.8.
We conserve the notations from Section 1. Define the operators Gp : L2(Y, ι∗(Lp ⊗ F )) →

L2(Y, ι∗(Lp ⊗ F )) and Ip : L2(Y, ι∗(Lp ⊗ F ))→ L2(X,Lp ⊗ F ) as follows

Gp := ResY ◦ Ip −BY
p , Ip := B⊥p ◦ E0

p ◦BY
p . (5.96)

The formula for Ep in terms of B⊥p , BY
p and ResY is based on the infinite summation with the

operator Gp. To get a grip on this infinite sum, we need to study the properties of Gp.

Lemma 5.12. There are c > 0, p1 ∈ N∗, such that for any k ∈ N, there is C > 0, such that for any
p ≥ p1, y1, y2 ∈ Y , the following estimate holds∣∣∣Gp(y1, y2)

∣∣∣
C k(Y×Y )

≤ Cpm+ k−1
2 · exp

(
− c√p · distX(y1, y2)

)
, (5.97)

where the pointwise C k-norm is interpreted as in Theorem 1.5.
Also, for any r ∈ N, y0 ∈ Y , there are Jr,G(ZY , Z

′
Y ) ∈ End(Fy0) polynomials in ZY , Z ′Y ∈

R2m, satisfying the same properties as in Theorem 1.6, such that for Fr,G := Jr,G · Pm, the
following holds. There are ε, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0, such
that for any y0 ∈ Y , p ≥ p1, ZY , Z ′Y ∈ R2m, |ZY |, |Z ′Y | ≤ ε, α, α′ ∈ N2m, |α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α

′|

∂Zα
Y ∂Z

′
Y
α′

(
1

pm
Gp

(
ψy0(ZY ), ψy0(Z

′
Y )
)
−

k∑
r=0

p−
r
2Fr,G(

√
pZY ,

√
pZ ′Y )κ

− 1
2

Y (ZY )κ
− 1

2
Y (Z ′Y )

)∣∣∣∣
C l′ (Y )

≤ Cp−
k+1−l

2

(
1 +
√
p|ZY |+

√
p|Z ′Y |

)2Q2
k,l,l′

exp
(
− c√p|ZY − Z ′Y |

)
, (5.98)

where Q2
k,l,l′ > 0 is defined in Theorem 1.8. Moreover, we have

J0,G = 0. (5.99)

And under assumption (1.8), we even have

J1,G = 0, (5.100)

so that pm+ k−1
2 in (5.97) in this case can be replaced by pm−1+ k

2 .

Proof. First of all, by Lemma 3.1 and Theorem 4.6, there are c > 0, p1 ∈ N∗, such that for any
k ∈ N, there is C > 0, such that for p ≥ p1, y1, y2 ∈ Y , the following estimate holds∣∣∣Gp(y1, y2)

∣∣∣
C k(Y×Y )

≤ Cpn+ k
2 · exp

(
− c√p · distX(y1, y2)

)
. (5.101)

Now (5.101) implies (5.97) for y1, y2 ∈ Y verifying distX(y1, y2) > R, where R is defined in (2.5)
(and for a different choice of c, C). Hence, it is enough to establish (5.98), (5.99) to get (5.97) for
all y1, y2 ∈ Y . Let us concentrate on this now.

Let J ′r,Y (ZY , Z
′
Y ) ∈ End(Fy0) be the polynomials in ZY , Z ′Y ∈ R2m, r ∈ N, given by Theorem

5.5, applied forX := Y . Recall that polynomials J⊥r (Z,Z ′) ∈ End(Fy0), were defined in Theorem
1.8. We rewrite Ip in the following equivalent form

Ip :=
(
B⊥p · κ

1
2
N

)
◦
(
κ
− 1

2
N · E

0
p

)
◦BY

p . (5.102)
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For k ∈ N, let us now write the Taylor expansions of κ
1
2
N , κ

− 1
2

N in a neighborhood of y0 as follows

κ
1
2
N(Z) =

k∑
i=0

κ
1
2

N,[i](Z) +O(|Z|k+1), κ
− 1

2
N (Z) =

k∑
i=0

κ
− 1

2

N,[i](Z) +O(|Z|k+1), (5.103)

where κ
1
2

N,[i](Z), κ
− 1

2

N,[i](Z) are homogeneous polynomials of degree i. We denote now

J⊥,κr :=
r∑

r0=0

J⊥r0(Z,Z
′) · κ

1
2

N,[r−r0](Z
′). (5.104)

By Theorems 1.7, 1.8, Lemma 3.10 and Theorems 4.6, 5.5, we conclude that for

JEr,I(Z,Z
′
Y ) =

r∑
r0=0

K′′n,m[J⊥,κr0
, J ′r−r0,Y ] (5.105)

and for FE
r,I := JEr,I · En,m, the following holds. There are ε, c > 0, p1 ∈ N∗, such that for any

k, l, l′ ∈ N, there is C > 0, such that for any p ≥ p1, y0 ∈ Y , Z = (ZY , ZN), ZY , Z ′Y ∈ R2m,
ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε, α ∈ N2n, α′ ∈ N2m, |α|+ |α′| ≤ l, we have

∣∣∣∣ ∂|α|+|α
′|

∂Zα∂Z ′Y
α′

(
1

pm
Ip
(
ψy0(Z), ψy0(Z

′
Y )
)
−

k∑
r=0

p−
r
2FE

r,I(
√
pZ,
√
pZ ′Y )κ

− 1
2

X (Z)κ
− 1

2
Y (Z ′Y )

)∣∣∣∣
C l′ (Y )

≤ Cp−
k+1−l

2

(
1 +
√
p|Z|+√p|Z ′Y |

)2Q2
k,l,l′

exp
(
− c√p

(
|ZY − Z ′Y |+ |ZN |

))
. (5.106)

From Theorem 5.5, (5.96) and (5.106), we conclude that (5.98) holds for

Jr,G(ZY , Z
′
Y ) :=

r∑
r0=0

κ
− 1

2

N,[r0](ZY ) · JEr−r0,I(ZY , Z
′
Y )− J ′r,Y (ZY , Z

′
Y ). (5.107)

From (1.28), (5.28) and (5.105), we conclude

JE0,I = IdFy0 · κ
1
2
N(y0). (5.108)

From (5.28), (5.107) and (5.108), we obtain (5.99).
Now, we assume (1.8). From (1.29), (3.46), (3.48), (3.50), (4.15), (5.29), (5.35), and (5.105),

we get
JE1,I(Z,Z

′
Y ) = IdFy0 · πg

TX
y0

(
zN , A(zY − z′Y )(zY − z′Y )

)
. (5.109)

We obtain (5.100) from (5.107) and (5.109).

Lemma 5.13. There are C > 0, p1 ∈ N∗, such that for any p ≥ p1, we have∥∥Gp

∥∥ ≤ C
√
p
. (5.110)

Moreover, under assumption (1.8), in the above inequality, we can replace
√
p by p.
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Proof. First of all, by Corollary 3.3 and Lemma 5.12, there are C > 0, p1 ∈ N∗, such that for any
y0 ∈ Y , for p ≥ p1, we have∫

Y

∣∣Gp(y0, y)
∣∣dvY (y) ≤ C

√
p
,

∫
Y

∣∣Gp(y, y0)
∣∣dvY (y) ≤ C

√
p
. (5.111)

The result now follows from (5.111) and Young’s inequality for integral operators, cf. [40, Theorem
0.3.1] applied for p, q = 2, r = 1 in the notations of [40]. The second part is proved using (5.100)
in exactly the same way, one only has to rely on the comment after (5.100).

Lemma 5.13 now implies that there is p1 ∈ N∗, such that for p ≥ p1, the infinite sum

Tp :=
∞∑
i=1

(−1)iGi
p. (5.112)

is well-defined as an operator on L2(Y, ι∗(Lp ⊗ F )).

Lemma 5.14. The following identity holds

Ep = Ip + Ip ◦ Tp. (5.113)

Proof. Since B⊥p has values in H0,⊥
(2) (X,Lp ⊗ F ), and Gp vanishes on the kernel of BY

p by (5.96),
it is enough to establish that

ResY ◦
(
Ip + Ip ◦ Tp

)
= BY

p . (5.114)

This identity follows from the observation that for any i ∈ N∗, we have

ResY ◦B⊥p ◦ E0
p ◦Gi

p = ResY ◦ Ip ◦Gi
p, ResY ◦B⊥p ◦ E0

p ◦Gi
p = Gi+1

p +Gi
p, (5.115)

which, on its turn, follows by an application of the right composition with Gi
p in (5.96), and the

identity BY
p ◦Gp = Gp, following from (4.1).

Proof of Theorem 1.5. By Lemmas 3.1, 5.12, and the fact that for any C > 0 there is p1 ∈ N∗ such
that for p ≥ p1, the sum

∑∞
i=0( C√

p
)i converges, we deduce that there is c > 0, such that for any

k ∈ N, there is C > 0, such that for p ≥ p1, the following estimate for the Schwartz kernel holds∣∣∣Tp(y1, y2)
∣∣∣
C k(Y×Y )

≤ Cpm+ k−1
2 · exp

(
− c√p · distX(y1, y2)

)
. (5.116)

Moreover, under assumption (1.8), we can replace pm+ k−1
2 by pm−1+ k

2 . We conclude by Theorem
1.7, Lemmas 3.1, 5.14 and (5.116).

Proof of Theorem 1.6. Let us fix k ∈ N and establish Theorem 1.6 for it. By Lemmas 3.9, 5.12,
we conclude that for any r ∈ N, y0 ∈ Y , there are Jr,T (ZY , Z

′
Y ) ∈ End(Fy0) polynomials in

ZY , Z
′
Y ∈ R2m, satisfying the same properties as in Theorem 1.6, such that for Fr,T := Jr,T ·Pm,

the following holds. There are ε, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0,
such that for any y0 ∈ Y , p ≥ p1, ZY , Z ′Y ∈ R2m, |ZY |, |Z ′Y | ≤ ε, α, α′ ∈ N2m, |α|+ |α′| ≤ l, the
following bound holds
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∣∣∣∣ ∂|α|+|α
′|

∂Zα
Y ∂Z

′
Y
α′

(
1

pm
Tp
(
ψy0(ZY ), ψy0(Z

′
Y )
)
−

k∑
r=0

p−
r
2Fr,T (

√
pZY ,

√
pZ ′Y )κ

− 1
2

Y (ZY )κ
− 1

2
Y (Z ′Y )

)∣∣∣∣
C l′ (Y )

≤ Cp−
k+1−l

2

(
1 +
√
p|ZY |+

√
p|Z ′Y |

)Q′′
k,l,l′

exp
(
− c√p|ZY − Z ′Y |

)
, (5.117)

where Q′′′k,l,l′ := 6(8(n+ 2)(2k + 1) + l′) + 2l. Moreover, we have

J0,T = 0. (5.118)

And under assumption (1.8), we even have

J1,T = 0. (5.119)

Now, by Lemma 3.10, (5.106) and (5.117), we deduce the asymptotic expansion (1.21) for

JEr := JEr,I +
r∑

r1=0

K′′′n,m[JEr1,I , Jr−r1,T ]. (5.120)

From (5.108), (5.118) and (5.120), we deduce (1.22). Moreover, under assumption (1.8), from
(5.109), (5.118), (5.119) and (5.120), we deduce (1.23).

Proof of Theorem 1.1. The main idea of the proof is to compare the Schwartz kernels of Ep and
E0
p. Let us denote Kp := Ep − E0

p. From (1.9), remark that the Schwartz kernel, E0
p(x, y), x =

(y′, ZN) ∈ BXY (r⊥), y ∈ Y , of E0
p, evaluated with respect to dvY , equals to

E0
p(x, y) = ρ

( |ZN |
r⊥

)
· exp

(
− pπ

2
|ZN |2

)
·BY

p (y′, y). (5.121)

From this and Theorem 4.6, we conclude that there are c1, C1 > 0, p1 ∈ N∗, such that for any
p ≥ p1, x ∈ X , y ∈ Y , the following estimate holds∣∣∣E0

p(x, y)
∣∣∣ ≤ C1p

m exp
(
− c1
√
pdist(x, y)

)
. (5.122)

From Theorem 1.5 and (5.123), we conclude that there are c2, C2 > 0, p1 ∈ N∗, such that for any
p ≥ p1, x ∈ X , y ∈ Y , the following estimate holds∣∣∣Kp(x, y)

∣∣∣ ≤ C2p
m+ k

2 exp
(
− c2
√
pdist(x, y)

)
. (5.123)

Let us now denote by Jφr,Y (ZY , Z
′
Y ), r ∈ N, the polynomials from Theorem 5.5, applied for X :=

Y . From Theorems 1.6, 5.5, we deduce that for polynomials

JEr,K(Z,Z ′Y ) := JEr (Z,Z ′Y )−
r∑

r0=0

κ
1
2

N,[r−r0](ZY ) · Jφr0,Y (ZY , Z
′
Y ), r ∈ N, (5.124)

and the functions FE
r,K := JEr,K · En,m over R2n × R2m, the following holds. There are ε, c > 0,

p1 ∈ N∗, such that for any k ∈ N, there isC3 > 0, such that for any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN),
ZY , Z

′
Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε, we have
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∣∣∣∣ 1

pm
Kp

(
ψy0(Z), ψy0(Z

′
Y )
)
−

k∑
r=0

p−
r
2FE

r,K(
√
pZ,
√
pZ ′Y )κ

− 1
2

X (Z)κ
− 1

2
Y (Z ′Y )

∣∣∣∣
≤ C3p

− k+1
2

(
1 +
√
p|Z|+√p|Z ′Y |

)Q1
k,0,0

exp
(
− c√p

(
|ZY − Z ′Y |+ |ZN |

))
. (5.125)

From (1.22), (5.28) and (5.124), we deduce

JE0,K(Z,Z ′Y ) = 0. (5.126)

Moreover, under assumption (1.8), from (1.23), (5.29) and (5.124), we deduce

JE1,K(Z,Z ′Y ) = JE1 (Z,Z ′Y ). (5.127)

In particular, from (5.125) and (5.126), we see that for some C4 > 0, we can improve (5.123) as
follows ∣∣∣Kp(x, y)

∣∣∣ ≤ C4p
m− 1

2 exp
(
− c√pdist(x, y)

)
. (5.128)

From (5.128) and the use of Young’s inequality for integral operators as in Section 4.3, we
deduce that there are C5 > 0, p1 ∈ N∗, such that for any p ≥ p1, we have ‖Kp‖ ≤ C5

p
n−m+1

2
, which

implies (1.11). In an analogous way, from (1.23), (5.123), (5.125), (5.126) and (5.127), under
additional assumptions (1.8) and A = 0, we see that in (1.11), one can replace p

n−m+1
2 by p

n−m+2
2 .

Now, an easy calculation, using (1.7), shows that for any g ∈ L2(Y, ι∗(Lp ⊗ F )), we have∥∥E0
pg
∥∥
L2(dvX)

=
∥∥f(p, y) ·BY

p g
∥∥
L2(dvY )

, (5.129)

where the function f : N× Y → R is defined as

f(p, y)2 :=

∫
R2(n−m)

κN(y,
√
pZN) · exp(−pπ|ZN |2)ρ

( |ZN |
r⊥

)2

dZ2m+1 ∧ · · · ∧ dZ2n. (5.130)

From the calculation of Gaussian integral, as p→∞, we have

f(p, y)2 =
κN(y)

pn−m
+O

( 1

pn−m+ 1
2

)
. (5.131)

From (1.11), (5.129), (5.130) and (5.131), we deduce (1.12).
Now, consider the Toeplitz operator TκN ,p : L2(Y, ι∗(Lp⊗F ))→ L2(Y, ι∗(Lp⊗F )), given by

TκN ,pg := BY
p (κN ·BY

p g). (5.132)

Then, we clearly have 〈
TκN ,pg, g

〉
L2(dvY )

=
〈
κN ·BY

p g,B
Y
p g
〉
L2(dvY )

. (5.133)

Thus, by (5.129) and (5.131), we have∥∥E0
p

∥∥
L2(dvX)

=
1

p
n−m

2

∥∥TκN ,p∥∥ 1
2 +O

( 1

p
n−m+1

2

)
. (5.134)
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Recall that for compact manifolds Y , Bordemann-Meinrenken-Schlichenmaier [7, Theorem
4.1] (for (F, hF ) trivial) and Ma-Marinescu [31, Theorem 3.19, (3.91)] (for any (F, hF )) estab-
lished that there is C > 0, such that

sup
y∈Y

κN(y)− C
√
p
≤
∥∥TκN ,p∥∥ ≤ sup

y∈Y
κN(y). (5.135)

We argue that the proof from [31] continues to hold for non-compact manifolds as well. Indeed,
recall that the lower bound of (5.135) was proved in [31] using the asymptotic expansion of the
peak section, localized at the point where the supremum of κN is achieved. As the asymptotic
expansion of the peak section is based on the asymptotic expansion of the Bergman kernel and the
exponential bound on it, and both those results continue to hold on manifolds of bounded geometry
by the results of [32], cf. Theorems 4.6, 5.5, we see that (5.135) continues to hold in full generality,
see [30, §7.5], when the supremum of κN is achieved. Now, if the supremum is not achieved, then
the same proof gives us that for any ε > 0, there is p1 ∈ N∗, such that for p ≥ p1, we have

sup
y∈Y

κN(y)− ε ≤
∥∥TκN ,p∥∥ (5.136)

We deduce (1.12) by (5.134), (5.135) and (5.136).
Now it is only left to prove that if A 6= 0, then under additional assumption (1.8), one can not

replace p
n−m+1

2 by p
n−m+2

2 . For this, remark that as long asA 6= 0, by (1.23), the operator, acting on
Cn with the kernel FE

1 (Z,Z ′Y ), has non-zero norm. Then, by the calculations, similar to (5.129),
we see that the operator, acting on Cn with the kernel FE

1 (
√
pZ,
√
pZ ′Y ), has norm of order 1

p
n−m

2
,

as p→∞. We deduce from this and Theorem 1.6 that if A 6= 0, then under additional assumption
(1.8), one can not replace p

n−m+1
2 by p

n−m+2
2 .

Proof of Corollary 1.3. First of all, sinceBX
p ◦Ep = Ep, we clearly have

∥∥Ep−BX
p ◦E0

p

∥∥ ≤ ∥∥Ep−
E0
p

∥∥. Now, the statement is a direct consequence of this, Proposition 4.5, applied for BX
p ◦ E0

pg,
and (1.12).

Proof of Theorem 1.10. We let Kp = Ep − E0
p. From Corollary 3.3 and (5.128), there are C > 0,

p1 ∈ N∗, such that for any p ≥ p1, f ∈ H0
(2)(Y, ι

∗(Lp ⊗ F )), we have

∥∥Kpf
∥∥
L∞(X)

≤ C
√
p
·
∥∥f∥∥

L∞(Y )
. (5.137)

Remark also that by construction, we have∥∥E0
pf
∥∥
L∞(X)

=
∥∥f∥∥

L∞(Y )
. (5.138)

From (5.137) and (5.138) we deduce Theorem 1.10.
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arakeloviennes en théorie de l’approximation diophantienne (thèse). 2002.
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