Energy-based Models for Earth Observation Applications - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Energy-based Models for Earth Observation Applications

Résumé

The large amount of data, available thanks to the recent sensors, have made possible the use of deep learning for Earth Observation. Yet, actual approaches tend to tackle one problem at a time, e.g. classification or image generation. We propose a new framework for Earth Observation images processing which learns an energy-based model to estimate the underlying distribution, possibly estimated using non-annotated images. On the varied image types of the EuroSAT benchmark, we show this model obtains classification results on par with state-of-the-art and moreover allows to tackle a high range of high-potential applications, from image synthesis to high performance semi-supervised learning.
Fichier principal
Vignette du fichier
ORASIS_rev.pdf (3.55 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03339646 , version 1 (09-09-2021)

Identifiants

  • HAL Id : hal-03339646 , version 1

Citer

Javiera Castillo-Navarro, Bertrand Le Saux, Alexandre Boulch, Sébastien Lefèvre. Energy-based Models for Earth Observation Applications. ORASIS 2021, Centre National de la Recherche Scientifique [CNRS], Sep 2021, Saint Ferréol, France. ⟨hal-03339646⟩
94 Consultations
174 Téléchargements

Partager

More