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1 Introduction

The fishnet integrals are a class of Feynman diagrams with square lattice topology [1] of
remarkable importance for massless quantum field theory and — especially — for theories
with conformal symmetry. Diagrams of fishnet type describe the planar limit of corre-
lators in the strongly-deformed N = 4 supersymmetric Yang-Mills theory introduced by
V.Kazakov and O.Gürdoğan [2]. Moreover, for minimal size of the square lattice (ladder
integrals), they form the basis of functions needed for the bootstrap of four-point functions
of 1

2 -BPS operators with specific R-symmetry polarisations in the undeformed theory [3, 4].
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Figure 1. Left: graph-building operator for a fishnet integral of size N = 3, with fixed boundaries
x0 and x′0. Solid lines are bare propagators. Right: fishnet integral of size M × N with M = 4
and N = 3. The boundaries are fixed to points x0 = 0 and x′0 = ∞ (amputation of upper legs),
for which the graph-builder is especially simple to diagonalise. The Basso-Dixon integral would
correspond to a reduction xk = x and yk = y. Black dots are integrated vertices and circles are
external points.

Furthermore, other classes of fishnet integrals — with different lattice topology — describe
completely the correlators of other planar conformal field theories, for instance the 3D
chiral theory obtained as a deformation of ABJM super-conformal theory [5]. Finally, we
shall mention that specific fishnets describe the Landau singularity of massless scattering
amplitudes at all-loops [6].

The remarkable properties of the fishnets is the possibility to find algorithms for their
computation at any loop order [7]. The procedure relies on methods of quantum integrabil-
ity that map the Feynman integral to (the integral kernel of) a diagonalisable operator —
the transfer-matrix of an integrable XXX spin chain with conformal symmetry [8, 9]. Also,
for a square lattice without boundary conditions imposed, these integrals enjoy infinite-
dimensional Yangian symmetry [10, 11].

A successful application of the spin-chain tools to fishnets is the computation of Basso-
Dixon (BD) integrals in d = 2, 4 spacetime dimensions. BD integrals [7] are specific re-
ductions of a fishnet with open boundaries, which can be constructed using a so-called
graph-building operator, see figure 1. This graph-building operator is said to act in the
“mirror channel” of the fishnet lattice. B. Basso and L. Dixon originally obtained [7] a nice
explicit determinant formula for this general family of Feynman diagrams in d = 4. Their
derivation may be decomposed in two steps. First, the Feynman diagram is rewritten in
some specific representation, then, the obtained expression is transformed to a determinant.
The BD integrals in two dimensions were computed in [12], and in that case the transition
to the determinant form is straightforward. In d = 4 the analogue transformation is more
complicated and was proven in [13].
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It was demonstrated in [12, 14, 15] that the representation obtained in the first step is
the so-called separated variables representation. Quantum separation of variables (SoV),
introduced by E. Sklyanin [16–18], is one of the various techniques [17, 19–21] used to solve
quantum integrable models.

Roughly speaking, SoV consists in finding a basis of the quantum space in which the
spectral problem simplifies drastically. Thus, it can be understood as some far-reaching
generalisation of the usual Fourier transform. From the point of view of quantum mechan-
ics, the Fourier transform is a transition from coordinate representation to momentum
representation. It is the simplest example of a canonical transformation, and the gener-
alised eigenvectors of the momentum operator are used as the integral kernel of the Fourier
transform. The freedom in using various unitary equivalent representations is typical of
quantum mechanics, but there is a natural distinguished representation in the case of in-
tegrable systems — Sklyanin’s SoV representation. The SoV basis is an eigenbasis for a
particularly interesting family of commuting operators [16–18]. BD integrals are related to
non-compact conformal spin chains [8, 22], and it is indeed possible to define a commuting
family of operators Q(u), which includes the graph-building operator.

For a long time, application of the SoV method was restricted to the models with
symmetry group of the lower rank [17, 22–25], or to the Toda chain [16, 26–29]. In the last
few years, however, much progress has been made for compact [30–38] and non-compact [37,
39, 40] spin chains with higher-rank symmetry.

In the present paper, we generalise the first step in the computation of BD integrals to
the case of general d, and we construct the corresponding d-dimensional SoV representa-
tion. Namely, we give an explicit description of a basis of eigenvectors of Q(u) and analyse
their properties, thus revealing an underlying realisation of the Zamolodchikovs-Faddeev
algebra [20, 41] with respect to the exchange of their quantum numbers, i.e. the excitations
of the lattice. The construction of the eigenvectors for an arbitrary number of sites ex-
tends, to any size N of the fishnet, the two-site eigenvector presented in [42]. However, the
investigation of the symmetry properties of the eigenvectors, the calculation of the corre-
sponding inner product and of Sklyanin’s measure are based on a new integral interchange
relation. The main ingredient of this interchange relation is a particular O(d)-invariant
R-matrix — more precisely, a solution of the Yang-Baxter equation acting in the tensor
product of two arbitrary symmetric traceless representations of O(d).

Applied to the computation of the M ×N BD integral, our results allow us to rewrite
it in the following way:

π
Nd
2 〈x, . . . , x|

(
N∏
i=1

x̂2δ
i−1,i

)
BM+1
N,δ̃

|y, . . . , y〉

=
∑

06l1,...,lN6+∞
16mi6dli

ˆ +∞

−∞
· · ·
ˆ +∞

−∞
〈x, . . . , x|

(
N∏
i=1

x̂2δ
i−1,i

)
|u1, . . . ,uN ;Cm1,l1 ⊗ · · · ⊗ CmN ,lN 〉

× 〈u1, . . . ,uN ;Cm1,l1 ⊗ · · · ⊗ CmN ,lN |y, . . . , y〉
µ(u1, . . . ,uN )

N !

N∏
k=1

QM+1
lk

(uk)duk , (1.1)
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where uk = (uk, lk), and {|u1, . . . ,uN ;Cm1,l1 ⊗ · · · ⊗ CmN ,lN 〉} is a complete basis of eigen-
vectors of the graph-building operator BN,δ̃,

Ql(u) =
Γ(δ)Γ

(
d
4 −

δ
2 + l

2 − iu
)

Γ
(
d
4 −

δ
2 + l

2 + iu
)

Γ(δ̃)Γ
(
d
4 + δ

2 + l
2 + iu

)
Γ
(
d
4 + δ

2 + l
2 − iu

) , (1.2)

and Sklyanin’s measure is

µ(u1, . . . ,uN ) =
∏

16j<k6N

[
(uj − uk)2 + (lj − lk)2

4

] [
(uj − uk)2 + (d− 2 + lj + lk)2

4

]
.

(1.3)
The explicit construction of the eigenvectors is described in section 3. The next technical
step to be performed is the simplification of 〈u1, . . . ,uN ;Cm1,l1 ⊗ · · · ⊗ CmN ,lN |y, . . . , y〉.
Though this was quite easy in two and four dimensions [12, 14, 15], we will show, on the
simplest non-trivial example, i.e. the N = 2 case, that the situation in generic dimension
is much more involved.

The rest of the paper is organised as follows. In section 2, we work out the properties
of a solution Rl1,l2(u) of the Yang-Baxter equation acting on the tensor product of spaces
of rank-l1 and rank-l2 symmetric traceless tensors. In particular, we shall present two
new representations for the matrix elements of the O(d)-invariant R-matrix. The first one
is obtained by a direct application of the fusion procedure [43], while the second one is
an integral representation and is in fact equivalent to the interchange relation we alluded
to above. Along with that, the next section introduces the graphical Feynman diagram
notations of lines and vertices that will be used to prove the most cumbersome identities
throughout the paper. Section 3 contains the explicit construction of the eigenvectors
of the fishnet, which is done in an iterative manner as in the d = 2 case [12, 22, 44],
the determination of the spectrum, and the analysis of the eigenvectors’ properties. An
eigenvector for a lattice of size N turns out to be described by a set of N excitations, each
characterised by a rapidity uk and a bound-state index or spin lk, according to the analysis
carried out in [42]. The rearrangement of the excitations inside an eigenvector and the
overlap of eigenvectors reveal a picture of factorised scattering of excitations described by
the S matrix Rl1,l2(u), up to a non-trivial phase. We work out, in section 4, the simplest
examples of application to Basso-Dixon integrals in any d.

Appendix A contains the basic integral identities used throughout the paper, while
the proof of the integral representation for the R-matrix and of some related identities are
relegated to appendices (B), (C), and (D). Appendix (E) presents an alternative basis of
the eigenvectors which makes use of auxiliary spinors, in the spirit of the d = 4 results
of [14, 15].

2 O(d)-invariant R Matrices

For l ∈ N, we denote by Vl the (complex) vector space of symmetric traceless tensors of
rank l, in dimension d. We shall denote its dimension by dl. We will sometimes refer to l
as the spin.
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This section contains an explicit construction of the R-matrices Rl1,l2 acting in the
tensor product Vl1 ⊗ Vl2 and satisfying the Yang-Baxter relation

Rl1,l2(u)Rl1,l3(u+ v)Rl2,l3(v) = Rl2,l3(v)Rl1,l3(u+ v)Rl1,l2(u) (2.1)

in Vl1 ⊗ Vl2 ⊗ Vl3 for arbitrary l1, l2, l3. Our starting point will be the R-matrix by
A. Zamolodchikov and Al. Zamolodchikov [41]

∀C ∈ V1 ⊗ V1, [R1,1(u)C]µν = 1
u+ i

[
uCµν + iCνµ − iu

u+ i d−2
2
Cρρδ

µν

]
. (2.2)

In the first part of the section, we apply the fusion procedure [21, 43] to the construction
of the general R-matrix Rl1,l2 . The fusion procedure was used for the calculation of R-
matrices R1,2,R1,3 and R2,2 by N. MacKay [45] and for R1,l by N. Reshetikhin [46, 47], we
therefore generalise their results.

In the second part of the section, we shall prove an identity, which we call the inter-
change relation, and in which Rl1,l2 plays the key role. This identity will be used extensively
in the rest of the paper as it allows to prove symmetry properties of the eigenvectors of
the transfer-matrix operators under the exchange of excitations. As a matter of fact, the
interchange relation could be considered as the defining relation for the R-matrix Rl1,l2 ,
since it contains all the information about it. Starting from this identity, it is possible to
derive an integral representation for the R-matrix, which allows to prove in a simple way
its unitarity and the Yang-Baxter property. Vice versa, from the integral representation
for the R-matrix it is possible to derive the interchange relation.

The equivalence of the two expressions for Rl1,l2 — the integral representation and
the representation obtained directly by fusion procedure — is far from obvious. Our proof
is very technical and we postpone it to appendix (B). We should note that the spectral
decomposition for the general R-matrix Rl1,l2 was actually obtained thirty years ago by
N. MacKay [45, 48]. The latter result is in some sense complementary to both our expres-
sions and we have checked their equivalence in the case of R1,l.

2.1 Fusion procedure

In this subsection we show that the R-matrix acting on Vl1⊗Vl2 is defined by the following
matrix elements

x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

∑
k>0 ,n>0

k+n6min(l1,l2)

l1!l2!
k!n!(l1 − k − n)!(l2 − k − n)!

× (x · y ζ · η)k (x · η y · ζ)n(
iu+ 4−l1−l2−d

2

)
k

(
− iu+ 2−l1−l2

2

)
n

(x · ζ)l1−k−n(y · η)l2−k−n , (2.3)

where all contractions, represented with a dot, of tensor indices are done using the Eu-
clidean metric δµν , and x, y, ζ, η are four null vectors in Cd. One has for instance

ζ2 = ζ · ζ = ζµζ
µ = ζµζνδµν = 0 . (2.4)

– 5 –
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We also use the Pochhammer symbol

(a)l = Γ(a+ l)
Γ(a) =

l−1∏
k=0

(a+ k) . (2.5)

The proof of (2.3) is done in two steps. We first apply fusion to increase one of the
spins, keeping the other equal to 1. In that case, the previous formula contains only three
terms and reads

x⊗ y⊗l ·
[
R1,l(u)ζ ⊗ η⊗l

]
= 1
u+ i l+1

2

[(
u− i l − 1

2

)
x · ζ(y · η)l

+ i l x · η y · ζ(y · η)l−1 − i l
u− i l−1

2
u+ i d+l−3

2
x · y ζ · η(y · η)l−1

]
.

(2.6)

Equivalently, we could have written, for C ∈ V1 ⊗ Vl,

[R1,l(u)C]µν1···νl = 1
u+i l+1

2

[(
u−i l−1

2

)
Cµν1···νl+i

l∑
j=1

Cνjµν1···ν̂j ···νl

− i
u−i l−1

2
u+i d+l−3

2

l∑
j=1

δµνjCρρν1···ν̂j ···νl+ 1
u+i d+l−3

2

∑
16j<k6l

δνjνkCρρµν1···ν̂j ···ν̂k···νl

]
.

(2.7)

Before proving this last formula, we point out that, at the special point u = i l+1
2 ,

the matrix R1,l(u) reduces to the orthogonal projector P(l+1)
1,l onto Vl+1 ⊂ V1 ⊗ Vl. This

fact justifies why the fusion procedure gives new solutions of the Yang-Baxter relation. Its
proof goes as follows: first, one notices from (2.7) that R1,l

(
i l+1

2

)
C is symmetric traceless

in all l + 1 indices. After that, it is enough to remark that its contraction with any other
symmetric traceless tensor C ′ ∈ Vl+1 is given by C ′ · C.

The proof is made by induction: the property (2.7) clearly holds for l = 1 so we assume
that it holds for some l > 1. Let us show it for l+1, where the fusion procedure states that

P(l+1)
1′,l R1,1′

(
u− i l

2

)
R1,l

(
u+ i

2

)
P(l+1)

1′,l = R1,l+1(u) . (2.8)

We remind that, due to the Yang-Baxter equation, the left projector could be removed.
Consequently, applying the left-hand side to C ∈ V1 ⊗ Vl+1 ⊂ V1 ⊗ V′1 ⊗ Vl gives[

R1,1′

(
u− i l

2

)
R1,l

(
u+ i

2

)
C

]µν1···νl+1

quer

= 1
u+ i 2−l

2

[(
u− i l

2

)[
R1,l

(
u+ i

2

)
C

]µν1···νl+1

+ i
[
R1,l

(
u+ i

2

)
C

]ν1µν2···νl+1
− i

u− i l
2

u+ i d−2−l
2

[
R1,l

(
u+ i

2

)
C

]
ρρν2···νl+1δµν1

]
. (2.9)
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We now use equation (2.7) to write the second term in the right-hand side as[
R1,l

(
u+ i

2

)
C

]ν1µν2···νl+1

= 1
u+ i l+2

2

[(
u− i l − 2

2

)
Cν1µν2···νl+1 + i

l+1∑
j=2

Cνjµν1···ν̂j ···νl+1

− i
u− i l−2

2
u+ i d+l−2

2

l+1∑
j=2

δν1νjCρµρν2···ν̂j ···νl+1 + 1
u+ i d+l−2

2

∑
26j<k6l+1

δνjνkCρµρν1···ν̂j ···ν̂k···νl+1

]
,

(2.10)
and, using the fact that C is symmetric traceless in the last l+ 1 indices, the third term is[

R1,l

(
u+ i

2

)
C

]ρρν2···νl+1
=

(
u− i l−2

2

) (
u+ i d−l−2

2

)
(
u+ i l+2

2

) (
u+ i d+l−2

2

)Cρρν2···νl+1 . (2.11)

Putting everything together we straightforwardly recover (2.7) for R1,l+1(u). Turning our
attention to the more general case, it suffices to prove (2.3) for l1 6 l2, which we shall do
by induction on l1 for given l2. We have just verified it for l1 = 1, and assuming it holds
for some l1 6 l2 − 1, one just needs to use fusion to compute Rl1+1,l2(u):

x⊗l1+1 ⊗ y⊗l2 · Rl1,l2
(
u+ i

2

)
R1,l2

(
u− i l1

2

)
ζ⊗l1+1 ⊗ η⊗l2

= x⊗l1+1 ⊗ y⊗l2 · Rl1+1,l2(u)ζ⊗l1+1 ⊗ η⊗l2 . (2.12)

In the previous equation the product of the two R-matrices is taken in Vl2 . In order
to compute this product, one may insert a resolution of the identity of Vl2 between the
two matrices. More explicitly, if {Cj,l}16j6dl is an orthonormal basis of Vl (for the inner
product (C,C ′) = C∗µ1...µlC

′µ1...µl = C∗ · C ′), one can write

x⊗l1+1 ⊗ y⊗l2 · Rl1,l2 (a)R1,l2 (b) ζ⊗l1+1 ⊗ η⊗l2

=
dl2∑
j=1

x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(a)ζ⊗l1 ⊗ Cj,l2

]
x⊗ C∗j,l2 ·

[
R1,l2(b)ζ ⊗ η⊗l2

]
. (2.13)

Thus, according to the formulas (2.6) and (2.3), we can write

x⊗l1+1⊗y⊗l2 ·Rl1,l2
(
u+ i

2

)
R1,l2

(
u− i l1

2

)
ζ⊗l1+1⊗η⊗l2

=

(
iu+ l2−l1−1

2

)
l1+1(

iu− l1+l2+1
2

)
l1+1

∑
k+n6l1

l1!l2!
k!n!(l1−k−n)!(l2−k−n)!

(x·y)k (y ·ζ)n(x·ζ)l1−k−n(
iu+ 3−l1−l2−d

2

)
k

(
− iu+ 3−l1−l2

2

)
n

(2.14)
dl2∑
j=1

(ζ⊗k⊗x⊗n⊗y⊗(l2−k−n) ·Cj,l2)
[
x·ζ (C∗j,l2 ·η

⊗l2)+
lx·η (C∗j,l2 ·ζ⊗η

⊗(l2−1))
− iu+ 1−l1−l2

2

+
lζ ·η (C∗j,l2 ·x⊗η

⊗(l2−1))
iu+ 3+l1−l2−d

2

]
. (2.15)
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The only additional formulas needed in order to conclude the proof are

dl2∑
j=1

(ζ⊗k ⊗ x⊗n ⊗ y⊗(l2−k−n) · Cj,l2)(C∗j,l2 · η
⊗l2) = (η · ζ)k(η · x)n(η · y)l2−k−n , (2.16)

and
dl2∑
j=1

(ζ⊗k⊗x⊗n⊗y⊗(l2−k−n) ·Cj,l2)(C∗j,l2 ·θ⊗η
⊗(l2−1))

= (η ·ζ)k−1(η ·x)n−1(η ·y)l2−k−n−1

l2

×
[
(l2−k−n)(y ·θ)(x·η)(ζ ·η)+n(x·θ)(y ·η)(ζ ·η)+k(ζ ·θ)(y ·η)(x·η)

− 2θ ·η
d+2(l2−2) [(l2−k−n)n(y ·x)(ζ ·η)+(l2−k−n)k(y ·ζ)(x·η)+kn(x·ζ)(y ·η)]

]
, (2.17)

where θ2 = 0, and we will apply it to θ ∈ {ζ, x}. The first one is trivial since η⊗l22 ∈ Vl2 ,
and {Cj,l2}16j6dl2 is an orthonormal basis of Vl2 . The second one is a consequence of

dl2∑
j=1

C
µ1···µl2
j,l2

(C∗j,l2 ·θ⊗η
⊗(l2−1)) = 1

l2

[
l2∑
i=1

θµiηµ1 . . . η̂µi . . .ηµl2

− 2
d+2(l2−2)

∑
16i<j6l2

θ ·η δµiµjηµ1 . . . η̂µi . . . η̂µj . . .ηµl2

]
,

(2.18)

which is the orthogonal projection of θ ⊗ η⊗(l2−1) ∈ V1 ⊗ Vl2−1 onto Vl2 ⊂ V1 ⊗ Vl2−1, as
explained at the beginning of this section (recall that this projector is nothing else than
R1,l2−1

(
i l22
)
).

Using the two additional formulas, we can compute the sum over dl2 appearing in (2.14):

dl2∑
j=1

(ζ⊗k⊗x⊗n⊗y⊗(l2−k−n) ·Cj,l2)
[
x·ζ (C∗j,l2 ·η

⊗l2)

+
l x·η (C∗j,l2 ·ζ⊗η

⊗(l2−1))
− iu+ 1−l1−l2

2
+
l ζ ·η (C∗j,l2 ·x⊗η

⊗(l2−1))
iu+ 3+l1−l2−d

2

]

= (η ·ζ)k(η ·x)n(η ·y)l2−k−n−1(
− iu+ 1−l1−l2

2

)(
iu+ 3+l1−l2−d

2

)[(x·ζ)(η ·y)
(
− iu+ 1−l1−l2

2 +n
)

×
(

iu+ 3+l1−l2−d
2 +k

)
+(y ·ζ)(η ·x)(l2−k−n)

(
iu+ 3+l1−l2−d

2 +k
)

+(y ·x)(η ·ζ)(l2−k−n)
(
− iu+ 1−l1−l2

2 +n
)]

. (2.19)
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After plugging (2.19) back into (2.14), we proceed to rewriting the sum
∑
k+n6l1 into

a sum
∑
k′+n′6l1+1. The terms contributing to a given pair (k′, n′) come from (k, n) ∈

{(k′, n′), (k′ − 1, n′), (k′, n′ − 1)}. When (k, n) = (k′, n′), the contribution (without the
tensors) is

l1!l2!
k′!n′!(l1+1−k′−n′)!(l2−k′−n′)!

l1+1−k′−n′

iu+ 3+l1−l2−d
2

iu+ 3+l1−l2−d
2 +k′(

iu+ 3−l1−l2−d
2

)
k′

(
− iu+ 1−l1−l2

2

)
n′

,

(2.20)
while when (k, n) = (k′ − 1, n′) it is

l1!l2!
k′!n′!(l1+1−k′−n′)!(l2−k′−n′)!

k′

iu+ 3+l1−l2−d
2

1(
iu+ 3−l1−l2−d

2

)
k′−1

(
− iu+ 1−l1−l2

2

)
n′

,

(2.21)
and, when (k, n) = (k′, n′ − 1), it is

l1!l2!
k′!n′!(l1+1−k′−n′)!(l2−k′−n′)!

n′

iu+ 3+l1−l2−d
2

iu+ 3+l1−l2−d
2 +k′(

iu+ 3−l1−l2−d
2

)
k′

(
− iu+ 1−l1−l2

2

)
n′

.

(2.22)
The sum of the previous three terms is

(l1 + 1)!l2!
k′!n′!(l1 + 1− k′ − n′)!(l2 − k′ − n′)!

1(
iu+ 3−l1−l2−d

2

)
k′

(
− iu+ 1−l1−l2

2

)
n′

, (2.23)

which concludes the proof of (2.3) for (l1 + 1, l2).

Extension of (2.3) to symmetric tensors. We now want to compute x⊗l1 ⊗ y⊗l2 ·[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
when ζ2 = η2 = 0, but x2 6= 0 and y2 6= 0. Since Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

belongs to Vl1 ⊗ Vl2 , only the symmetric traceless parts of x⊗l1 and y⊗l2 are needed. Let
us call Xl the symmetric traceless part of x⊗l, it is given by

Xµ1···µl
l =

b l2 c∑
p=0

(x2)p(
2− l − d

2

)
p

2p
∑

{i1,j1},...,{ip,jp}

p∏
k=1

δµikµjk
∏

i/∈{i1,j1,...,ip,jp}
xµi , (2.24)

where, for a given p, we sum over l!
(l−2p)!p!2p possible ways of forming p pairs among l

elements. We can thus write

x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
= Xl1 ⊗ Yl2 ·

[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
, (2.25)

and then use the formula (2.3).
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To start with, we consider only one vector that is not null: α2 = 0 but y2 6= 0, so that
we have

α⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

∑
k,n>0

(−l1)k+n(−l2)k+n
k!n!

× (ζ · η)k(α · η)n(α · ζ)l2−k−n(
iu+ 4−l1−l2−d

2

)
k

(
− iu+ 2−l1−l2

2

)
n

(
Yl2 · α⊗k ⊗ ζ⊗n ⊗ η⊗(l2−k−n)

)
. (2.26)

We then use the explicit expression for Yl2 to compute

Yl2 · α⊗k ⊗ ζ⊗n ⊗ η⊗(l2−k−n)

=
b l22 c∑
q=0

∑
a+b6q

(−k)a+b(−n)q−b(n+ k − l2)q−a
a!b!(q − a− b)!

(y2)q(
2− l2 − d

2

)
q

2q

(α · ζ)a(α · η)b(ζ · η)q−a−b(α · y)k−a−b(y · ζ)n+b−q(y · η)l2+a−k−n−q , (2.27)

which implies

α⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

b l22 c∑
q=0

∑
K,N>q
a+b6q

(−1)q+a(−l1)K+N+a−q(−l2)K+N
(K − q)!(N − q)!a!b!(q − a− b)!

(α · ζ)l1+q−N−K(α · η)N (ζ · η)K(y2)q(α · y)K−q(y · ζ)N−q(y · η)l2−N−K

2q
(
2− l2 − d

2

)
q

(
iu+ 4−l1−l2−d

2

)
K+a+b−q

(
− iu+ 2−l1−l2

2

)
N−b

, (2.28)

where we have changed summation indices from k, n to K = k + q − a− b and N = n+ b.
Recalling the Gauss identity

n∑
k=0

(−n)k(u)k
k!(v)k

= (v − u)n
(v)n

, (2.29)

one can perform the sums over a and b

∑
a+b6q

(−1)q+a(−l1)K+N+a−q
a!b!(q−a−b)!

1(
iu+ 4−l1−l2−d

2

)
K+a+b−q

(
− iu+ 2−l1−l2

2

)
N−b

= 1(
iu+ 4−l1−l2−d

2

)
K

(
− iu+ 2−l1−l2

2

)
N

q∑
a=0

(−l1)K+N+a−q
(
d
2 +l1+l2−K−N−1

)
q−a

a!(q−a)!

= (−l1)K+N−q
q!

(−1)q
(
2−l2− d

2

)
q(

iu+ 4−l1−l2−d
2

)
K

(
− iu+ 2−l1−l2

2

)
N

, (2.30)
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Figure 2. Graphical representation of a matrix element of the O(d)-invariant R-matrix Rl1,l2(u).

and eventually get

α⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

b l22 c∑
q=0

∑
K,N>q

(−l1)K+N−q(−l2)K+N (−N)q
q!(K − q)!N !(

y2)q (α · ζ)l1+q−N−K(α · η)N (ζ · η)K(α · y)K−q(y · ζ)N−q(y · η)l2−N−K

2q
(
iu+ 4−l1−l2−d

2

)
K

(
− iu+ 2−l1−l2

2

)
N

. (2.31)

The same procedure allows to compute x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
. In this case

we start from the expression

Xl1 · y⊗(K−q) ⊗ ζ⊗(l1+q−N−K) ⊗ η⊗N

=
b l12 c∑
p=0

∑
a+b+c6p

(−K + q)2p−a−b−2c(N +K − l1 − q)b+c(−N)a+c
2p−a−b−ca!b!c!(p− a− b− c)!

(x2)p(y2)p−a−b−c(
2− l1 − d

2

)
p

2p

× (y · η)a(y · ζ)b(ζ · η)c(x · y)K−q+2c+a+b−2p(x · ζ)l1+q−N−K−b−c(x · η)N−a−c , (2.32)

and, after the change of summation indices q′ = q+p−a−b−c, k = K+c, n = N+p−a−c,
the sums over a, b, and c can be performed via the repeated application of (2.29). One
eventually obtains

x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

b l12 c∑
p=0

b l22 c∑
q=0

∑
k>p+q
n>0

(−l1)k+n−q(−l2)k+n−p(−n)p(−n)q
p!q!(k − p− q)!n!

×
(
x2

2

)p(
y2

2

)q (x · ζ)l1+q−n−k(x · η)n−p(ζ · η)k(x · y)k−p−q(y · ζ)n−q(y · η)l2+p−n−k(
iu+ 4−l1−l2−d

2

)
k

(
− iu+ 2−l1−l2

2

)
n

.

(2.33)

In what follows, we shall use the graphical representation of the R-matrix shown in figure 2.

2.2 Spectral decomposition

The spectral decomposition of the R-matrix was computed by N. MacKay [45, 48]. Since
it is clear from our expression (2.3) that the completely symmetric traceless tensors are
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eigenvectors with eigenvalue 1, the normalisation is fixed and MacKay’s result reads

Rl1,l2(u) =
∑

06m6n6min(l1,l2)

m∏
p=1

u− i d+l1+l2−2−2q
2

u+ i d+l1+l2−2−2q
2

n∏
q=1

u− i l1+l2+2−2q
2

u+ i l1+l2+2−2q
2

P(l1+l2−2n,n−m)
l1,l2

,

(2.34)
where P(n1,n2)

l1,l2
is the projector onto the subrepresentation with highest weight n1ω1 +n2ω2

of Vl1 ⊗Vl2 , the ωa’s being fundamental weights (Vl has highest weight lω1). When one of
the spins is equal to one, the previous decomposition reads

R1,l(u) = P(l+1,0)
1,l +

u− i l+1
2

u+ i l+1
2

P(l−1,1)
1,l +

u− i d+l−3
2

u+ i d+l−3
2

u− i l+1
2

u+ i l+1
2

P(l−1,0)
1,l . (2.35)

Let us check that this coincides with the expression (2.7) for the R-matrix. We first
introduce some operators P, K1, and K2, in terms of which the R-matrix reads

R1,l(u) = 1
u+ i l+1

2

[(
u− i l − 1

2

)
Id + iP − i

u− i l−1
2

u+ i d+l−3
2
K1 + 1

u+ i d+l−3
2
K2

]
. (2.36)

We have already explained that P(l+1,0)
1,l = R1,l

(
i l+1

2

)
, and in terms of the new operators

this reads
P(l+1,0)

1,l = 1
l + 1

[
Id + P − 2

d+ 2l − 2 (K1 +K2)
]
. (2.37)

We claim that the other two projectors are given by

P(l−1,1)
1,l = 1

l + 1

[
l Id− P + 1

d+ l − 3 (2K2 − (l − 1)K1)
]

(2.38)

and
P(l−1,0)

1,l = 1
(d+ 2l − 2)(d+ l − 3) [(d+ 2l − 4)K1 − 2K2] . (2.39)

It is clear that P(l+1,0)
1,l + P(l−1,1)

1,l + P(l−1,0)
1,l = Id, and that (2.35) is equivalent to (2.36). It

remains to check that they are indeed orthogonal projectors, which leads to a tedious but
straightforward computation that we do not show here.

2.3 Interchange relation and integral representation

In this section, we shall consider the main interchange relation drawn in figure 4 according
to the graphical notation of figure 3. This interchange relation is crucial to the proof of
the symmetry of the eigenvectors with respect to the exchange of the excitations numbers
— explained in the following section.
Here and in the rest of the paper we will use the notation ã ≡ d/2− a, and we define a few
standard functions of u:

α(u) = δ̃

2 − iu , β(u) = δ̃

2 + iu , so that α(u) + β(u) + δ = d

2 , δ ∈ iR . (2.40)

We define the powers of solid lines of the two squares in the left-hand side of figure 4 to be

aj = β̃j −
lj
2 , bj = αj + d+ lj

2 − 1 , cj = α̃j + lj
2 , dj = 1− β̃j −

lj
2 , (2.41)
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Figure 3. Solid lines stand for the usual Feynman diagram notation, that is the square distance of
the type (x− y)2 between the extremal points x and y, to some power which is written adjacent to
the line. Dashed line notation is illustrated in terms of product of solid lines and a tensor structure.
The tensor Iµx0

(x, y) = xµ−xµ0
(x−x0)2 −

yµ−xµ0
(y−x0)2 is obtained by a conformal inversion around the point x0

of the vector xµ − yµ.

Figure 4. Graphical representation of the interchange relation. Black dots are integration points
of the diagram, circles are external points. The powers aj , bj , cj , dj , for j = 1, 2, of the solid lines
get exchanged between both sides of the identity.

and the powers of the square kernel in the right-hand side of figure 4 are

A1 = d

2 − 1 + β̃1 − β̃2 + l1 + l2
2 , A2 = d

2 + β̃2 − β̃1 + l1 − l2
2 ,

A3 = 1− d

2 + β̃1 − β̃2 −
l1 + l2

2 , A4 = d

2 + β̃2 − β̃1 + l2 + l1
2 .

(2.42)

The interchange relation is equivalent to an explicit integral representation for the
matrix element of the operator Rl1,l2 , which we depict in figure 5 and reads[

Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2
]
·
[(

x

x2 −
w

w2

)⊗l1
⊗
(
y

y2 −
w

w2

)⊗l2]

= Fl1,l2(u)x
2
(
iu+ l21

2

)
y2
(
iu+ l12

2

)
w2
(
iu+ l1+l2

2 −1
)

×
ˆ (z − w)2

(
iu+ l1+l2

2 −1
) [
ζ ·
(
y
y2 − v

v2

)]l1 [
η ·
(
x
x2 − v

v2

)]l2
(z − x)2

(
iu+ l21

2

)
(z − y)2

(
iu+ l12

2

)
(z − v)2

(
d−1+ l1+l2

2 −iu
)
v2
(
1− l1+l2

2 +iu
) ddz ddv

πd
,

(2.43)
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Figure 5. Integral representation of a matrix element of the fused R-matrix Rl1,l2(u), as encoded
into the interchange relation.

where ζ2 = η2 = 0 but x2, y2 and w2 are arbitrary, l12 = −l21 = l1 − l2, and

Fl1,l2(u) =
Γ
(
1− l1+l2

2 − iu
)

Γ
(
1 + l1+l2

2 + iu
)

Γ
(
d− 1 + l1+l2

2 − iu
)

Γ
(
1 + l1+l2

2 − iu
)

Γ
(
d+l1+l2

2 − 1− iu
)

Γ
(
1− l1+l2+d

2 + iu
) . (2.44)

We point out that in this expression, as well as in the other integral expressions that
will appear in the rest of the paper, the exponents of the propagators are generic complex
numbers due to presence of the spectral parameter u. We shall consider the generic situation
u ∈ C and understand all similar integrals as an analytic continuation in u from the
convergence domain.

We show in figure 6 how to prove the interchange relation using the integral repre-
sentation for the R-matrix. Since the steps can clearly be reordered, the two relations
are actually equivalent. We shall prove in appendix (B) the equivalence of this integral
expression and the expression (2.33).

In the following, we present the derivation of a few other integral representations for
the matrix element (2.43). It is natural to perform an inversion of all external vectors
x, y, w and variables of integrations z 7→ z

z2 and v 7→ v
v2 in relation (2.43). After this

transformation, one obtains[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· (x− w)⊗l1 ⊗ (y − w)⊗l2

= Fl1,l2(u)
ˆ (z − w)2

(
iu+ l1+l2

2 −1
)
(ζ · (y − v))l1(η · (x− v))l2

(z − x)2
(
iu+ l21

2

)
(z − y)2

(
iu+ l12

2

)
(z − v)2

(
d−1+ l1+l2

2 −iu
) ddz ddv

πd
. (2.45)

The integral representation in the right hand side shows manifestly the translation invari-
ance. Thus, for simplicity, we may put w = 0 without any loss of generality:[

Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2
]
· x⊗l1 ⊗ y⊗l2

= Fl1,l2(u)
ˆ

z2
(
iu+ l1+l2

2 −1
)
(ζ · (y − v))l1(η · (x− v))l2

(z − x)2
(
iu+ l21

2

)
(z − y)2

(
iu+ l12

2

)
(z − v)2

(
d−1+ l1+l2

2 −iu
) ddz ddv

πd
. (2.46)

Despite its simplicity, this integral representation should be used with care because the
integral over v is ill defined. The origin of the problems is our naïve inversion of integration
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ζη

R (u)

ζη

R (u)

ζη

Figure 6. Top left: l.h.s. of the interchange relation after multiplication by the inverse of the square
kernel. Top right: the central triangle (−A1, a2, b1) is transformed into a star integral. Middle left:
result of star-triangle identity in the vertices (a1, d−A2, d/2−a2) and (b2, d−A4, d/2−a1). Middle
right: the triangle (−A3, d/2 − a1, d/2 − b2) is transformed into a star integral. Bottom: result of
the integration of the vertex (d1, c2, d/2 +A1). The tensors Ix0(x, y)⊗l1 and Ix0(z, y)⊗l2 get mixed
by a non-trivial operator acting on Vl1 ⊗ Vl2 , the matrix Rl1l2(u).
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variable v 7→ v
v2 in the initial expression, and we illustrate it on the much simpler example

of the delta function (A.9)

ˆ ddv
v2a(z − v)2(d−a) = A0(a)A0(d− a)πdδ(d)(z) . (2.47)

If one naïvely performs an inversion z 7→ z
z2 and v 7→ v

v2 , the equation becomes

ˆ ddv
(z − v)2(d−a) = A0(a)A0(d− a)πd

δ(d)
(
z
z2

)
z2(d−a) , (2.48)

where neither side is well defined. In order to obtain a well-defined expression for the
R-matrix, we perform an inversion of all external vectors x, y, w but not of the variables of
integrations z and v in (2.43), this yields (here w = 0)

[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· x⊗l1 ⊗ y⊗l2

= Fl1,l2(u)
ˆ 1

(1− 2z · x+ z2x2)iu+ l21
2 (1− 2z · y + z2y2)iu+ l12

2

×
(ζ · (y − v

v2 ))l1(η · (x− v
v2 ))l2

(z − v)2
(
d−1+ l1+l2

2 −iu
)
v2
(
1− l1+l2

2 +iu
) ddz ddv

πd
. (2.49)

The same representation can be obtained via the inversion z 7→ z
z2 and v 7→ v

v2 in rela-
tion (2.46). In fact, the integration of v is reduced to the finite sum of derivatives of delta
function, therefore the integration of z can be performed easily, so that we can derive a
closed expression for the integrals in r.h.s. of (2.49). The result reads (see appendix (B))

ˆ (ζ · (y − v
v2 ))l1(η · (x− v

v2 ))l2

(z − v)2
(
d−1+ l1+l2

2 −iu
)
v2
(
1− l1+l2

2 +iu
) ddv
π
d
2

= Al1,l2(u)
∑
n,k,p

l1!l2!(−1)k+p 2−k−p−3n

(l1 − k − n)!(l2 − p− n)!k!p!n!

(ζ · η)n(ζ · y)l1−k−n(η · x)l2−p−n(
1− l1+l2

2 + iu
)
k+p+2n

(
2− d

2 −
l1+l2

2 + iu
)
n

∂kt ∂
p
s

(
∂zµ∂zµ

)n
δ(d)(z − tζ − sη) (2.50)

where we have to put t = s = 0 after differentiation, and the explicit expression for Al1,l2(u)
is given in B.6. For simplicity, we showed in the sum the summation indices only. The
sum is finite and the range of summation is dictated by factorials in denominator: for each
0 6 n 6 min(l1, l2), we have 0 6 k 6 l1 − n and 0 6 p 6 l2 − n. Now the integral in z can
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be calculated due to the appearance of the delta function, and we finally obtain[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· x⊗l1 ⊗ y⊗l2

= π−
d
2Fl1,l2(u)Al1,l2(u)

∑
n,k,p

l1!l2!(−1)k+p 2−k−p−3n

(l1 − k − n)!(l2 − p− n)!k!p!n!

(ζ · η)n(ζ · y)l1−k−n(η · x)l2−p−n(
1− l1+l2

2 + iu
)
k+p+2n

(
2− d

2 −
l1+l2

2 + iu
)
n

∂kt ∂
p
s

(
∂zµ∂zµ

)n 1

(1− 2z · x+ z2x2)iu+ l21
2 (1− 2z · y + z2y2)iu+ l12

2

∣∣∣∣∣∣
z=tζ+sη

. (2.51)

The symbol |z=tζ+sη means that we have to substitute z = tζ+sη after all z-differentiation
and then to put t = s = 0 after all s- and t-differentiations.

It seems that the coincidence of expression (2.51) and (2.33) is far from obvious. The
direct proof of their equivalence is very technical and is given in appendix (B). Note that
the equivalence between (2.51) and (2.33) automatically guarantees the validity of the
interchange relations in figure 4.

2.4 Properties of the R matrices

Even though the integral representation (2.46) should be used with care, it proves to be
very useful. For example, it allows to reduce the derivation of some important properties
of the R-matrix to a few simple standard steps: the integral chain rules (A.8) and (A.9)
and the star-triangle relation (A.10).

Integral formula for null vectors. The fact that (2.51), or equivalently (2.46), is the
same as (2.33) is proven in appendix (B). However, in the case x2 = y2 = 0 everything
is simpler and the integral over z in (2.46) can be calculated explicitly using Symanzik’s
trick [49]: if the parameters a1, . . . , aN satisfy

∑N
k=1 ak = d, then it holds that

ˆ N∏
k=1

Γ(ak)
(z − xk)2ak

ddz
π
d
2

=
ˆ
RN+

e
−

∑
i,j

αiαj(xi−xj)2∑N

k=1 γkak(∑N
k=1 γkak

) d
2

N∏
k=1

αak−1
k dαk , (2.52)

where the parameters γ1, . . . , γN can be chosen arbitrarily as long as γk > 0, and they are
not all zero. In our case, N = 4 and we choose three of the parameters to be 0 whereas
the last one is set to 1, we thus obtain
ˆ Γ

(
iu+ l21

2

)
Γ
(
iu+ l12

2

)
Γ
(
1− l1+l2

2 −iu
)

Γ
(
d−1+ l1+l2

2 −iu
)

(z−x)2
(
iu+ l21

2

)
(z−y)2

(
iu+ l12

2

)
z2
(
1− l1+l2

2 −iu
)
(z−v)2

(
d−1+ l1+l2

2 −iu
) ddz
π
d
2

=
ˆ
R4

+

α
iu+ l21

2 −1
1 α

iu+ l12
2 −1

2 α
− l1+l2

2 −iu
3 α

d
2−2+ l1+l2

2 −iu
4 e−

α1α2
α4

(x−y)2−α1(x−v)2−α2(y−v)2−α3v2 4∏
k=1

dαk

=
Γ
(
d
2 +l1−1

)
Γ
(
d
2 +l2−1

)
Γ
(
1− l1+l2

2 −iu
)

Γ
(
1− d+l1+l2

2 +iu
)

(y−v)2( d2 +l1−1)(x−v)2( d2 +l2−1)v2
(
1− l1+l2

2 −iu
)
(x−y)2

(
1− d+l1+l2

2 +iu
) . (2.53)
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As a consequence, when x and y are null vectors, the formula (2.46) reduces to[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· (x⊗l1 ⊗ y⊗l2)

=
Γ
(
d
2 + l1 − 1

)
Γ
(
d
2 + l2 − 1

) (
iu+ l1+l2

2

)
Γ
(
iu− l1+l2

2

)
Γ
(
− iu+ d−2+l1+l2

2

)
Γ
(
iu+ l1−l2

2

)
Γ
(
iu+ l2−l1

2

)
× (x− y)2

(
− iu+ d+l1+l2−2

2

) ˆ (ζ · (v − y))l1(η · (v − x))l2

v2
(
1−iu− l1+l2

2

)
(y − v)2( d2 +l1−1)(x− v)2( d2 +l2−1)

ddv
π
d
2
.

(2.54)

This integral is well-defined. We postpone to appendix (C) the direct check of the equiva-
lence of this representation to the expression (2.3).

Derivative identity and mixing operator Ol1,l2. For ζ and η two null vectors, it
holds that

(ζ · ∇)l1(η · ∇)l2x2
(
l1+l2+2−d

2 +λ
)

=

(
4−l1−l2−d

2 + λ
)
l1+l2(

4−l1−l2−d
2 − λ

)
l1+l2

(x2)2λ

×
[
Rl1,l2(− iλ)ζ⊗l1 ⊗ η⊗l2

]
· ∇⊗(l1+l2)x2

(
l1+l2+2−d

2 −λ
)
.

(2.55)

In order to prove this identity one needs to compute y⊗(l1+l2) ·
[
Rl1,l2(− iλ)ζ⊗l1 ⊗ η⊗l2

]
for

arbitrary y. The details of calculation and the proof of the relation (2.55) are given in
appendix (D).

Let us define an operator Ol1,l2(u) : Vl1 ⊗ Vl2 → Sl1+l2(Cd) that takes values in the
space of symmetric tensors of rank l1 + l2 in the following way:

(ζ · ∇)l1(η · ∇)l2x2
(
l1+l2+2−d

2 +iu
)

= 2l1+l2
(4− l1 − l2 − d

2 + iu
)
l1+l2

[
Ol1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· x⊗(l1+l2)

x2
(
l1+l2+d−2

2 −iu
) , (2.56)

or, equivalently, using D.2,[
Ol1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· x⊗(l1+l2) =

∑
p

l1!l2!
p!(l1 − p)!(l2 − p)!

(x2ζ · η)p(ζ · x)l1−p(η · x)l2−p

2p
(

4−l1−l2−d
2 + iu

)
p

.

(2.57)

The property (2.55) we presented above is now written in a concise manner as

Ol1,l2(u) = Ol1,l2(−u)Rl1,l2(u) . (2.58)

The mixing operator Ol1,l2 naturally arises in the generalisation of the chain relation (A.8):
ˆ ddw

π
d
2

C1
(
w
|w|

)
C2
(
w−x
|w−x|

)
w2a(w − x)2b

= Al1(a)Al2(b)Al1+l2(d− a− b) [Ol1,l2(i(a+ b+ 1− d))C1 ⊗ C2] · x⊗(l1+l2)

x2
(
a+b+ l1+l2−d

2

) (2.59)
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Figure 7. Property (2.61) in the notation for the fused Rl1l2(u) introduced in figure 2.

and in the expression for the Basso-Dixon diagram (4.19).

Unitarity. The representation (2.3) clearly shows that the R matrices are symmetric and
transform simply under complex conjugation:

tRl1,l2 = Rl1,l2 , Rl1,l2(u)∗ = Rl1,l2(−u∗) . (2.60)

From the integral representation (2.46), on the other hand, it is easy to see that the inverse
is obtained by changing the sign of the spectral parameter:

Rl1,l2(u)Rl1,l2(−u) = Idl1 ⊗ Idl2 . (2.61)

With the help of the two previous relations this amounts to saying that the R-matrix is
unitary when u is real. The proof of unitarity goes as follows:

[
Rl1,l2(−u)Rl1,l2(u)ζ⊗l1⊗η⊗l2

]
·(x⊗l1⊗y⊗l2)

=Fl1,l2(−u)
ˆ [

Rl1,l2 (u)ζ⊗l1⊗η⊗l2
]
·((y−v)⊗l1⊗(x−v)⊗l2 )

(z−x)2
(
− iu+ l21

2

)
(z−y)2

(
− iu+ l12

2

)
z

2
(

1− l1+l2
2 +iu

)
(z−v)2

(
d−1+ l1+l2

2 +iu
) ddzddv

πd

=Fl1,l2(−u)Fl1,l2(u)
ˆ

1

(z−x)2
(
− iu+ l21

2

)
(z−y)2

(
− iu+ l12

2

)
z

2
(

1− l1+l2
2 +iu

)
(z−v)2

(
d−1+ l1+l2

2 +iu
)

(ζ ·(x−v−v′))l1 (η ·(y−v−v′))l2

(z′+v−y)2
(

iu+ l21
2

)
(z′+v−x)2

(
− iu+ l12

2

)
z
′2
(

1− l1+l2
2 −iu

)
(z′−v′)2

(
d−1+ l1+l2

2 −iu
) ddz′ddv′ddzddv

π2d .

After the natural change of variables v′ → v′− v and z′ → z′− v, it is possible to integrate
over v explicitly using (A.9). One obtains δ(d)(z − z′), and the integration over z′ reduces
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the whole expression to another integral of the type (A.9)

Fl1,l2(−u)Fl1,l2(u)
ˆ

1

(z−x)2
(
− iu+ l21

2

)
(z−y)2

(
− iu+ l12

2

)
z

2
(

1− l1+l2
2 +iu

)
(z−v)2

(
d−1+ l1+l2

2 +iu
)

(ζ ·(x−v′))l1 (η ·(y−v′))l2

(z′−y)2
(

iu+ l21
2

)
(z′−x)2

(
− iu+ l12

2

)
(z′−v)2

(
1− l1+l2

2 −iu
)
(z′−v′)2

(
d−1+ l1+l2

2 −iu
) ddz′ddv′ddzddv

π2d

=
Γ
(
1− l1+l2

2 +iu
)

Γ
(
d−1+ l1+l2

2 −iu
)

Γ
(
d+l1+l2

2 −1−iu
)

Γ
(
1− l1+l2+d

2 +iu
) ˆ δ(d)(z−z′)

(z−x)2
(
− iu+ l21

2

)
(z−y)2

(
− iu+ l12

2

)
z

2
(

1− l1+l2
2 +iu

)
× (ζ ·(x−v′))l1 (η ·(y−v′))l2

(z′−y)2
(

iu+ l21
2

)
(z′−x)2

(
− iu+ l12

2

)
(z′−v′)2

(
d−1+ l1+l2

2 −iu
) ddz′ddv′ddz

πd

=
Γ
(
1− l1+l2

2 +iu
)

Γ
(
d−1+ l1+l2

2 −iu
)

Γ
(
d+l1+l2

2 −1−iu
)

Γ
(
1− l1+l2+d

2 +iu
) ˆ (ζ ·(x−v′))l1 (η ·(y−v′))l2

z
2
(

1− l1+l2
2 +iu

)
(z−v′)2

(
d−1+ l1+l2

2 −iu
) ddv′ddz

πd

=
ˆ

(ζ ·(x−v′))l1(η ·(y−v′))l2δ(d)(v′)ddv′= (ζ ·x)l1(η ·y)l2 .

Crossing symmetry. From the explicit representation (2.3) of the R-matrix, one imme-
diately deduces the following crossing property:

t2Rl1,l2
(

i 2− d
2 − u

)
=

(
− iu+ d+l2−l1−2

2

)
l1

(
iu− l1+l2

2

)
l1(

− iu+ d−l1−l2−2
2

)
l1

(
iu+ l2−l1

2

)
l1

Rl1,l2(u) , (2.62)

where t2 denotes transposition in V2 only.

Yang-Baxter relation. The fusion procedure being a way to construct new solutions of
the Yang-Baxter relation, we know that the expression (2.3) satisfies it. It is however also
possible to show it directly for the integral representation as we now explain. We want to
show that for arbitrary null vectors ζ, η, and θ we have

Rl1,l2(λ)Rl1,l3(λ+ µ)Rl2,l3(µ)ζ⊗l1 ⊗ η⊗l2 ⊗ θ⊗l3

= Rl2,l3(µ)Rl1,l3(λ+ µ)Rl1,l2(λ)ζ⊗l1 ⊗ η⊗l2 ⊗ θ⊗l3 . (2.63)

It suffices to verify that the scalar product with any vector of the form x⊗l1 ⊗ y⊗l2 ⊗
z⊗l3 , for x, y, and z real, is the same for both sides. After taking the scalar prod-
uct and using the integral representation (without writing the scalar prefactors Fli,lj ),
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Figure 8. Property (2.63) in the notation for the fused Rl1l2(u) introduced in figure 2.

the left-hand side becomes

[Rl1,l2(λ)Rl1,l3(λ+µ)Rl2,l3(µ)ζ⊗l1⊗η⊗l2⊗θ⊗l3 ]·x⊗l1⊗y⊗l2⊗z⊗l3

∝
ˆ

[Rl1,l3 (λ+µ)Rl2,l3 (µ)ζ⊗l1⊗η⊗l2⊗θ⊗l3 ]·(y−v)⊗l1⊗(x−v)⊗l2⊗z⊗l3

(w−x)2
(

iλ+ l21
2

)
(w−y)2

(
iλ+ l12

2

)
w

2
(

1− l1+l2
2 −iλ

)
(w−v)2

(
d−1+ l1+l2

2 −iλ
) ddwddv

πd

∝
ˆ

π−dddwddv

(w−x)2
(

iλ+ l21
2

)
(w−y)2

(
iλ+ l12

2

)
w

2
(

1− l1+l2
2 −iλ

)
(w−v)2

(
d−1+ l1+l2

2 −iλ
)

× [Rl2,l3 (µ)ζ⊗l1⊗η⊗l2⊗θ⊗l3 ]·(z−v′)⊗l1⊗(x−v)⊗l2⊗(y−v−v′)⊗l3

(w′−y+v)2
(

iλ+iµ+ l31
2

)
(w′−z)2

(
iλ+iµ+ l13

2

)
w
′2
(

1− l1+l3
2 −iλ−iµ

)
(w′−v′)2

(
d−1+ l1+l3

2 −iλ−iµ
) ddw′ddv′

πd

∝
ˆ

π−dddwddv

(w−x)2
(

iλ+ l21
2

)
(w−y)2

(
iλ+ l12

2

)
w

2
(

1− l1+l2
2 −iλ

)
(w−v)2

(
d−1+ l1+l2

2 −iλ
)

× π−dddw′ddv′

(w′−y+v)2
(

iλ+iµ+ l31
2

)
(w′−z)2

(
iλ+iµ+ l13

2

)
w
′2
(

1− l1+l3
2 −iλ−iµ

)
(w′−v′)2

(
d−1+ l1+l3

2 −iλ−iµ
)

× (ζ ·(z−v′))l1 (η ·(y−v−v′−v′′))l2 (θ ·(x−v−v′′))l3 π−dddw′′ddv′′

(w′′+v−x)2
(

iµ+ l32
2

)
(w′′+v+v′−y)2

(
iµ+ l23

2

)
w
′′2
(

1− l2+l3
2 −iµ

)
(w′′−v′′)2

(
d−1+ l2+l3

2 −iµ
)

∝
ˆ

π−dddwddv

(w−x)2
(

iλ+ l21
2

)
(w−y)2

(
iλ+ l12

2

)
w

2
(

1− l1+l2
2 −iλ

)
(w−v)2

(
d−1+ l1+l2

2 −iλ
)

× π−dddw′ddv′

(w′−y+v)2
(

iλ+iµ+ l31
2

)
(w′−z)2

(
iλ+iµ+ l13

2

)
w
′2
(

1− l1+l3
2 −iλ−iµ

)
(w′−v′)2

(
d−1+ l1+l3

2 −iλ−iµ
)

× (ζ ·(z−v′))l1 (η ·(y−v′−v′′))l2 (θ ·(x−v′′))l3 π−dddw′′ddv′′

(w′′−x)2
(

iµ+ l32
2

)
(w′′+v′−y)2

(
iµ+ l23

2

)
(w′′−v)2

(
1− l2+l3

2 −iµ
)
(w′′−v′′)2

(
d−1+ l2+l3

2 −iµ
) .

At the last step, we have simply performed the change of variables (w′′, v′′) 7→ (w′′−v, v′′−v)
so that now the integral over v is computed by a simple application of the star-triangle
identity (A.10). At the same time, we find it convenient to define z̃ = z−y and to perform
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Figure 9. The kernels depicted on the left and on the right are related respectively to the l.h.s.
and r.h.s. of the Yang-Baxter equation (2.63) in the integral representation for the R-matrix ele-
ments (2.3), and the equality of the two kernels is equivalent to the YBE. Both kernels are shown
to be proportional to the one in the middle, via star-triangle identity applied to the blue triangles.
Keeping track of the proportionality constants shows that l.h.s.=r.h.s.

the change of variables (w′, v′) 7→ (y − w′, y − v′), so that we obtain

[Rl1,l2(λ)Rl1,l3(λ+µ)Rl2,l3(µ)ζ⊗l1⊗η⊗l2⊗θ⊗l3 ]·x⊗l1⊗y⊗l2⊗z⊗l3

=Fl1,l2(λ)Fl1,l3(λ+µ)Fl2,l3(µ)A0
(
d−1+ l1+l2

2 −iλ
)
A0
(
iλ+iµ+ l31

2

)
A0
(
1− l2+l3

2 −iµ
)

×
ˆ

π−
d
2 ddw

(w−x)2
(

iλ+ l2−l1
2

)
(w−y)2

(
iλ+ l1−l2

2

)
w

2
(

1− l1+l2
2 −iλ

)
(w′−w′′)2

(
1− d+l1+l2

2 +iλ
)

× π−dddw′ddv′

(w′′−w)2
(
d+l1−l3

2 −iλ−iµ
)
(w′−z̃)2

(
iλ+iµ+ l1−l3

2

)
(w′−y)2

(
1− l1+l3

2 −iλ−iµ
)
(w′−v′)2

(
d−1+ l1+l3

2 −iλ−iµ
)

× (ζ ·(z̃+v′))l1 (η ·(v′−v′′))l2 (θ ·(x−v′′))l3 π−dddw′′ddv′′

(w′′−x)2
(

iµ+ l3−l2
2

)
(w′′−v′)2

(
iµ+ l2−l3

2

)
(w−w′)2

(
d+l2+l3

2 −1+iµ
)
(w′′−v′′)2

(
d−1+ l2+l3

2 −iµ
) .

Similar manipulations for the right-hand side of the Yang-Baxter relation give

[Rl2,l3(µ)Rl1,l3(λ+µ)Rl1,l2(λ)ζ⊗l1⊗η⊗l2⊗θ⊗l3 ]·x⊗l1⊗y⊗l2⊗z⊗l3

=Fl1,l2(λ)Fl1,l3(λ+µ)Fl2,l3(µ)A0
(
d−1+ l2+l3

2 −iµ
)
A0
(
iλ+iµ+ l13

2

)
A0
(
1− l1+l2

2 −iλ
)

×
ˆ

π−
d
2 ddw

w
2
(

iµ+ l3−l2
2

)
(w−z̃)2

(
iµ+ l2−l3

2

)
(w−y)2

(
1− l2+l3

2 −iµ
)
(w′−w′′)2

(
1− d+l2+l3

2 +iµ
)

× π−dddw′′ddv′′

(w′′−x)2
(

iλ+iµ+ l3−l1
2

)
(w−w′)2

(
d+l3−l1

2 −iλ−iµ
)
w
′′2
(

1− l1+l3
2 −iλ−iµ

)
(w′′−v′′)2

(
d−1+ l1+l3

2 −iλ−iµ
)

× (ζ ·(z̃+v′))l1 (η ·(v′−v′′))l2 (θ ·(x−v′′))l3 π−dddw′ddv′

(w′−v′′)2
(

iλ+ l2−l1
2

)
(w′−z̃)2

(
iλ+ l1−l2

2

)
(w−w′′)2

(
d+l1+l2

2 −1+iλ
)
(w′−v′)2

(
d−1+ l1+l2

2 −iλ
) .

Notice now that the numerators in the integrands of the last two formulas are the same,
and that these do not involve w, w′, or w′′. Consequently, if we can prove that the integrals
over these three variables coincide, then we are done. This is actually a straightforward
application of the star-triangle identity (A.10), as depicted in figure 9.
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Figure 10. Transfer-matrix operator Q3(u) as an integral operator with the kernel represented in
Feynman diagram notation. The two equivalent forms are related by star-triangle identity.

3 Diagonalisation of graph-building operators

3.1 Construction of the eigenvectors

In this section, we will work with the choice δ ∈ iR, corresponding to a representation of
the unitary principal series of the conformal group [50].

We will eventually restore the fishnet framework 0 < δ < d
2 by analytic continuation.

We also introduce, in our computations, a reference point x0 ∈ Rd (one could set it to 0 for
instance). Let us define the lattice transfer-matrix QN (u) we want to diagonalise, where
N ∈ N∗ is the lattice width and u ∈ C is the spectral parameter. The transfer-matrix
QN (u) is an operator acting on functions Φ of N points as

[QN (u)Φ](x1, . . . ,xN )

=
ˆ Φ(y1, . . . ,yN )∏N

k=1(xkk+1)2δ(yk−xk)2α(yk−xk−1)2β

N∏
j=1

ddyj
π
d
2

= [A0(δ)A0(α(u))A0(β(u))]N
ˆ Φ(y1, . . . ,yN )∏N

k=1(wk−yk)2δ̃(wk−xk)2β̃(u)(wk−xk−1)2α̃(u)

N∏
j=1

ddwjddyj
πd

,

(3.1)

where xkk+1 = xk−xk+1, and we recall that the functions α and β of the spectral parameter
have been defined in (2.40). The inner product between two functions of N points Φ and
Ψ is defined by

〈Φ |Ψ〉 =
ˆ
〈Φ |x1, . . . , xN 〉 〈x1, . . . , xN |Ψ〉

N∏
k=1

ddxk
π
d
2

=
ˆ

Φ∗(x1, . . . , xN )Ψ(x1, . . . , xN )
N∏
k=1

ddxk
π
d
2
.

(3.2)
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With the definition (3.2), the constant π−
d
2 is included in the integration measure over

space-time, i.e. |x〉 is such that 〈x |y〉 = π
d
2 δ(x− y). As a consequence, one can write

〈x1, . . . , xN |QN (u) |y1, . . . , yN 〉 = 1∏N
k=1 x

2δ
k,k+1(yk − xk)2α(yk − xk−1)2β

(3.3)

for the kernel of the graph-building operator, which is represented by the diagram of
figure 10.

A particular case of the family of operators (3.1)—for x0 = 0 — is the graph-building
operator of the square-lattice fishnet

BN,δ̃ ≡ QN

(
i δ̃2

)
. (3.4)

The operators (3.1) computed at different values of the spectral parameter commute

[QN (u),QN (u′)] = 0 , (3.5)

the proof follows all the steps of the one presented for d = 2 dimensions in [12, 44],
and it is ultimately based on the star-triangle identity (A.10). We show it in figure 11
for completeness. The notation of Feynman diagrams used in figure 10 maps lengthy
manipulations of integral kernels into simple moves of lines and vertices, it will therefore
be the language of many calculations of this section.

We shall construct iteratively the eigenvectors of QN , starting from N = 1. Since
these operators commute with global rotations and dilations, the eigenvectors of Q1 are
constrained to be

〈x |u1;C〉 = C(x− x0)

(x− x0)2
(
β̃1+ l1

2

) , u1 = (u1, l1) ∈ C× N , (3.6)

where

C(y) = Cµ1...µl1yµ1 . . . yµl1 , (3.7)

and C ∈ Vl is a symmetric traceless tensors of rank l1. The spectral equation reads

Q1(u) |u1;C〉 = Ql1(u|u1) |u1;C〉 , (3.8)

and the eigenvalue, computed using the identity (A.11), is

Ql(u|u′) = A0(α)Al(α̃′)Al(β + β̃′) . (3.9)

For N > 1, we find the eigenvectors after the definition of a recursive step. For
u ∈ C × N and C ∈ Vl we introduce the layer operator C · ΛN (u) acting on functions of
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Figure 11. Commutation of operators Q3 computed at different values u 6= u′ of the spectral
parameter. Up left: the blue triangles are replaced by star integrals. Up center: upwards movement
of the horizontal line of power β − β′, by a chain of star-triangle identitites. Up right: the last
passage involves star-triangle and chain-rule indentity. Down left: integration of the blue vertices
by star-triangle identity. Down right: the final result is equal to the first picture with exchanged u
and u′, i.e. (α, β)↔ (α′, β′).

– 25 –



J
H
E
P
1
2
(
2
0
2
1
)
1
7
4

N − 1 points and returning functions of N points:

[C ·ΛN (u)Φ] (x1, . . . , xN )

=
[
A0

(
1− α− l

2

)
A0

(
β + l

2

)]N−1

×
ˆ C

(
x1−x0

(x1−x0)2 − y1−x0
(y1−x0)2

)
(xN − wN−1)2(β̃− l

2 )∏N−1
k=1 (xk − wk)2(α̃+ l

2 )(xk − wk−1)2(β̃− l
2 )

× Φ(y1, . . . , yN−1)∏N−1
k=1 (yk − wk)2(α+ d+l

2 −1)(yk − wk−1)2(1−β̃− l
2 )

N−1∏
k=1

ddwk
π
d
2

ddyk
π
d
2
, (3.10)

with w0 = x0. The scalar prefactor in (3.10) leads to a convenient normalisation for
the eigenvectors, that simplifies the form of their symmetry property and inner products.
Strictly speaking, the integrals (3.10) are ill-defined if l > 0 and they should be under-
stood as analytic continuations. Despite that, we can perform on them all the needed
manipulations via integral identities presented in appendix A. The operator ΛN (u) carries
l symmetric traceless tensor indices,

ΛN (u)µ1...µl , (3.11)

and its pairing with the tensor C can be encoded in the action of a differential operator,
according to (A.4):

C ·ΛN (u) = C (∇x0)
2l
(
β̃ − l

2

)
l

ΛN (u) . (3.12)

The kernel of this last operator ΛN (u) is represented by the diagram of figure 12 for N = 4.
The crucial relation satisfied by the layer operator is (see the proof in figure 13 and figure 14)

QN (u)CN ·ΛN (uN ) = QlN (u|uN )CN ·ΛN (uN )QN−1(u) , (3.13)

and the eigenvectors of QN (u) are therefore constructed iteratively as

|u1, . . . ,uN ;C1 ⊗ · · · ⊗ CN 〉 = CN ·ΛN (uN ) · · ·C2 ·Λ2(u2) |u1;C1〉 , (3.14)

with arbitrarily chosen Ci ∈ Vli . The spectral equation for the graph-building transfer-
matrix reads

QN (u) |u1, . . . ,uN ;C〉 =
N∏
k=1

Qlk(u|uk) |u1, . . . ,uN ;C〉 (3.15)

for an arbitrary tensor C ∈ Vl1 ⊗ · · · ⊗ VlN , in agreement with the invariance of QN (u)
under O(d) rotations. The spectrum of the transfer-matrix is factorized into N identical
contributions of the type found at N = 1, each depending on a rapidity ui and a Lorentz
spin li, and is symmetric with respect to permutations of these quantum numbers.
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Figure 12. Left: graphical representation of the layer operator C ·Λ4(u4) ∝ C(∇x0) ·Λ4(u4). The
blue triangle stands for the differential operator C(∇x0). Right: graphical representation of the
eigenvector |u1, . . . ,u4;C〉.

3.2 Symmetry property

The symmetry of the spectrum of QN (u) with respect to permutations of quantum numbers
ui = (ui, li) has its counterpart at the level of the eigenvectors. Using the integral repre-
sentation (2.43) of the R-matrix, it is possible to show the following commutation relation:

C ·ΛN+1(u1)⊗ΛN (u2) = [Sl1,l2(u1 − u2)C] ·ΛN+1(u2)⊗ΛN (u1) , (3.16)

where N > 2, C ∈ Vl1 ⊗ Vl2 , and the tensor product notation concerns only the finite-
dimensional spaces Vl1 and Vl2 . The matrix Sl1,l2(u) coincides with the fused R-matrix up
to a scalar phase:

Sl,l′ (u) = (−1)l+l
′ Γ
(
1 + l+l′

2 − iu
)

Γ
(
1 + l+l′

2 + iu
) Γ

(
d
2 − 1 + l+l′

2 − iu
)

Γ
(
d
2 − 1 + l+l′

2 + iu
) Rl,l′ (u) . (3.17)

The proof of (3.16) is heavily based on the main interchange relation (figure 4) and pre-
sented in figure 15. A very similar computation applies to the N = 1 case, and proves that

|u1,u2;C〉 = |u2,u1;P12Sl1,l2(u2 − u1)C〉 , (3.18)

where P12 : Vl1 ⊗ Vl2 → Vl2 ⊗ Vl1 is the exchange of the two factors.
The property (3.16) relates two eigenvectors with exchanged uk, uk+1. For a

generic permutation σ ∈ SN , the matrix Slk,lk+1(uk − uk+1) is replaced by an operator
S(u1, . . . ,uN ;σ) acting on Vl1 ⊗ · · · ⊗ VlN . First, we set

S(u1, . . . ,uN ; id) = Idl1 ⊗ · · · ⊗ IdlN , (3.19)

moreover, if σ is the transposition (k, k + 1), we impose

S(u1, . . . ,uN ; (kk+1)) = Idl1⊗· · ·⊗Idlk−1⊗Slk,lk+1(uk+1−uk)⊗Idlk+2⊗· · ·⊗IdlN . (3.20)
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Figure 13. Top left: action of the transfer matrix Q3(u) on the layer operator C3 · Λ3(u3).
Top right: the tensor structure is regarded as the action of a differential operator C3(∇x0) as in
equation (A.4), and here represented by the blue triangle. The line with power β and extreme x0
is pulled under the action of the operator C3(∇x0) by means of the property (A.5). In the bottom
drawings, lines are moved via several star-triangle and chain-rule identities, illustrated via arrows
(see, for details, appendix A).

Finally, we require the factorisation property

S(u1, . . . ,uN ; (kk + 1)σ) = S(uσ−1(1), . . . ,uσ−1(N); (kk + 1))S(u1, . . . ,uN ;σ) , (3.21)

for any k ∈ {1, . . . , N − 1} and any permutation σ. Since any permutation can be de-
composed into a product of transpositions of the form (kk + 1), this is enough to define
S(u1, . . . ,uN;σ) for all σ ∈ SN . Furthermore, there is no ambiguity in this definition
because Sl,l′ satisfies the Yang-Baxter equation.
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Figure 14. Last step of the diagonalisation procedure: in order to pass from the first to the second
drawing, the vertical lines with indices δ have been moved to the right. The upper two were moved
using star-triangle and chain relations, whereas the lower one is moved using property (A.5). The
last picture corresponds to the expression C3 ·Λ3(u3) Q2(u).

The consequence of (3.14), (3.16), (3.18), and (3.21) on the eigenvectors is the following
symmetry property: for any permutation of quantum numbers σ ∈ SN , one has

|u1, . . . ,uN ;C〉 = |uσ−1(1), . . . ,uσ−1(N);PσS(u1, . . . ,uN ;σ)C〉 (3.22)

where Pσ : Vl1 ⊗ · · · ⊗ VlN → Vlσ−1(1)
⊗ · · · ⊗ Vlσ−1(N)

is the canonical isomorphism.
We point out that the exchange property (3.16) is one of the defining properties of the

Zamolodchikovs-Faddeev algebra [20, 41]. Moreover, the symmetry property (3.22) would
also be typical for eigenvectors of compact spin chains for instance. However, since we are
now considering a model with continuous spectrum, the tensor C and the rapidities can be
chosen arbitrarily; there are no (nested) Bethe ansatz equations.

3.3 Inner product

The inner product for eigenvectors of the model of length N = 1 is trivially computed to be

〈u;C |u′;C ′〉 =
ˆ
C∗(x− x0)C ′(x− x0)

(x− x0)2
(
β̃∗+β̃′+ l+l′

2

) ddx
π
d
2

= δ(u− u′)〈C |C ′〉 , (3.23)

where δ(u− u′) = δll′δ(u− u′) and

〈C |C ′〉 = π

ˆ
Sd−1

C∗(n)C ′(n)dn
π
d
2

= l! 21−lπ

Γ
(
d
2 + l

)C∗µ1...µlC
′µ1...µl (3.24)

is the inner product we choose on Vl. The inner product of eigenvectors of length N > 1
is computed based on the iterative construction via layer operators (3.10). In fact, under
the assumption u′ 6= u, the overlap of two layer operators of length N is expressed using
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Figure 15. Proof of the symmetry of eigenvectors.

layers of length N − 1 via

C ′ ·Λ†N
(
u′
)
C ·ΛN (u) =

(
C ′⊗C

)
·Λ†N

(
u′
)
⊗ΛN (u)

=
[
t2Sl,l′ (u−u′)C⊗C ′

]
·ΛN−1 (u)⊗Λ†N−1 (u′)[

(u−u′)2+ (l−l′)2

4

][
(u−u′)2+ (d−2+l+l′)2

4

] , if N > 2 ,

(3.25)

and

〈x|C ′ ·Λ†2
(
u′
)
C ·Λ2 (u) |y〉 = 1[

(u− u′)2 + (l−l′)2

4

] [
(u− u′)2 + (d−2+l+l′)2

4

]×
×
[
t2Sl,l′ (u− u′)C ⊗ C ′

]
· (x− x0)⊗l ⊗ (y − x0)⊗l

′

(x− x0)2(β̃+ l
2 ) (y − x0)2

(
β′+ l′

2

) .

(3.26)
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The properties (3.26) and (3.25) are obtained using the integral representation (2.43)
of the R-matrix and crossing symmetry (2.62), and are shown by the diagrams in fig-
ure 16. From the iteration of (3.25) and the symmetry property (3.22), the overlap of two
eigenvectors reads

〈u1, . . . ,uN ;C |u′1, . . . ,u′N ;C ′〉 =
∑
σ∈SN

∏N
k=1 δ(uσ(k) − u′k) 〈C |PσS(u′1, . . . ,u′N ;σ)C ′〉

µ(u1, . . . ,uN ) ,

(3.27)
where the measure µ is defined as

µ(u1, . . . ,uN ) =
∏

16j<k6N

[
(uj − uk)2 + (lj − lk)2

4

] [
(uj − uk)2 + (d− 2 + lj + lk)2

4

]
.

(3.28)
Let us understand this formula with an explicit example. For N = 3, the inner product is

〈u1,u2,u3;C1 ⊗ C2 ⊗ C3|u′1,u′2,u′3;C ′1 ⊗ C ′2 ⊗ C ′3〉 =

= 〈u1;C1|C∗2 ·Λ
†
2(u2)C∗3 ·Λ

†
3(u3)C ′3 ·Λ3(u′3)C ′2 ·Λ2(u′2) |u′1;C ′1〉 =

=
ˆ
〈u1;C1|x〉 〈x|C∗2 ·Λ

†
2(u2)C∗3 ·Λ

†
3(u3)C ′3 ·Λ3(u′3)C ′2 ·Λ2(u′2) |y〉 〈y |u′1;C ′1〉

ddxddy
πd

.

(3.29)

If we assume that u3 6= u′3, u3 6= u′2, and u2 6= u′3, then, thanks the overlap formula (3.25),
one can write

〈u1,u2,u3;C1 ⊗ C2 ⊗ C3 |u′1,u′2,u′3;C ′1 ⊗ C ′2 ⊗ C ′3〉

∝
ˆ [

t2Sl′3,l2(u′3 − u2)t3Sl′2,l3(u′2 − u3)t3Sl′3,l3(u′3 − u3)C ′2 ⊗ C ′3 ⊗ C∗2 ⊗ C∗3
]

(z;x; z; y)

× C∗1 (x)C ′1(y)

x
2
(
β̃∗1 +β̃′3+

l1+l′3
2

)
y

2
(
β̃∗3 +β̃′1+

l3+l′1
2

)
z

2
(
β̃∗2 +β̃′2+

l2+l′2
2

) ddxddyddz
π

3d
2

. (3.30)

We have used the following notation: for C ∈ Vl1 ⊗ · · · ⊗ VlN and x1, . . . , xN arbitrary
vectors, we define C(x1; . . . ;xN ) = Cµ1,1...µ1,l1 ...µN,1...µN,lN

x
µ1,1
1 . . . x

µ1,l1
1 . . . x

µN,1
N . . . x

µN,lN
N .

The integrals over x, y, and z in (3.30) are of the form of (3.23), and their computa-
tion yields

〈u1,u2,u3;C1 ⊗ C2 ⊗ C3 |u′1,u′2,u′3;C ′1 ⊗ C ′2 ⊗ C ′3〉 ∝ δ(u1 − u′3)δ(u2 − u′2)δ(u3 − u′1)
× 〈C3 ⊗ C2 ⊗ C1 |Sl′2,l′3(u′3 − u′2)Sl′1,l′3(u′3 − u′1)Sl′1,l′2(u′2 − u′1)C ′1 ⊗ C ′2 ⊗ C ′3〉 . (3.31)

Thanks to the delta functions, the prefactor is actually exactly µ(u1,u2,u3)−1. It
remains to notice that

Sl′2,l′3(u′3−u′2)Sl′1,l′3(u′3−u′1)Sl′1,l′2(u′2−u′1) = S(u′1,u′2,u′3; (12)(23)(12)) = S(u′1,u′2,u′3; (13))
(3.32)

– 31 –



J
H
E
P
1
2
(
2
0
2
1
)
1
7
4

because of (3.21). On the other hand, when u3 6= u′3, u3 6= u′2, and u2 6= u′3, formula (3.27)
also reduces to

〈u1,u2,u3;C1 ⊗ C2 ⊗ C3 |u′1,u′2,u′3;C ′1 ⊗ C ′2 ⊗ C ′3〉 = µ(u1,u2,u3)−1

× δ(u1 − u′3)δ(u2 − u′2)δ(u3 − u′1)〈C3 ⊗ C2 ⊗ C1 |S(u′1,u′2,u′3; (13))C ′1 ⊗ C ′2 ⊗ C ′3〉 .
(3.33)

The other terms of (3.27) appear when requiring, following (3.22), that the full result for
the inner product be invariant under

|u1,u2,u3;C1 ⊗ C2 ⊗ C3〉 7−→ |uσ−1(1),uσ−1(2),uσ−1(3);PσS(u1,u2,u3;σ)C1 ⊗ C2 ⊗ C3〉
(3.34)

for all the permutations σ ∈ S3. This whole procedure is generalized to arbitrary N thanks
the iterative form of the property (3.25).

3.4 Completeness

Let us fix {Cm,l}16m6dl an orthonormal basis of Vl with respect to the inner product
defined in (3.24) (dl is the dimension of Vl). We postulate that for any N , the following
resolution of the identity holds:∑

06l1<+∞
16m16dl1

· · ·
∑

06lN<+∞
16mN6dlN

ˆ
. . .

ˆ
µ(u1, . . . ,uN )

N ! 〈x1, . . . ,xN |u1, . . . ,uN ;Cm1,l1⊗·· ·⊗CmN ,lN 〉

×〈u1, . . . ,uN ;Cm1,l1⊗·· ·⊗CmN ,lN |y1, . . . ,yN 〉
N∏
k=1

duk =
N∏
k=1

π
d
2 δ(xk−yk) . (3.35)

The integrals are over the real line: uk ∈ R. The power of π in the right-hand side comes
from the fact that we have defined |x〉 such that 〈x |y〉 = π

d
2 δ(x − y) (see beginning of

section 3). This completeness relation is easily verified in the case N = 1, as it coincides
with the expansion of a radial function in d-dimensions in Gegenbauer polynomials on the
sphere Sd−1. We conjecture its validity for N > 1.

4 Basso-Dixon diagrams

In this section, we investigate the application of obtained basis of eigenvectors and cor-
responding spectral decomposition of the graph-building operator to the computations of
some fishnet Feynman integrals presented in figure 17. Up to a trivial normalization factor
the Feynman graph of the left panel has an interpretation as a four-point correlator in the
fishnet theory:

G
(d,δ)
M,N (x1, x2, x3, x4) ∝

〈
Tr

(
XN (x1)ZM (x2)X†N (x3)Z†M (x4)

)〉
. (4.1)

Because of the conformal invariance of the integral it is equivalent to compute the
integral associated to the right panel of the figure. A simple change of variables indeed
shows that

G
(d,δ)
M,N (x1, x2, x3, x4) = 1

(x2
24)Mδ

(
x2

14x
2
34
)Nδ̃ I(d,δ)

M,N

(
x14
x2

14
− x24
x2

24
,
x34
x2

34
− x24
x2

24

)
. (4.2)
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C'CC'C C'C

C'C C'C

C'C C'C

R (u )
t2

Figure 16. Proof of the inner product formula. Up left to down right: the overlap of two layer
operators C ′ ·Λ3(u2) and C ·Λ3(u1) is transformed via application of star-triangle identities and, at
the last step, the interchange relation. The notation of blue dots, blue triangles and arrows is the
same as in figure 11 and refers to different application of the star-triangle and chain-rule identities.
The final expression coincides with the r.h.s. of (3.25). It shows that the overlap of two layers
amounts to the scattering of the two excitations u1 and u2 across each other, this is expressed by
the fused R-matrix Rl1,l2(u12).
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Figure 17. Feyman graphs investigated in section 4 in the case (M,N) = (3, 4). We call
G

(d,δ)
M,N (x1, x2, x3, x4) and I(d,δ)

M,N (x, y) the integrals represented by the graph on the left and on the
right respectively. All the vertical (or ending on x2, x4 or 0) segments have weight δ whereas all
the horizontal (or ending on x1, x3, x or y) ones have weight δ̃.

In turn, the integral I(d,δ)
M,N is almost a matrix element of the (M + 1)-th power of the

graph-building operator BN,δ̃ = QN

(
i δ̃2
)
:

I
(d,δ)
M,N (x, y) = π

Nd
2 〈x, . . . , x|

(
N∏
i=1

x̂2δ
i−1,i

)
BM+1
N,δ̃

|y, . . . , y〉 , (4.3)

where we have set x0 = 0, and x̂2
i−1,i is the operator of multiplication by x2

i−1,i. It thus
seems natural to use the spectral decomposition of the graph-building operator QN

(
i δ̃2
)

to try to express these integrals in a simpler form. This was successfully achieved in two
dimensions in [12] and in four dimensions in [14, 15]. For higher dimensions the result is
actually more complicated and we are going to discuss it in a separate paper. Now we shall
consider the simplest examples to illustrate how the general scheme works in the case of
higher dimensions.

As we have seen above, the eigenvalue of QN

(
i δ̃2
)
factorises into a product of

Ql(u) = Ql

(
i δ̃2

∣∣∣∣u
)

=
Γ(δ)Γ

(
d
4 −

δ
2 + l

2 − iu
)

Γ
(
d
4 −

δ
2 + l

2 + iu
)

Γ(δ̃)Γ
(
d
4 + δ

2 + l
2 + iu

)
Γ
(
d
4 + δ

2 + l
2 − iu

) . (4.4)

4.1 Ladder diagrams

We first give the expressions for the so-called ladder diagrams [51–54] in arbitrary
dimension:

I
(d,δ)
M,1 (x, y) =

Γ
(
d
2

)
(x2y2)

δ̃
2

+∞∑
l=0

2l + d− 2
d− 2 C

( d−2
2 )

l (cos θ)
ˆ du

2π

(
x2

y2

)iu

QM+1
l (u) , (4.5)
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whereQl is given in equation (4.4), C(µ)
l are Gegenbauer polynomials and cos θ = x·y/|x||y|.

We assume d > 3. This formula is a straightforward consequence of the completeness
formula (3.35) and (4.13) below, hence we omit its proof.

The integral is straightforwardly computed by residues but the eigenvalue Ql gener-
ically has infinitely many poles. However, when δ is a positive integer, Q−1

l is a poly-
nomial of degree 2δ and there is a finite number of poles. If δ = 1, one has Ql(u)−1 =
Γ
(
d−2

2

) (
u2 + (l + (d− 2)/2)2/4

)
and performing the integral yields

I
(d,1)
M,1 (x, y) =

Γ
(
d−2

2

)−M
(x2y2)

d−2
4

2M∑
k=M

k!(−2 ln r)2M−k

M !(k −M)!(2M − k)!

+∞∑
l=0

C
( d−2

2 )
l (cos θ) rl+

d−2
2(

l + d−2
2

)k (4.6)

with r =
√
y2/x2.

When d is even we also have the following property of the Gegenbauer polynomials

Γ
(
d− 2

2

)
C

( d−2
2 )

l (x) = 2
4−d

2

( d
dx

) d−4
2
[
C

(1)
l+ d−4

2
(x)
]
. (4.7)

Consequently, for even d > 2, we can write (z = r ei θ)

I
(d,1)
M,1 (x, y) =

2
4−d

2 Γ
(
d−2

2

)−M−1

(x2y2)
d−2

4

( d
d cos θ

) d−4
2
[
LM (z, z̄)
ei θ − e− i θ

]
, (4.8)

where we have introduced the ladder function LM defined for M > 0 by

LM (z, z̄) =
2M∑
k=M

k![− ln(zz̄)]2M−k

M !(k −M)!(2M − k)! [Lik(z)− Lik(z̄)] , (4.9)

with Lik(z) =
∑∞
n=1

zn

nk
the polylogarithm.

4.2 Two-layer diagrams

Inserting the resolution of the identity in the expression (4.3) of I(d,δ)
M,2 , it becomes

I
(d,δ)
M,2 (x, y) =

∑
06l1<+∞
16m16dl1

∑
06l2<+∞
16m26dl2

ˆ
du1du2 [Ql1(u1)Ql2(u2)]M+1µ(u1,u2)

2

× 〈x, x| x̂2δ
12x̂

2δ
1 |u1,u2;Cm1,l1 ⊗ Cm2,l2〉 〈u1,u2;Cm1,l1 ⊗ Cm2,l2 | y, y〉 (4.10)

One can show that

〈x, x| x̂2δ
12x̂

2δ
1 |u1,u2;C〉 = A0(δ̃)Al1(α̃1)Al2(α̃2)41− d2 +iu21 il1+l2

x2(2α1− d2 +1)

ˆ ddp
π
d
2

C(p, p) ei p·x

p2
(
1+ l1+l2

2 +iu21
) ,

(4.11)

〈y, y |u1,u2;C〉 = A0

(
d

2 + δ

)
Al1(β1)Al2(β2)41− d2 +iu21 il1+l2

y2(2β̃1− d2 +1)

ˆ ddp
π
d
2

C(p, p) ei p·y

p2
(
1+ l1+l2

2 +iu21
) ,

(4.12)
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where u21 = −u12 = u2 − u1. Both equations can be rewritten using the operator Ol1,l2

introduced in (2.56), the first one becomes for instance

〈x,x| x̂2δ
12x̂

2δ
1 |u1,u2;C〉=A0(δ̃)Al1(α̃1)Al2(α̃2)(−1)l1+l2Al1+l2(1+iu21) [Ol1,l2(u21)C]·x⊗(l1+l2)

x2
(
α1+α2+ l1+l2

2

) .

If we don’t want to use the operator Ol1,l2 , we have to remark that, necessarily, whatever
orthonormal basis of symmetric traceless tensors we chose,

dl∑
m=1

Cm,l(p)C∗m,l(q) =
Γ
(
d
2

)
(2l + d− 2)

2π(d− 2) |p|l|q|lC( d−2
2 )

l

(
p · q
|p||q|

)
. (4.13)

so that it is possible to rewrite I(d,δ)
M,2 as

I
(d,δ)
M,2 (x, y) =

Γ
(
d
2

)2

2
∑
l1,l2

ˆ du1du2
(2π)2

42−d[Ql1(u1)Ql2(u2)]M+2

x2(2α1− d2 +1)y2(2β1− d2 +1)

×
[
u2

12 + l212
4

] [
u2

12 + (l1 + l2 + d− 2)2

4

]
(2l1 + d− 2)(2l2 + d− 2)

(d− 2)2

×
ˆ ddp ddq

πd

C
( d−2

2 )
l1

(
p·q
|p||q|

)
C

( d−2
2 )

l2

(
p·q
|p||q|

)
p2(1+iu21)q2(1+iu12) ei p·x−i q·y . (4.14)

In order to perform the integrals over p and q, we may proceed as follows: first one
expands the product of two Gegenbauer polynomials according to [55]

C
( d−2

2 )
l1

(
p · q
|p||q|

)
C

( d−2
2 )

l2

(
p · q
|p||q|

)
=

min(l1,l2)∑
m=0

al1,l2,mC
( d−2

2 )
l1+l2−2m

(
p · q
|p||q|

)
(4.15)

with

al1,l2,m =
(l1+l2−2m+ d−2

2 )(l1+l2−2m)!
(l1+l2−m+ d−2

2 )m!(l1−m)!(l2−m)!

(
d−2

2

)
m

(
d−2

2

)
l1−m

(
d−2

2

)
l2−m(

d−2
2

)
l1+l2−m

(d−2)l1+l2−2m
(d−2)l1+l2−m .

(4.16)
Then one uses the fact that C( d−2

2 )
l

(
p·q
|p||q|

)
is a spherical harmonic with respect to both p

and q (see equation (4.13)) to compute the integrals over these variables using (A.7):

ˆ ddpddq
πd

C
( d−2

2 )
l

(
p·q
|p||q|

)
p2(1−iu12)q2(1+iu12) eip·x−iq·y =

∣∣∣∣∣Γ
(
l+d−2

2 +iu12
)

Γ
(
l+2
2 +iu12

) ∣∣∣∣∣
2 4d−2C

( d−2
2 )

l

(
x·y
|x||y|

)
x2( d2−1+iu12)y2( d2−1−iu12) .

(4.17)
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Consequently, one can write

I
(d,δ)
M,2 (x, y) =

Γ
(
d
2

)2

2(x2y2)δ̃
∑
l1,l2

ˆ du1du2
(2π)2

(
x2

y2

)i(u1+u2)

[Ql1(u1)Ql2(u2)]M+2

×
[
u2

12 + l212
4

] [
u2

12 + (l1 + l2 + d− 2)2

4

]
(2l1 + d− 2)(2l2 + d− 2)

(d− 2)2

×
min(l1,l2)∑
m=0

al1,l2,m

∣∣∣∣∣Γ
(
l1+l2−2m+d−2

2 + iu12
)

Γ
(
l1+l2−2m+2

2 + iu12
) ∣∣∣∣∣

2

C
( d−2

2 )
l1+l2−2m(cos θ) (4.18)

with x · y = |x||y| cos θ. Using the operator Ol1,l2 , this can actually be written in a more
concise way:

I
(d,δ)
M,2 (x, y) =

Γ
(
d
2

)2

2(x2y2)δ̃
∑
l1,l2

ˆ du1du2
(2π)2

(
x2

y2

)i(u1+u2)

[Ql1(u1)Ql2(u2)]M+2

×
[
u2

12 + l212
4

] [
u2

12 + (l1 + l2 + d− 2)2

4

]
(2l1 + d− 2)(2l2 + d− 2)

(d− 2)2

×
∣∣∣∣∣Γ
(
l1+l2+d−2

2 + iu12
)

Γ
(
l1+l2+2

2 + iu12
) ∣∣∣∣∣

2
[Ol1,l2(u21)tOl1,l2(u12)x⊗(l1+l2)] · y⊗(l1+l2)

(|x||y|)l1+l2 . (4.19)

Notice that since Ol1,l2 goes from Vl1 ⊗ Vl2 to Sl1+l2(Cd) we can only multiply it
with its transpose. This is what happens here where we need matrix elements of
Ol1,l2(u21)tOl1,l2(u12) : Sl1+l2(Cd) → Sl1+l2(Cd). It seems that expression (4.19) is the
most natural for the generalization to the general case I(d,δ)

M,N .
Let us compare the expressions (4.18) for integral I(d,δ)

M,2 in various dimensions. The limit
d → 2 is seemingly singular but one should remember that the Gegenbauer polynomials
for l > 0 tend to 0 in this limit so that

∀l ∈ N,
2l + d− 2
d− 2 C

( d−2
2 )

l (cos θ) −→
d→2

2
1 + δl,0

cos lθ . (4.20)

Thus, for min(l1, l2) > 0, one has

(2l1 + d− 2)(2l2 + d− 2)
(d− 2)2 al1,l2,mC

( d−2
2 )

l1+l2−2m(cos θ) −→
d→2

2
[
δm,0 cos(l1 + l2)θ + δm,min(l1,l2) cos(l1 − l2)θ

]
.

(4.21)
In the end, I(2,δ)

M,2 is finite (as it should be) and, using the additional symmetry Ql = Q−l
valid for l ∈ Z when d = 2, one can extend the sum to (l1, l2) ∈ Z2 so that

I
(2,δ)
M,2 (x,y) = 1

2(x2y2)δ̃
∑

(l1,l2)∈Z2

ei(l1+l2)θ
ˆ du1du2

(2π)2

(
x2

y2

)i(u1+u2)

[Ql1(u1)Ql2(u2)]M+2
[
u2

12+ l212
4

]
.

(4.22)
This coincides with the result of [12].
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When d = 4, the dependence on u of the sum over m disappears and the sum is then
simply

C
(1)
l1

(cos θ)C(1)
l2

(cos θ) =

(
ei(l1+1)θ − e− i(l1+1)θ

) (
ei(l2+1)θ − e− i(l2+1)θ

)
(ei θ − e− i θ)2 . (4.23)

Noticing that Ql = Q−l−2 when d = 4 we can keep only one of the four terms in the
equation above if we extend the summation to (l1, l2) ∈ Z2. We thus recover the known
formula [7] (we have also replaced lj with aj = lj + 1):

I
(4,δ)
M,2 (x, y) = 1

2(x2y2)δ̃
1

(ei θ − e− i θ)2

∑
(a1,a2)∈Z2

a1a2 ei(a1+a2)θ

×
ˆ du1du2

(2π)2

(
x2

y2

)i(u1+u2)

[Qa1−1(u1)Qa2−1(u2)]M+2
[
u2

12 + a2
12
4

] [
u2

12 + (a1 + a2)2

4

]
.

(4.24)

The next case we could investigate is (d, δ) = (6, 1), the formula (4.18) then reads

I
(6,1)
M,2 (x,y)

= 1
2(x2y2)2

∑
l1,l2

ˆ
du1du2

(2π)2

(
x2

y2

)i(u1+u2)
[
u2

12+ l212
4

][
u2

12+ (l1+l2+4)2

4

]
[(
u2

1+ (l1+2)2

4

)(
u2

2+ (l2+2)2

4

)]M+2 (l1+2)(l2+2)

min(l1,l2)∑
m=0

(m+1)(l1−m+1)(l2−m+1)(l1+l2−m+3)
(l1+l2−2m+1)(l1+l2−2m+3)

[
u2

12+ (l1+l2−2m+2)2

4

]
C

(2)
l1+l2−2m(cosθ) .

(4.25)

The integrals are rather easy, at least when M is not too large, but the sums seem to be
quite tedious to perform. We hope that this example of the first nontrivial integral I(d,δ)

M,2
clearly illustrates the complications arising in higher dimensions.

5 Conclusions

In the present paper, we have constructed the generalised eigenvectors of the graph-building
operator for fishnet integrals in d dimensions. The spectral decomposition of the graph-
building operator allowed us to derive a representation for the d-dimensional Basso-Dixon
diagrams in terms of separated variables, i.e. the rapidities uj and the bound-state numbers
lj of the fishnet lattice’s excitations. According to that, the expression for the Basso-Dixon
diagram is an integral over separated variables — with the corresponding Sklyanin measure
that we computed for any d from the overlap of eigenvectors, and it reproduces the results
of [7, 12, 14] in two and four dimensions. The integrand is given by the eigenvalues of the
graph-building operator and by the reductions of the bra and ket eigenvectors corresponding
to pinching their external coordinates to two points x and y. The former is factorised into
N contributions, each depending on the quantum numbers of one excitation (uj , lj), the
latter have a more complicated structure for general d. In d = 2 and d = 4, the eigenvectors
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are drastically simplified by the reduction, but, as we have demonstrated in the last section,
the analogous expression for the general d-dimensional situation is more involved.

The present construction of eigenvectors is based on the symmetric tensor representa-
tions of the group O(d). As a consequence, the corresponding main interchange relation
governing the symmetry of the eigenvectors involves O(d)-invariant R-matrix acting on the
tensor product of two symmetric tensor representations. In this framework, the symmetry
of eigenvectors and scalar product look simple. On the other hand the special reduction
of the eigenvector we would need in order to write the Basso-Dixon diagrams in terms of
known functions is quite complicated.

In appendix (E) we have discussed shortly the construction of the eigenvectors based
on spinor representations of the group O(d). In some sense these constructions are comple-
mentary and show opposite features: in the spinorial framework the symmetry properties
and scalar products looks more complicated but the special reductions of eigenvectors is
straightforward. A detailed discussion of such duality, comparison between the spinorial
and tensorial frameworks, and the derivation of the general expression for the reduced
eigenvectors is left to a future paper.

Our results constitute an important step for a formulation of integrability techniques
for n-point functions (n > 3) in conformal field theories in dimension d 6= 4. This claim is
based on the fact that techniques of hexagonalisation [56–58] developed in the 4-dimensional
N = 4 SYM theory took an important piece information from the knowledge of Fishnet
integrals, and can even be derived from first principle for the strongly deformed (Fishnet)
theory [59, 60]. At the same time, nothing is known about similar techniques in other di-
mensions, with the exception of a worldsheet theory without a known field theory dual [61].
For example, one can wonder if and how hexagon form factors and octagon functions [3, 4]
can be computed in N = 6 ABJM theory: a rich piece of information would come from
an explicit computation of BD diagrams in 3D together with the discovery of an analogue
of its representation as a determinant of ladder integrals, following the observations in
d = 2, 4 [12, 13].

Acknowledgments

We are grateful to the referees for the detailed read of our manuscript and for several valu-
able suggestions. G.F. thanks B. Basso and V. Kazakov for numerous fruitful discussions,
and D. Serban and M. Staudacher for their many useful comments on an early version of
the manuscript. Research at the Perimeter Institute is supported in part by the Govern-
ment of Canada through NSERC and by the Province of Ontario through MRI. This work
was additionally supported by a grant from the Simons Foundation (Simons Collaboration
on the Nonperturbative Bootstrap).

A Basic integral relations

We collect in this appendix various formulae which are used for the calculations of the
Feynman diagrams [62–67]. We recall that for a complex number a and an integer l > 0

– 39 –



J
H
E
P
1
2
(
2
0
2
1
)
1
7
4

Figure 18. Graphical representation of the identity (A.5).

we define

ã = d

2 − a , Al(a) =
Γ
(
ã+ l

2

)
Γ
(
a+ l

2

) = 1
Al(ã) , (a)l = Γ(a+ l)

Γ(a) =
l−1∏
k=0

(a+ k) . (A.1)

If C is a symmetric traceless tensor of rank l, i.e. C ∈ Vl, and x ∈ Rd we will also write

C(x) = Cµ1···µlxµ1 . . . xµl . (A.2)

Because C is traceless the following two elementary but very useful properties hold for an
arbitrary complex number a:

C
(
x−y
|x−y|

)
(x− y)2a = C(∇x)

(−2)l
(
a− l

2

)
l

1
(x− y)2(a− l

2 ) , (A.3)

and

C
(

x−x0
(x−x0)2 − y−x0

(y−x0)2

)
(x− x0)2(a− l

2 )(y − x0)2(1−a− l
2 ) = C (∇x0)

(−2)l
(
a− l

2

)
l

1
(x− x0)2(a− l

2 )(y − x0)2(1−a− l
2 ) .

(A.4)
The second property in particular implies that for arbitrary complex numbers a and
b one has

1
(x− x0)2bC (∇w0)

[
1

(x− w0)2(a− l
2 )(y − w0)2(1−a− l

2 )

] ∣∣∣∣∣
w0=x0

= 1
(y − x0)2b

(
a− l

2

)
l(

a+ b− l
2

)
l

C (∇w0)
[

1
(x− w0)2(a+b− l

2 )(y − w0)2(1−a−b− l
2 )

] ∣∣∣∣∣
w0=x0

. (A.5)

This useful identity can be visualised in a graphic form in figure 18.
We also recall that, if <(a) > 0, one can write

1
x2a = 1

Γ(a)

ˆ +∞

0
e−ux2

ua−1du . (A.6)

Fourier transform of a propagator. For C a rank l symmetric traceless tensor,
ˆ C

(
p
|p|

)
p2a ei p·x ddp

π
d
2

= Al(a) il 4ã
C
(
x
|x|

)
x2ã . (A.7)
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Figure 19. Left: star-triangle identity in graphical form. We recall that x̃ = d
2 − x. Right: chain-

rule identity in graphical form.

Figure 20. The exchange relation corresponding to the notation of blue arrow used in the main
text amounts to consecutive triangle-star and star-triangle transformations, and holds under the
assumption α + β′ = α′ + β. The equalities hold modulo numerical coefficients depending on
α, β, α′, β′.

Chain relation. ˆ
π−

d
2 ddz

(x− z)2a(z − y)2b = A0(a)A0(b)A0(d− a− b)
(x− y)2(a+b− d2 ) . (A.8)

When a+ b = d
2 the chain relation becomes

ˆ
π−

d
2 ddz

(x− z)2a(z − y)2(d−a) = A0(a)A0(d− a)π
d
2 δ(x− y) . (A.9)

Star-triangle relation. For a+ b+ c = d, one has

ˆ
π−

d
2 ddw

(w − x)2a(w − y)2b(w − z)2c = A0(a)A0(b)A0(c)
(x− y)2c̃(y − z)2ã(z − x)2b̃

. (A.10)

Generalization of the chain relation. For C ∈ Vl, one has

ˆ C
(
x−z
|x−z|

)
(x− z)2a(z − y)2b

ddz
π
d
2

= Al(a)A0(b)Al(d− a− b)
C
(
x−y
|x−y|

)
(x− y)2(a+b− d2 ) . (A.11)
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B Equivalence (2.49) and (2.33)

B.1 Derivation of (2.50)

In this section we derive representation (2.50) for the v-integral. For simplicity we shall
use the compact notation λ = 1− l1+l2

2 + iu. First step is the usual binomial expansion

ˆ ddv
π
d
2

(
ζ ·
(
y − v

v2

))l1 (
η ·
(
x− v

v2

))l2
(z − v)2(d−λ) v2λ

=
∑
k,p

(
l1
k

)(
l2
p

)
(−1)k+p

(ζ · y)l1−k (η · x)l2−p
ˆ ddv

π
d
2

(
ζ · v

v2

)k (
η · v

v2

)p
(z − v)2(d−λ) v2λ

(B.1)

On the second step we use representation

(
ζ · v

v2

)k (
η · v

v2

)p
v2λ = 1

2k+p (λ)k+p
∂kt ∂

p
s

1
(v2 − 2tζ · v − 2sη · v)λ

∣∣∣∣∣
t=s=0

where the symbol |t=s=0 means that we have to put t = 0 and s = 0 after differentiation
and series expansion (ζ2 = 0 and η2 = 0)

1
(v2 − 2tζ · v − 2sη · v)λ = 1

((v − tζ − sη)2 − 2tsζ · η)λ
=
∑
n

(λ)n
n!

(2tsζ · η)n

(v − tζ − sη)2(λ+n)

to reduce our expression to the sum of the simpler integrals

ˆ ddv
π
d
2

(
ζ ·
(
y − v

v2

))l1 (
η ·
(
x− v

v2

))l2
(z − v)2(d−λ) v2λ

=
∑
n,k,p

(
l1
k

)(
l2
p

)
(−1)k+p 2n−k−p (λ)n

n! (λ)k+p
(ζ · y)l1−k (η · x)l2−p (ζ · η)n

∂kt ∂
p
s t

nsn
ˆ ddv

π
d
2

1
(z − v)2(d−λ) (v − tζ − sη)2(λ+n)

∣∣∣∣∣
t=s=0

(B.2)

Next step we reduce remaining integral to the standard form

ˆ ddv
π
d
2

1
v2(d−λ) (v + z − tζ − sη)2λ = π

d
2

Γ
(
λ− d

2

)
Γ
(
d
2 − λ

)
Γ(d− λ)Γ(λ) δ(d) (z − tζ − sη)
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using external derivatives

(
∂zµ∂zµ

)n 1
(z + z0)2λ = 4n(λ)n

(
λ− d

2 + 1
)
n

1
(z + z0)2(λ+n)

ˆ ddv
π
d
2

1
v2(d−λ) (v + z − tζ − sη)2(λ+n)

=
(
∂zµ∂zµ

)n
4n(λ)n

(
λ− d

2 + 1
)
n

ˆ ddv
π
d
2

1
v2(d−λ) (v + z − tζ − sη)2λ

=
π
d
2 Γ
(
λ− d

2

)
Γ
(
d
2 − λ

)
4n(λ)n

(
λ− d

2 + 1
)
n

Γ(d− λ)Γ(λ)
(
∂zµ∂zµ

)n
δ(d) (z − tζ − sη)

(B.3)

We have

ˆ ddv
π
d
2

(
ζ ·
(
y − v

v2

))l1 (
η ·
(
x− v

v2

))l2
(z − v)2(d−λ) v2λ

=
∑
n,k,p

(
l1
k

)(
l2
p

)
(−1)k+p 2−n−k−pπ

d
2 Γ
(
λ− d

2

)
Γ
(
d
2 − λ

)
n! (λ)k+p

(
λ− d

2 + 1
)
n

Γ (d− λ) Γ (λ)

(ζ · y)l1−k (η · x)l2−p (ζ · η)n ∂kt ∂
p
s t

nsn
(
∂zµ∂zµ

)n
δ(d) (z − tζ − sη)

∣∣∣
t=s=0

(B.4)

The last transformation: using evident formula

∂kt t
n F (t)

∣∣∣
t=0

= k!
(k − n)! ∂

k−n
t F (t)

∣∣∣
t=0

and similar ones for s-derivative and shifting summation indices k → k + n and p→ p+ n

one obtains

ˆ ddv
π
d
2

(ζ ·(y− v
v2 ))l1(η ·(x− v

v2 ))l2
(z−v)2(d−λ)v2λ

=
π
d
2 Γ
(
λ− d

2

)
Γ
(
d
2−λ

)
Γ(d−λ)Γ(λ)

∑
n,k,p

(
l1

k+n

)(
l2
p+n

)
(k+n)!(p+n)!

k!p!
2−3n−k−p(−1)k+p

n!(λ)k+p+2n
(
λ− d

2 +1
)
n

(ζ ·y)l1−k−n(η ·x)l2−p−n(ζ ·η)n ∂kt ∂ps
(
∂zµ∂zµ

)n
δ(d) (z−tζ−sη)

∣∣∣
t=s=0

(B.5)

It is exactly expression (2.50) and

Al1,l2(u) =
π
d
2 Γ
(
λ− d

2

)
Γ
(
d
2 − λ

)
Γ(d− λ)Γ(λ) ; λ = 1− l1 + l2

2 + iu (B.6)
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B.2 Equivalence

Now we are going to calculate sum in the right hand side of (2.51) and let us continue to
use for simplicity notation λ = 1− l1+l2

2 + iu. We have

Fl1,l2(u) = Γ(2−λ−l1−l2)Γ(λ+l1+l2)Γ(d−λ)
Γ(2−λ)Γ

(
d
2−λ

)
Γ
(
λ− d

2

) , Al1,l2(u) =
π
d
2 Γ
(
λ− d

2

)
Γ
(
d
2−λ

)
Γ(d−λ)Γ(λ) ,

π−
d
2Fl1,l2(u)Al1,l2(u) = Γ(2−λ−l1−l2)Γ(λ+l1+l2)

Γ(2−λ)Γ(λ) = (−1)l1+l2 λ−1+l1+l2
λ−1

so that[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· x⊗l1 ⊗ y⊗l2

= Γ (2− λ− l1 − l2) Γ (λ+ l1 + l2)
Γ (2− λ) Γ(λ)∑

n,k,p

l1!l2!(−1)k+p 2−k−p−3n

(l1 − k − n)!(l2 − p− n)!k!p!n!
(ζ · η)n(ζ · y)l1−k−n(η · x)l2−p−n

(λ)k+p+2n

(
λ− d

2 + 1
)
n

(B.7)

∂kt ∂
p
s

(
∂zµ∂zµ

)n (1− 2z · x+ z2x2
)1−λ−l2 (1− 2z · y + z2y2

)1−λ−l1
∣∣∣∣
z=tζ+sη

(B.8)

The symbol |z=tζ+sη means that we have to substitute z = tζ+sη after all z-differentiation
and then to put t = s = 0 after all s- and t-differentiations.

The first step is the calculation of the expression in the last line. We introduce
Schwinger parameters(

1−2z ·x+z2x2
)1−λ−l2 (1−2z ·y+z2y2

)1−λ−l1

= 1
Γ(λ−1+l2)Γ(λ−1+l1)

ˆ ∞
0

dααλ−2+l2 e−α
ˆ ∞

0
dββλ−2+l1 e−β e2z·(αx+βy)−z2(αx2+βy2)

and then calculate z-derivatives using formula

eγ∂zµ∂zµ e−bz
2+z·c = (1 + 4γb)−

d
2 e

γc2
1+4γb e

−bz2+z·c
1+4γb (B.9)

This formula can be easily obtained using Gaussian integral and in our case b = αx2 +βy2

and c = 2(αx+ βy). We have

(
∂zµ∂zµ

)n
e−bz

2+z·c

= ∂nγ (1 + 4γb)−
d
2 e

γc2
1+4γb e

−bz2+z·c
1+4γb

∣∣∣∣
γ=0

= 4nbn ∂nγ (1 + γ)−
d
2 e

γ
1+γ

c2
4b e

−bz2+z·c
1+γ

∣∣∣∣
γ=0

=
∑
m

1
m! ∂

n
γ γ

m (1 + γ)−
d
2−m 4n−mbn−m

(
c2
)m

e
−bz2+z·c

1+γ

∣∣∣∣
γ=0
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Now it is possible to substitute z = tζ + sη so that z2 = 2tsζ · η and z · c = tζ · c + sη · c
and calculate t- and s-derivatives:

∂kt ∂
p
s e
−2tsbζ·η+tζ·c+sη·c

1+γ

∣∣∣∣
t=s=0

= (1 + γ)−k ∂ps (−2sbζ · η + ζ · c)k e
sη·c
1+γ
∣∣∣
s=0

= (1 + γ)−k
∑
m1

(
k

m1

)
(−2bζ · η)m1 (ζ · c)k−m1 ∂ps s

m1 e
sη·c
1+γ
∣∣∣
s=0

=
∑
m1

(
k

m1

)
p!

(p−m1)! (1 + γ)−k−p+m1 (−2bζ · η)m1 (ζ · c)k−m1 (η · c)p−m1

Using formula for γ-derivative

∂nγ γ
m (1 + γ)−

d
2−m−k−p+m1

∣∣∣
γ=0

= (−1)n−m
n!
(
d
2 +m+ k + p−m1

)
n−m

(n−m)!

and collecting all terms we obtain

∂kt ∂
p
s

(
∂zµ∂zµ

)n
e−bz

2+z·c
∣∣∣
z=tζ+sη

=
∑
m,m1

(−1)n−m+m1
n!k!p!

(
d
2 +m+k+p−m1

)
n−m

m!m1!(n−m)!(k−m1)!(p−m1)! 4n−m2m1

bn−m+m1
(
c2
)m

(ζ ·η)m1 (ζ ·c)k−m1 (η ·c)p−m1

The symbol |z=tζ+sη here and below means that we have to substitute z = tζ + sη after all
z-differentiation and then to put t = s = 0 after all s- and t-differentiations.

Let us return to our calculation. We have

∂kt ∂
p
s

(
∂zµ∂zµ

)n
e2z·(αx+βy)−z2(αx2+βy2)

∣∣∣
z=tζ+sη

=
∑
m,m1

(−1)n−m+m1
n!k!p!

(
d
2 +m+k+p−m1

)
n−m

m!m1!(n−m)!(k−m1)!(p−m1)! 4n2k+p−m1 (ζ ·η)m1

(
αx2+βy2

)n−m+m1 (
α2x2+2αβx·y+β2y2

)m
(αζ ·x+βζ ·y)k−m1 (αη ·x+βη ·y)p−m1

so that it remains to use binomial expansions(
αx2 + βy2

)n−m+m1 =
∑
k1

(
n−m+m1

k1

)
αk1βn−m+m1−k1 (x2)k1(y2)n−m+m1−k1 ,

(αζ · x+ βζ · y)k−m1 =
∑
k2

(
k −m1
k2

)
αk2βk−m1−k2 (ζ · x)k2(ζ · y)k−m1−k2 ,

(αη · x+ βη · y)p−m1 =
∑
k3

(
p−m1
k3

)
αk3βp−m1−k3 (η · x)k3(η · y)p−m1−k3 ,

(
α2x2 + 2αβx · y + β2y2

)m
=
∑
s1,s2

2s2m!α2s1+s2β2m−2s1−s2

(m− s1 − s2)!s1!s2! (x2)s1 (x · y)s2 (y2)m−s1−s2
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and then calculate α- and β-integrals

1
Γ(λ− 1 + l2)

ˆ ∞
0

dααλ−2+l2 αL e−α = (λ− 1 + l2)L
1

Γ(λ− 1 + l1)

ˆ ∞
0

dββλ−2+l1 βn+k+p+m−L−m1e−β = (λ− 1 + l1)n+k+p+m−L−m1

where for simplicity we denote L = k1 + k2 + k3 + 2s1 + s2. Collecting all pieces together
we obtain the following intermediate result

∂kt ∂
p
s

(
∂zµ∂zµ

)n (1−2z ·x+z2x2
)1−λ−l2 (1−2z ·y+z2y2

)1−λ−l1
∣∣∣∣
z=tζ+sη

=
∑ 22n+k+p−m1+s2 (−1)n−m+m1 n!k!p! (n−m+m1)!

m1! (n−m)! (n−m+m1−k1)! (k−m1−k2)! (p−m1−k3)! (m−s1−s2)!k1!k2!k3!s1!s2!(
d

2 +m+k+p−m1

)
n−m

(λ−1+l2)L (λ−1+l1)n+k+p+m−L−m1(
x2
)k1+s1 (

y2
)n+m1−k1−s1−s2 (ζ ·η)m1 (x·y)s2 (ζ ·x)k2 (ζ ·y)k−m1−k2 (η ·x)k3 (η ·y)p−m1−k3

where summation is performed over m,m1, k1, k2, k3, s1, s2 and for simplicity we do not
show it explicitly. Substitution of this expression in B.7 gives

[
Rl1,l2(u)ζ⊗l1⊗η⊗l2

]
·x⊗l1⊗y⊗l2

= Γ(2−λ−l1−l2)Γ(λ+l1+l2)
Γ(2−λ)Γ(λ)∑

n,k,p

l1!l2!(−1)k+p

(l1−k−n)!(l2−p−n)!
1

(λ)k+p+2n

(
λ− d

2 +1
)
n∑ (−1)n−m+m1 (n−m+m1)!

m1!(n−m)!(n−m+m1−k1)!(k−m1−k2)!(p−m1−k3)!(m−s1−s2)!k1!k2!k3!s1!s2!(
d

2 +m+k+p−m1
)
n−m

(λ−1+l2)L (λ−1+l1)n+k+p+m−L−m1(
x2

2

)k1+s1 (y2

2

)n+m1−k1−s1−s2

(ζ ·η)n+m1 (x·y)s2

(ζ ·x)k2(ζ ·y)l1−n−m1−k2(η ·x)l2−p−n+k3(η ·y)p−m1−k3

Now we are going to show that some sequence of resummations allows to transform this
expression to the form (2.33). We shall use two variants of Gauss summation formula

∑
k

(
l

k

)
(−1)k Γ(A+ k)

Γ(B + k) = Γ(A)Γ(B −A+ l)
Γ(B −A)Γ(B + l) (B.10)

∑
k

(
l

k

)
1

Γ(A+ k)Γ(B − k) = Γ(A+B + l − 1)
Γ(B)Γ(A+B − 1)Γ(A+ l) (B.11)
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The first step: transformation p→ p+m1 , k → k +m1 and n→ n−m1∑ l1!l2!(−1)k+p

(l1−k−n)!(l2−p−n)!
1

(λ)k+p+2n

(
λ− d

2 +1
)
n−m1

(−1)n−m (n−m)!
m1!(n−m−m1)!(n−m−k1)!(k−k2)!(p−k3)!(m−s1−s2)!k1!k2!k3!s1!s2!(
d

2 +m+k+p+m1

)
n−m−m1

(λ−1+l2)L (λ−1+l1)n+k+p+m−L(
x2

2

)k1+s1(
y2

2

)n−k1−s1−s2

(ζ ·η)n (x·y)s2(ζ ·x)k2(ζ ·y)l1−n−k2(η ·x)l2−p−n+k3(η ·y)p−k3

and then summation over m1 using B.11

∑
m1

(n−m)!
m1!(n−m−m1)!

(
d
2 +m+ k + p+m1

)
n−m−m1(

λ− d
2 + 1

)
n−m1

= (λ)k+p+2n

(λ)k+p+n+m
(
λ− d

2 + 1
)
n

leads to expression

∑ l1!l2!(−1)k+p

(l1−k−n)!(l2−p−n)!
1

(λ)k+p+n+m

(
λ− d

2 +1
)
n

(−1)n−m

(n−m−k1)!(k−k2)!(p−k3)!(m−s1−s2)!k1!k2!k3!s1!s2!
(λ−1+l2)L (λ−1+l1)n+k+p+m−L(
x2

2

)k1+s1(
y2

2

)n−k1−s1−s2

(ζ ·η)n (x·y)s2(ζ ·x)k2(ζ ·y)l1−n−k2(η ·x)l2−p−n+k3(η ·y)p−k3

Now it is possible to perform summation over m using B.10

∑
m

(−1)m (λ− 1 + l1)n+k+p+m−L
(n−m− k1)!(m− s1 − s2)! (λ)k+p+n+m

=
(−1)s1+s2(k2 + k3 + n+ s1 − l1)! (λ− 1 + l1)n+k+p−k1−k2−k3−s1

(n− k1 − s1 − s2)!(L− l1)! (λ)k+p+2n−k1

so that one obtains∑ l1!l2!(−1)k+p

(l1−k−n)!(l2−p−n)!
1

(λ)k+p+2n−k1

(
λ− d

2 +1
)
n

(−1)n+s1+s2(k2+k3+n+s1−l1)!
(n−k1−s1−s2)!(L−l1)!(k−k2)!(p−k3)!k1!k2!k3!s1!s2!

(λ−1+l2)L (λ−1+l1)n+k+p−k1−k2−k3−s1(
x2

2

)k1+s1(
y2

2

)n−k1−s1−s2

(ζ ·η)n (x·y)s2(ζ ·x)k2(ζ ·y)l1−n−k2(η ·x)l2−p−n+k3(η ·y)p−k3
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The second step: transformation k1 → k1 − s1 and p→ p+ k3∑ l1!l2!(−1)k+p+k3

(l1−k−n)!(l2−p−n−k3)!
1

(λ)k+p+2n−k1+s1+k3

(
λ− d

2 +1
)
n

(−1)n+s1+s2(k2+k3+n+s1−l1)!
(n−k1−s2)!(k1+k2+k3+s1+s2−l1)!(k−k2)!p!(k1−s1)!k2!k3!s1!s2!

(λ−1+l2)k1+k2+k3+s1+s2
(λ−1+l1)n+k+p−k1−k2(

x2

2

)k1(
y2

2

)n−k1−s2

(ζ ·η)n (x·y)s2(ζ ·x)k2(ζ ·y)l1−n−k2(η ·x)l2−p−n(η ·y)p

then transformation k3 → k3 − s1∑ l1!l2!(−1)k+p+k3

(l1 − k − n)!(l2 − p− n− k3 + s1)!
1

(λ)k+p+2n−k1+k3

(
λ− d

2 + 1
)
n

(−1)n+s2(k2 + k3 + n− l1)!
(n− k1 − s2)!(k1 + k2 + k3 + s2 − l1)!(k − k2)!p!(k1 − s1)!k2!(k3 − s1)!s1!s2!

(λ− 1 + l2)k1+k2+k3+s2
(λ− 1 + l1)n+k+p−k1−k2(

x2

2

)k1 (
y2

2

)n−k1−s2

(ζ · η)n (x · y)s2(ζ · x)k2(ζ · y)l1−n−k2(η · x)l2−p−n(η · y)p

and summation over s1 using B.11∑
s1

1
s1!(k1 − s1)!

1
(l2 − p− n− k3 + s1)!(k3 − s1)!

= (l2 − p− n+ k1)!
k1!k3!(l2 − p− n+ k1 − k3)!(l2 − p− n)!

finally gives∑ l1!l2!(−1)k+p+k3

(l1 − k − n)!(l2 − p− n)!
1

(λ)k+p+2n−k1+k3

(
λ− d

2 + 1
)
n

(−1)n+s2(k2 + k3 + n− l1)!(l2 − p− n+ k1)!
(l2 − p− n+ k1 − k3)!(n− k1 − s2)!(k1 + k2 + k3 + s2 − l1)!(k − k2)!p!k1!k2!k3!s2!

(λ− 1 + l2)k1+k2+k3+s2
(λ− 1 + l1)n+k+p−k1−k2(

x2

2

)k1 (
y2

2

)n−k1−s2

(ζ · η)n (x · y)s2(ζ · x)k2(ζ · y)l1−n−k2(η · x)l2−p−n(η · y)p

Now it is possible to perform summation over k using B.10∑
k

(−1)k

(l1 − k − n)!(k − k2)!
(λ− 1 + l1)n+k+p−k1−k2

(λ)k+p+2n−k1+k3

=
(−1)k2k3! (λ− 1 + l1)n+p−k1

(l1 − k2 − n)!(n+ k2 + k3 − l1)! (λ)p+n+l1+k3−k1
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so that we obtain

∑ l1!l2!(−1)k2+p+k3

(l1 − k2 − n)!(l2 − p− n)!
1

(λ)p+n+l1+k3−k1

(
λ− d

2 + 1
)
n

(−1)n+s2(l2 − p− n+ k1)!
(l2 − p− n+ k1 − k3)!(n− k1 − s2)!(k1 + k2 + k3 + s2 − l1)!p!k1!k2!s2!

(λ− 1 + l2)k1+k2+k3+s2
(λ− 1 + l1)n+p−k1(

x2

2

)k1 (
y2

2

)n−k1−s2

(ζ · η)n (x · y)s2(ζ · x)k2(ζ · y)l1−n−k2(η · x)l2−p−n(η · y)p

and arrive to the last step — summation over k3 using B.10

∑
k3

(−1)k3

(l2−p−n+k1−k3)!(k1+k2+k3+s2−l1)!
(λ−1+l2)k1+k2+k3+s2

(λ)p+n+l1+k3−k1

= Γ(λ)Γ(λ−1+l1+l2)
Γ(λ−1+l2)Γ(λ+l1+l2)

(−1)k1+k2+s2−l1

(l1−l2−2k1−k2−s2+p+n)!(l2−l1+2k1+k2+s2−p−n)!

We see that this summation results in the key restriction s2 +2k1 +k2 +l2 = l1 +p+n which
fixes right homogeneity properties of our polynomial as function x and y. The sum now is
over four indices and it is easy to check that after appropriate redefinition of summation
variables one obtains the expression (2.33) exactly.

C Equivalence (2.3) and (2.54)

When x and y are null vectors, the Symanzik trick allows to reduce representation (2.46)
to the simpler form

[
Rl1,l2 (u) ζ⊗l1 ⊗ η⊗l2

]
·
(
x⊗l1 ⊗ y⊗l2

)
=

Γ
(
d
2 + l1 − 1

)
Γ
(
d
2 + l2 − 1

) (
iu+ l1+l2

2

)
Γ
(
iu− l1+l2

2

)
Γ
(
− iu+ d−2+l1+l2

2

)
Γ
(
iu+ l1−l2

2

)
Γ
(
iu+ l2−l1

2

)
× (x− y)2

(
− iu+ d+l1+l2−2

2

) ˆ (ζ · (v − y))l1(η · (v − x))l2

v2
(
1−iu− l1+l2

2

)
(y − v)2( d2 +l1−1)(x− v)2( d2 +l2−1)

ddv
π
d
2
.

(C.1)

This integral is perfectly well-defined. After having stripped the right-hand side (r.h.s. )
of the (x, y)-independent prefactor it can be represented as (it is important to notice that
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one can impose x2 = y2 = 0 only after having taken the derivatives):

r.h.s.

= (x−y)
2
(
− iu+

d+l1+l2−2
2

)
(ζ ·∇y)l1 (η ·∇x)l2

2l1+l2
(
d
2−1

)
l1

(
d
2−1

)
l2

ˆ
v

2
(

iu+ l1+l2
2 −1

)
(x−v)2( d2−1)(y−v)2( d2−1)

ddv
π
d
2

= (x−y)
2
(
− iu+

d+l1+l2−2
2

)
Γ
(
− iu+ d−2−l1−l2

2

)
(ζ ·∇y)l1 (η ·∇x)l2

2l1+l2 Γ
(
d
2 +l1−1

)
Γ
(
d
2 +l2−1

)
Γ
(
1−iu− l1+l2

2

)
ˆ

[0,1]3
α
− iu−

l1+l2
2

1 (α2α3)
d

2−2 [
α1α2y

2+α1α3x
2+α2α3(x−y)2

]iu+
2+l1+l2−d

2 δ

(
1−

3∑
k=1

αk

) 3∏
k=1

dαk

=
Γ
(
− iu+ d−2−l1−l2

2

)
Γ
(
d
2 +l1−1

)
Γ
(
d
2 +l2−1

)
Γ
(
1−iu− l1+l2

2

)∑
k

l1!l2!
k!(l1−k)!(l2−k)!

(x−y)2k

(−2)k

×(ζ ·η)k
Γ
(
iu+ 4−d+l1+l2

2

)
Γ
(
iu+ 4−d−l1−l2

2 +k
) ˆ

[0,1]3
(ζ ·(α1y+α3(y−x)))l1−k(η ·(α1x+α2(x−y)))l2−k

×α
− iu−

l1+l2
2

1 α
iu+

l1−l2
2 +k−1

2 α
iu+

l2−l1
2 +k−1

3 δ

(
1−

3∑
k=1

αk

) 3∏
k=1

dαk .

Since α1 + α2 + α3 = 1 one can write

(ζ · (α1y + α3(y − x)))l1−k =
l1−k∑
m=0

(
l1 − k
m

)
((1− α2)ζ · y)m(−α3ζ · x)l1−k−m ,

(η · (α1x+ α2(x− y)))l2−k =
l2−k∑
n=0

(
l2 − k
n

)
((1− α3)η · x)n(−α2η · y)l2−k−n .

The integral that then appears is of the formˆ
[0,1]3

αa−1
1 αb−1

2 αc−1
3 (1−α2)m(1−α3)n δ(1−α1−α2−α3)dα1dα2dα3

= Γ(a)
m∑
p=0

n∑
q=0

(
m

p

)(
n

q

)
(−1)p+q Γ(b+p)Γ(c+q)

Γ(a+b+c+p+q)

= Γ(a)Γ(c)
m∑
p=0

(
m

p

)
(−1)pΓ(b+p)(a+b+p)n

Γ(a+b+c+n+p) = Γ(a)Γ(b)
n∑
q=0

(
n

q

)
(−1)qΓ(c+q)(a+c+q)m

Γ(a+b+c+m+q)

where we used the Gauss identity (2.29) in the form
∑r
l=0
(r
l

)
(−1)l Γ(A+l)

Γ(B+l) = Γ(A)
Γ(B+r)(B−A)r.

In our case the parameters actually are a = − iu + 2−l1−l2
2 , b = iu + l1+l2

2 − n and
c = iu + l1+l2

2 −m. In particular a + b = 1 − n so that (a + b + p)n = (1 + p − n)n = 0
unless p > n and one of the formulas above for the integral shows that it vanishes unless
m > n. Similarly a+ c = 1−m so that we also need n > m. In the end, the integral is
ˆ

[0,1]3
α
− iu− l1+l2

2
1 α

iu+ l1+l2
2 −n−1

2 α
iu+ l1+l2

2 −m−1
3 (1− α2)m(1− α3)n δ

(
1−

3∑
k=1

αk

) 3∏
k=1

dαk

= δm,nn!
Γ
(
− iu+ 2−l1−l2

2

)
Γ
(
iu+ l1+l2

2

)
(
iu+ l1+l2

2

) (
− iu+ 2−l1−l2

2

)
n

. (C.2)
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Putting everything together yields (we also use (x− y)2 = −2x · y)

r.h.s.

=
(−1)l1+l2Γ

(
− iu+ d−2−l1−l2

2

)
Γ
(
iu+ l1+l2

2

)
Γ
(
d
2 +l1−1

)
Γ
(
d
2 +l2−1

)(
iu+ l1+l2

2

) ∑
k+n6min(l1,l2)

l1!l2!(x·y ζ ·η)k

k!n!(l1−k−n)!(l2−k−n)!

×
Γ
(
iu+ 4−d+l1+l2

2

)
Γ
(
iu+ 4−d−l1−l2

2 +k
) (ζ ·yη ·x)n(
− iu+ 2−l1−l2

2

)
n

(ζ ·x)l1−k−n(η ·y)l2−k−n

=
(−1)l1+l2Γ

(
− iu+ d−2−l1−l2

2

)
Γ
(
iu+ 4−d+l1+l2

2

)
Γ
(
iu+ l1−l2

2

)
Γ
(
iu+ l2−l1

2

)
Γ
(
d
2 +l1−1

)
Γ
(
d
2 +l2−1

)(
iu+ l1+l2

2

)
Γ
(
iu+ 4−d−l1−l2

2

)
Γ
(
iu− l1+l2

2

)
×
[
Rl1,l2(u)ζ⊗l1⊗η⊗l2

]
·(x⊗l1⊗y⊗l2)

=
Γ
(
− iu+ d−2+l1+l2

2

)
Γ
(
iu+ l1−l2

2

)
Γ
(
iu+ l2−l1

2

)
Γ
(
d
2 +l1−1

)
Γ
(
d
2 +l2−1

)(
iu+ l1+l2

2

)
Γ
(
iu− l1+l2

2

) [Rl1,l2(u)ζ⊗l1⊗η⊗l2
]
·(x⊗l1⊗y⊗l2) .

D Derivative identity

For ζ and η two null vectors, it holds that

(ζ · ∇)l1(η · ∇)l2x2
(
l1+l2+2−d

2 +λ
)

=

(
4−l1−l2−d

2 + λ
)
l1+l2(

4−l1−l2−d
2 − λ

)
l1+l2

(
x2
)2λ

×
[
Rl1,l2(− iλ)ζ⊗l1 ⊗ η⊗l2

]
· ∇⊗(l1+l2)x2

(
l1+l2+2−d

2 −λ
)
.

In order to prove it one first needs to compute y⊗(l1+l2) ·
[
Rl1,l2(− iλ)ζ⊗l1 ⊗ η⊗l2

]
for arbi-

trary y. We use equation (2.46) to write (after having performed the integral over z using
the star-triangle relation)

y⊗(l1+l2) ·
[
Rl1,l2(− iλ)ζ⊗l1⊗η⊗l2

]
=

Γ
(
d
2−2λ

)
Γ
(
d+l1+l2

2 −1+λ
)

Γ
(
1+ l1+l2

2 +λ
)

Γ(2λ)Γ
(
1+ l1+l2

2 −λ
)

Γ
(
d+l1+l2

2 −1−λ
)

×y2
(
d+l1+l2

2 −1−λ
)ˆ (ζ ·(y−v))l1(η ·(y−v))l2

v2( d2−2λ)(v−y)2
(
d+l1+l2

2 +λ−1
) ddv
π
d
2

=
∑
k

l1!l2!
k!(l1−k)!(l2−k)!

(2λ)k(y2ζ ·η)k(y ·ζ)l1−k(y ·η)l2−k

2k
(
λ− l1+l2

2

)
k

(
λ+ 4−l1−l2−d

2

)
k

.

(D.1)
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Returning to the proof of (2.55), we can write

[
Rl1,l2(− iλ)ζ⊗l1⊗η⊗l2

]
·∇⊗(l1+l2)x2

(
l1+l2+2−d

2 −λ
)

=
∑
k

l1!l2!
k!(l1−k)!(l2−k)! (2ζ ·η)k

×
(2λ)k

(
λ+ d−2−l1−l2

2

)
k(

λ+ 4−l1−l2−d
2

)
k

(ζ ·∇)l1−k(η ·∇)l2−kx2
(
l1+l2+2−d

2 −k−λ
)

=
∑
k,j

l1!l2!2l1+l2−k−j

k!j!(l1−k−j)!(l2−k−j)!
(ζ ·η)k+j(ζ ·x)l1−k−j(η ·x)l2−k−j

×x2
( 2−l1−l2−d

2 +k+j−λ
) (2λ)k(−1)k(
λ+ 4−l1−l2−d

2

)
k

(4−l1−l2−d
2 +k+j−λ

)
l1+l2−k−j

=
∑
p

l1!l2!2l1+l2−p

(l1−p)!(l2−p)!
(ζ ·η)p(ζ ·x)l1−p(η ·x)l2−px2

( 2−l1−l2−d
2 +p−λ

)

×
(4−l1−l2−d

2 +p−λ
)
l1+l2−p

p∑
k=0

1
k!(p−k)!

(2λ)k(−1)k(
λ+ 4−l1−l2−d

2

)
k

=
(4−l1−l2−d

2 −λ
)
l1+l2

∑
p

l1!l2!2l1+l2−p

p!(l1−p)!(l2−p)!
(ζ ·η)p(ζ ·x)l1−p(η ·x)l2−p(

λ+ 4−l1−l2−d
2

)
p

x2
( 2−l1−l2−d

2 +p−λ
)
.

On the other hand, one has

(ζ ·∇)l1(η ·∇)l2x2
(
l1+l2+2−d

2 +λ
)

=
∑
p

l1!l2!2l1+l2−p

p!(l1 − p)!(l2 − p)!

(4− l1 − l2 − d
2 + p+ λ

)
l1+l2−p

× (ζ · η)p(ζ · x)l1−p(η · x)l2−px2
( 2−l1−l2−d

2 +p+λ
)

(D.2)

and since (4− l1 − l2 − d
2 + p+ λ

)
l1+l2−p

=

(
4−l1−l2−d

2 + λ
)
l1+l2(

4−l1−l2−d
2 + λ

)
p

(D.3)

equation (2.55) does hold.

E Spinor basis

The eigenvectors of the graph-building operator (3.4) for the square-lattice fishnet have
been first constructed in d = 2, 4 for any number of sites N in [12, 14], according to the
iterative formula

Ψ(x1, . . . , xN ) = ΛN (uN , lN )ΛN−1(uN−1, lN−1) · · ·Λ1(u1, l1) , (E.1)

– 52 –



J
H
E
P
1
2
(
2
0
2
1
)
1
7
4

where the layer operator Λk(u, n) acts on k− 1 coordinates x1, . . . , xk−1 and is defined by
its integral kernel in d = 2r Euclidean space

Λ1(u, n) = Un(x− x0)

(x− x0)
2
(
r− δ̃2−iu

) ,
Λk(u, n) = T(n)

12 (iu)T(n)
23 (iu) · · ·T(n)

k−1k (iu) Un(xk − x0)

(xk − x0)
2
(
r− δ̃2−iu

) , (E.2)

and the elementary building blocks in d = 2r dimensions are

[T(n)
ij (w)]Φ(xi, xj) =

ˆ
dy T (n)

w (xi, xj |y)Φ(y, xj)

T (n)
w (xi, xj |y) = Un(xi − y)Un(y − xj)†

(xi − xj)2(r−δ̃)(xi − y)
2
(
−w+ δ̃

2

)
(y − xj)

2
(
w+ δ̃

2

) . (E.3)

The matrices Un(x) belong to the n-symmetric representation of the unitary groups
U(1) for 2d and SU(2) for 4d. For n = 1 they defined respectively as

U (2)(x) = x1 + ix2
x1 − ix2

= eiφ , U (4)(x) = xµσ
µ

√
x2

= x̂µσ
µ , (E.4)

where σk = iσk for k = 1, 2, 3 and σ4 = 1, and the matrix Un(x) is the n-fold tensor
products

Un(x) = U(x)⊗ · · · ⊗ U(x) , (E.5)

namely

U (2)
n (x) = eiφn , U (4)

n (x) = x̂µ1 · · · x̂µnσµ1 ⊗ · · · ⊗ σµn . (E.6)

The definitions E.6 can actually be extended to any even dimension d = 2r, for a unitary
matrix U (2r)

n (x) in the n-fold symmetric representation of the group SU(2r−1)

U (2r)(x) = xµΣµ

√
x2

= x̂µΣµ , (E.7)

where the matrices Σµ and Σµ = Σ†µ = Σ−1
µ realize the Weyl spinor representation of

Clifford algebra in 2r dimensions

Γ(r)
µ =

(
0 Σ(r)

µ

Σ(r)
µ 0

)
, {Γµ,Γν} = 2δµν12r , (E.8)

that is

ΣµΣν + ΣνΣµ = ΣµΣν + ΣνΣµ = 2δµν12r−1 . (E.9)
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The concrete definition of matrices Σµ and Σµ can be done recursively starting from r = 2,
according to the recipe

Γ(r)
µ =

(
0 i

−i 0

)
⊗ Γ(r−1)

µ , µ = 1, . . . , 2r − 2 ,

Γ(r)
2r−1 =

(
0 i

−i 0

)
⊗
(

1 0
0 −1

)
⊗ 12r−2 ,

Γ(r)
2r =

(
0 1
1 0

)
⊗ 12r−1 ,

Γ(2)
k =

(
0 σk
σk 0

)
, µ = 1, 2, 3, 4 .

(E.10)

It is possible to check that with such definition det (xµΣµ) = det
(
xµΣ

µ
)

= (xµxµ)2r−2 ,
and for a normalized vector x̂µ the matrices belong to the special unitary group. The
definitions of layer operators in 2d, 4d provide a concrete realization of a symmetric and
traceless tensor in the coordinates xµ as it follows from their definition and the Fierz
identity

σµ ⊗ σµ = 21− 2P , P|α〉 ⊗ |β〉 = |β〉 ⊗ |α〉 . (E.11)

For the general d = 2r situation, the same identity for the matrices Σ(r)
µ does not hold,

and the layers need to be projected over specific subset of spinor components. To start
with we pair each layer’s SU(2r−1) indices with generic complex vectors

(〈α|⊗n)Λk(u, n)(|β〉⊗n) = ((α∗)aΛk(u, n) baβb)n i.e. 〈α|U(x)|β〉n . (E.12)

For k = 1 the condition of symmetric traceless tensor is mapped to the null vector condition

Σµ ⊗Σµ|β〉 ⊗ |β〉 = 0 , (E.13)

which imposes a constraint on the components of |β〉. For d = 4, 6 there is no need of any
such condition while for d = 2r ≥ 8 we need to impose N(r) pure spinor conditions, i.e.
solve a quadratic system of N(r) independent equations in the vector components. For
example, N(4) = 1 and the constraint reads

β2β5 − β1β6 + β4β7 − β8β3 = 0 , (E.14)

while N(5) = 5 and the system of constraints read

β1β6 − β4β7 + β3β8 − β5β2 = 0 ,
β6β9 + β8β11 − β7β12 − β5β10 = 0 ,
β3β12 + β6β13 − β5β14 − β4β11 = 0 ,
β3β9 − β1β11 + β7β13 − β5β15 = 0 ,
β4β9 − β1β12 + β8β13 − β16β5 = 0 .

(E.15)
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In general the 2r−1 components of such spin vectors are subject to N(r) > 0 linearly-
independent quadratic constraints. Imposing the latter on spin vectors, the traceless con-
dition is valid also for the length-k layer. Indeed, the matrix structure of each layer is the
symmetric tensor product of an SU(2r−1) matrix, w.r.t. which the kernel of the matrix
Σµ ⊗Σµ is invariant

Σµ⊗Σµ|β〉⊗|β〉= 0⇐⇒ (U⊗U)(Σµ⊗Σµ)|β〉⊗|β〉= 0⇐⇒ (Σµ⊗Σµ)(U⊗U)|β〉⊗|β〉= 0 ,
(E.16)

where 0 is the zero vector in the tensor product space. The proof that E.1 is an eigenvector
of the fishnet in d = 2r dimensions is based on a star-triangle identity, and leads to the
same eigenvalue as (4.4). Indeed, the basis E.1 and (3.14) differ only by a very non-trivial
rotation in the space of tensorial indices, respect to which the spectrum is degenerate, while
for lj = 0 they coincide.

E.1 Star-triangle relation in d = 2r

The scalar star-triangle identity in d-dimensions is well-known [49, 62–67] and reads — in
its amputated form or chain rule — as
ˆ
d2ry

1
(x− y)2a(x− y)2b = πr

Γ (r − a) Γ (r − b) Γ (a+ b− r)
Γ (a) Γ (b) Γ (2r − a− b)

1
(x− y)2(a+b−r) . (E.17)

We can generalize it by adding an SU(2r−1) angular part to the radial functions x2, that is

1
x2a →

〈α|U (2r)
n (x)|β〉
x2a =

(
〈α|Σ(r)

µ |β〉 x̂µ
)n

x2a =

(
〈α|Σ(r)

µ |β〉 ∂µ
)n

Γ(a+ n
2 )/Γ

(
a− n

2
)

(−2)n
1

x2(a−n2 ) , (E.18)

and obtain, for 2r dimensions,
ˆ
d2ry
〈α|Un(x−y)|β〉〈α′|Un′(y−z)|β′〉∗

(x−y)2a(y−z)2b

=πr
Γ
(
r−a+ n

2
)
Γ
(
r−b+ n′

2

)
Γ
(
a+b−r+ n′−n

2

)
(−2)nΓ

(
a+ n

2
)
Γ
(
b+ n′

2

)
Γ
(
2r−a−b+ n+n′

2

) (〈α|Σ(r)
µ |β〉∂µ

)n 〈α′|Un′(x−z)|β′〉∗

(x−z)2(a+b−r−n2 )

=πr
Γ
(
r−a+ n

2
)
Γ
(
r−b+ n′

2

)
Γ
(
a+b−r+ n−n′

2

)
(−2)n′Γ

(
a+ n

2
)
Γ
(
b+ n′

2

)
Γ
(
2r−a−b+ n+n′

2

) (〈β′|Σ̄(r)
µ |α′〉∂µ

)n′ 〈α|Un(x−z)|β〉

(x−z)2
(
a+b−r−n′2

) .
(E.19)

The n terms or n′ terms resulting from the derivation can eventually be organized in a
mixing matrix for the spin vectors, and in the r = 2 case the latter coincides with a fused
SU(2) invariant solution of the Yang-Baxter equation. For the particular reduction n′ = 0
(or the analogous n = 0) the formula E.19 simplifies as
ˆ
d2ry

〈α|Un(x−y)|β〉
(x−y)2a(y−z)2b =πr

Γ
(
r−a+ n

2
)
Γ(r−b)Γ

(
a+b−r+ n

2
)

Γ
(
a+ n

2
)
Γ(b)Γ

(
2r−a−b+ n

2
) 〈α|Un(x−z)|β〉

(x−z)2(a+b−r) .

(E.20)
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This kind of equation is what we need in order to prove to prove that for spin vectors
subject to the constraints E.13 the functions

〈αN |ΛN (uN , lN )|βN 〉 · · · 〈α2|Λ2(u2, l2)|β2〉 · 〈α1|Λ1(u1, l1)|β1〉 . (E.21)

diagonalize the fishnet graph-building operator. The proof is identical to the d = 4 case
treated in [15], as it relies only on the star-triangle identity E.19. The main complication
arising for general r respect to the case r = 2, is that the mixing of spinors is captured
by a matrix that is not a solution of Yang-Baxter equation, and even contains explicitly
a dependence over the coordinates. This fact can be checked already in 6d, when the
pure spinor condition is trivial — i.e. the spin vectors components are not subject to
any constraint. The main consequence is that it is not manifest the symmetry of the
eigenvectors respect to the permutation of excitations numbers (uk, lk), and for this reason
we prefer to use the basis of functions (3.14) which has a much more involved structure of
tensorial indices and a complicated behaviour when one or more coordinates get identified.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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