Individual Treatment Prescription Effect Estimation in a Low Compliance Setting
Résumé
Individual Treatment Effect (ITE) estimation is an extensively researched problem, with applications in various domains. We model the case where there exists heterogeneous non-compliance to a randomly assigned treatment, a typical situation in health (because of non-compliance to prescription) or digital advertising (because of competition and ad blockers for instance). The lower the compliance, the more the effect of treatment prescription − or individual prescription effect (IPE) − signal fades away and becomes harder to estimate. We propose a new approach for the estimation of the IPE that takes advantage of observed compliance information to prevent signal fading. Using the Structural Causal Model framework and do-calculus, we define a general mediated causal effect setting and propose a corresponding estimator which consistently recovers the IPE with asymptotic variance guarantees. Finally, we conduct experiments on both synthetic and real-world datasets that highlight the benefit of the approach, which consistently improves state-of-the-art in low compliance settings. CCS CONCEPTS • Mathematics of computing → Probability and statistics; Causal networks; • Information systems → Online advertising.