Mirror channel eigenvectors of the d-dimensional fishnets - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2021

Mirror channel eigenvectors of the d-dimensional fishnets

Résumé

We present a basis of eigenvectors for the graph building operators acting along the mirror channel of planar fishnet Feynman integrals in d-dimensions. The eigenvectors of a fishnet lattice of length N depend on a set of N quantum numbers (u$_{k}$, l$_{k}$ ), each associated with the rapidity and bound-state index of a lattice excitation. Each excitation is a particle in (1 + 1)-dimensions with O(d) internal symmetry, and the wave-functions are formally constructed with a set of creation/annihilation operators that satisfy the corresponding Zamolodchikovs-Faddeev algebra. These properties are proved via the representation, new to our knowledge, of the matrix elements of the fused R-matrix with O(d) symmetry as integral operators on the functions of two spacetime points. The spectral decomposition of a fishnet integral we achieved can be applied to the computation of Basso-Dixon integrals in higher dimensions.
Fichier principal
Vignette du fichier
JHEP12(2021)174.pdf (1.68 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03341186 , version 1 (22-08-2024)

Licence

Identifiants

Citer

Sergey Derkachov, Gwenaël Ferrando, Enrico Olivucci. Mirror channel eigenvectors of the d-dimensional fishnets. Journal of High Energy Physics, 2021, 2021 (12), pp.174. ⟨10.1007/JHEP12(2021)174⟩. ⟨hal-03341186⟩
48 Consultations
4 Téléchargements

Altmetric

Partager

More