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Abstract

Individual Treatment Effect (ITE) estimation is an extensively researched problem, with applications
in various domains. We model the case where there exists heterogeneous non-compliance to a randomly
assigned treatment, a typical situation in health (because of non-compliance to prescription) or digital
advertising (because of competition and ad blockers for instance). The lower the compliance, the more the
effect of treatment prescription − or individual prescription effect (IPE) − signal fades away and becomes
harder to estimate. We propose a new approach for the estimation of the IPE that takes advantage of
observed compliance information to prevent signal fading. Using the Structural Causal Model framework
and do-calculus, we define a general mediated causal effect setting and propose a corresponding estimator
which consistently recovers the IPE with asymptotic variance guarantees. Finally, we conduct experiments
on both synthetic and real-world datasets that highlight the benefit of the approach, which consistently
improves state-of-the-art in low compliance settings.

1 Introduction

Individual Treatment Effect (ITE) estimation is an important task in various applications such as healthcare
(Foster et al., 2011), online advertising (Diemert et al., 2018) or socio-economics (Xie et al., 2012). As it
is often the case in practice, we assume that we cannot directly control the treatment intake but only the
treatment prescription: we therefore focus on the Individual Prescription Effect (IPE), which designates the
effect of the treatment prescription P on the outcome Y for an individual described by covariates X (c.f.
Equation (1), assuming random prescription assignment).

IPE(x) = E[Y |X = x, P = 1]− E[Y |X = x, P = 0] (1)

We also assume that we observe the treatment intake (or equivalently, the compliance to prescription), denoted
by T , which acts as a mediator of the causal effect of P on Y . The effect of T on Y will henceforth be referred
to as ITE.

Table 1 illustrates various settings in which non-compliance to treatment prescription may occur (Gordon
et al., 2019; Jin et al., 2008). This happens for instance when individuals have the choice not to abide by the
prescription or if there exists conflicting interests. Of course one can choose to focus the study on actually
treated individuals only (ITE). But from a decision making point of view it often makes sense to consider
that future treatment decisions need to take into account the possibility of non-compliance so as to accurately
predict future expected outcomes. For example a policy maker would want to take into account that not all
individuals would abide by the new policy (as can be estimated from a pilot study) to predict the expected
impact of a roll-out of said policy.
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Table 1: Examples of Covariates (X), Outcome (Y ), Treatment Prescription (P ) and Evidence of Treatment
Acceptance (T )

Var. Medicine Online adv. Job training

X patient info purchase history schooling
P drug prescription bid placement training offer
T drug intake ad displayed training done
Y recovery sale/visit employment

Now we argue that IPE estimation can be hampered by non-compliance. Indeed, individuals who did not
actually receive the treatment contribute only through noise to the default IPE estimator, as their observed
outcome is not effectively influenced. The variance of the IPE estimator therefore increases as the compliance
level decreases.

Besides, individual treatment (whether prescription or intake) effect models are often considered as
prescriptive tools. Indeed, treatment effect predictions can be used in order to target treatment to individuals
for which it is the most beneficial (Devriendt et al., 2018; Radcliffe and Surry, 2011). This calls for an
evaluation metric that measures by how much the average treatment effect would have been improved, had
the treatment been targeted not by a random instrument, but by the predictions of the considered model
instead. For that purpose Rzepakowski and Jaroszewicz (2012), Rzepakowski and Jaroszewicz (2010), and
Radcliffe and Surry (2011) have proposed the Area Under the Uplift Curve (AUUC) metric that sums the
benefits over individuals ranked by predictions. An interesting property of this metric is that it can be used
on real data for which we observe a given individual in either treated or untreated conditions but never both.

Confronted with the challenges of (i) learning IPE models in conditions of (possibly high) non-compliance
and (ii) evaluating them as prescriptive tools, we pose the problem in the setting of causal inference and
derive an IPE estimator that takes advantage of observed compliance. Our main contributions are as follows.

1. Formalization of IPE estimation in a setting of observed compliance described using structural causal
models, which extends to more general cases of mediated causal effect estimation (Section 3)

2. Proposition of a meta-estimator (in which can be plugged any ITE estimator) for IPE estimation in
presence of non-compliance, proof of consistency (Section 4.1) and asymptotic variance properties
(Section 4.2)

3. Thorough empirical evaluation of this meta-estimator on synthetic and real world datasets (Section 5)

2 RELATED WORK

We review three main domains that are concerned with research questions similar to our work: ITE modeling,
non compliance in causal inference and evaluation metrics for ITE modeling.

First, ITE models are a pervasive concept in different research fields such as marketing - under the name
uplift models (Radcliffe and Surry, 2011), statistics - as conditional average treatment effect estimators
(Künzel et al., 2019) or econometrics - heterogeneous treatment effect models (Jacob et al., 2019; Wager and
Athey, 2018). A simple yet highly scalable approach consists in learning a regression of Y on X separately
in both treatment (P = 1) and control (P = 0) populations and return the difference, known as T-learner
studied in Künzel et al. (2019) or “Two Models” studied in Radcliffe and Surry (2011). A variation of this
approach with larger model capacity have been proposed through a shared representation (SDR) for the
treatment and control group in Betlei et al. (2018). Also, a prolific series of increasingly performing algorithm
targeted towards the recovery of the ITE in observational settings have been proposed (Yoon et al., 2018;
Zhang et al., 2020) a sub-category of which tackles the use of decision trees and random forests in a causal
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inference framework (Athey and Imbens, 2016; Athey et al., 2019). Further in the same vein and building on
work done on double machine learning (Chernozhukov et al., 2018), Oprescu et al. (2019) generalize the idea
of causal forests, allowing for high-dimensional confounding. Other work such as Kuang et al. (2017) handle
confounding bias by confounder balancing algorithms. Finally, another recent trend is to study theoretical
limits in ITE estimation and especially generalization bounds (Alaa and Schaar, 2018).

Then regarding the concept of non compliance, many algorithms have been studied in order to recover
(individual) causal effects in non-compliance settings, however to our knowledge, works tackling this problem
(e.g. Gordon et al. (2019)) focus solely on effect of the treatment intake T − and not the treatment prescription
P − on the outcome Y . In that context, the effect of P on Y is sometimes studied in an instrumental
variable framework to recover the effect of T on Y (Imbens and Angrist, 1994). Our work however focuses on
estimating the effect of the treatment prescription P on the variable Y , taking advantage of the observed
treatment intake T , in the spirit of individual intention-to-treat (ITT) analysis (Gupta, 2011) or per-protocol
effect (Hernán et al., 2017). The idea of taking advantage of a mediation variable for causal effect estimation
has triggered many recent works (Yin and Hong, 2019), in settings sometimes similar to ours (Loeys et al.,
2015). However, the associated assumptions (T and Y are unconfounded) are more restrictive than the
ones we propose, as we allow all the covariates (X) to be confounders between the mediation variable T
(representing the treatment intake) and Y , and state a result holding for individual (and not only average)
treatment effect.

Finally, treatment effect estimators performance is typically done using synthetic data, in which a pointwise
error measure − Precision Estimation of Heterogeneous Effect (PEHE) (Hill, 2011) − is available. However
in real world cases, the fundamental problem of causal inference states that the ground truth of individual
treatment effect cannot be observed (since an individual is either treated or untreated but never both at
the same time), preventing to use such metrics beyond simulation studies. Since our main motivation is
to determine which individuals are good candidates for treatment prescription, we choose to evaluate the
performance of our estimators on real data using the AUUC metric, which evaluates the ranking of individuals
implied by corresponding ITE or IPE predictions. One can view the resulting measure as a prediction of the
expected benefit of prescribing treatment according to the model prediction instead of a random uniform
prescription. Overall, AUUC has been used in recent years in machine learning research to evaluate baseline
ITE models vs SDR (Diemert et al., 2018), flavors of Support Vector Machines for ITE estimation (Kuusisto
et al., 2014) or direct treatment policy optimization (Yamane et al., 2018).

3 FRAMEWORK

We briefly recall causality notions used throughout the paper, such as structural causal model, causal graph,
intervention and valid adjustment set first introduced in Pearl (2009), and more recently presented in Peters
et al. (2017).

Definition 1 Structural Causal Model (SCM) A SCM of variables X = {X1, . . . , Xd} is an object C := (S,PN)
where:
(1) S is a set of d structural assignments Xi = fi(PAi, Ni), with the fi’s deterministic functions and PAi

the set of parents (direct causes) of Xi.
(2) PN = PN1,...,Nd

is a joint distribution over the noise variables {Ni}1≤d, which we require to be jointly
independent.

As shown in Chapter 6 of Peters et al. (2017), a SCM C induces a unique causal graph GC − defined as the
directed acyclic graph (DAG) obtained by creating a vertex for each Xi and drawing directed edges from
each PAi to Xi (thus justifying the term ‘parents’ for the sets PAi) − and a unique entailed distribution PC

over variables X1, . . . , Xd such that for each i, Xi = fi(PAi, Ni) in distribution.
A SCM can be used to define interventional distributions. A (hard) intervention do(Xi = xi) is a

forced assignment of variable Xi to the value xi, which implies a change in the distribution of the variables
X1, . . . , Xd. Formally, an intervention do(Xi = xi) is equivalent to modifying C in two ways: (1) change
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the structural assignment Xi = fi(Xi,PAi) to Xi = xi in S and (2) replace Xi by xi in all other structural
assignments implying Xi in S.
We will denote by PC;do(Xi:=xi) the probability distribution entailed by the SCM C under the intervention
do(Xi := xi).

Let Xi, Xj ∈ X, Z ⊆ X\{Xi, Xj} is called a valid adjustment set (VAS) for the ordered pair (Xi, Xj), if

PC;do(Xi)(Xj) =
∑
z

PC(Xj |Xi, z)PC(z),

where the sum is over the range of Z.

Notations For sake of compactness, we use the following notations for any binary variable W and multi-
dimensional variable X: P(W ) , P(W = 1), P(W ) , P(W = 0), P(x) , P(X = x), do(W ) , do(W := 1).

3.1 Non-compliance setting

The setting of non-compliance we consider in this work is entirely defined by a SCM of variables X,P, T, Y, U
for which example values where proposed in Table 1: X, belonging to a multi-dimensional space X , contains
the individual’s descriptive features, or covariates (by simplicity, we will confuse individuals and their
covariates, referring for example to ‘an individual x’), P is the binary treatment prescription variable, Y is
the binary outcome variable, T is the binary treatment intake (or acceptation) − which acts as a mediator of
the causal effect of P on Y − and U represents (allowed) unobserved confounders between X and Y .

In what follows, we define the structural causal model C = (S,PN), which is henceforth assumed to
represent the causal mechanisms underlying the variables of interest in this work. The associated causal
graph GC is given in Figure 1.

P T Y

X U

Figure 1: Causal Graph GC Induced by SCM C

S is defined in Equations (2):

P = ÑP

U = NU

X = fX(U,NX)

T = fT (X,NT )× P
Y = fY (X,T, U,NY ).

(2)

PN satisfies the following mild conditions: NU , NX , NT , NY are noise consistent with variables definitions,
and ÑP is distributed according to a Bernoulli distribution with parameter p = PC(P ), consistent with a
randomized controlled experiment setting.

In the next proposition, we list four assumptions implied by C about the variables of interest.
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Proposition 1 The SCM C defined in Equations (2) implies the following assumptions on variables P , T ,
Y and X:

(Randomized prescription) P ⊥⊥ X
(Exclusive treatment effect) P ⊥⊥ Y | {X,T}
(One-sided non-compliance) P = 0⇒ T = 0

(Valid covariate adjustment) {X} is a VAS for (T, Y )

(3)

The proof of Proposition 1 relies on the notions of valid adjustment set, its relation to the back-door criterion,
the notion of d-separation and the Markov property (Definitions 6.1 and 6.38, Propositions 6.21 and 6.41 of
Peters et al. (2017)). More details are given in the supplement.

Detailed review of assumptions mentioned in Proposition 1 . We now review in details the
assumptions presented in Equation (3) and their connections to applications and usual theoretical settings.
- Randomized prescription translates the fact that each individual is randomly allocated to a prescription
(P = 1) or a non-prescription / control (P = 0) group, allowing us to infer the causal effect of P on Y without
worrying about confounding bias. This is a typical situation in experiments such as A/B tests or randomized
controlled trials, which motivate increasingly substantial research (Xie et al., 2018).
- Exclusive treatment effect captures the fact that the prescription to treatment P has an effect on the
outcome Y only if the treatment is actually taken T = 1. More generally, this assumption translates the
fact that the effect of P on Y is fully mediated by T . This is typically assumed to be the case in online
advertising, in which case P is the allocation to a given advertising engine, and T is the actual exposure
to advertisement from this engine, as in the study of Gordon et al. (2019). This assumption is typically
satisfied in the instrumental variable setting where P plays the role of the instrument for the estimation of
the effect of T on Y (Syrgkanis et al., 2019). There are essential differences with our work, notably (i) we are
interested in the effect of P on Y (IPE) and not in the effect of T on Y , and (ii) one-sided non-compliance is
not assumed in typical IV settings.
- One-sided non-compliance defined in Gordon et al. (2019) states that P = 0 =⇒ T = 0, but that
P = 1 6=⇒ T = 1. In other words, treatment is only taken (T = 1) in cases where it was originally assigned
(P = 1).
- Valid covariate adjustment : every confounder for the effect of T on Y is observed (and contained in X). This
assumption is classically made in causal inference works (Alaa and Schaar, 2018; Alaa and Van Der Schaar,
2019) and is sometimes referred to as ignorability (Shalit et al., 2017). Under the potential outcome framework
(Rubin, 2005), this assumption is equivalent to

Y (T = 1), Y (T = 0) ⊥⊥ T |X.

Strong ignorability (where we additionally assume that 0 < P(T |x) < 1 for all x) has been proven to be
sufficient to recover the individual causal effect of T on Y (Imbens and Wooldridge, 2009; Pearl, 2017).

3.2 IPE in presence of non-compliance

Notations For all x ∈ X , we formally define the individual prescription effect τ IPE(x), the individual
treatment effect τ ITE(x) and the individual compliance probability γ(x) as follows:

τ IPE(x) = PC;do(P )(Y |x)− PC;do(P )(Y |x),

τ ITE(x) = PC;do(T )(Y |x)− PC;do(T )(Y |x),

γ(x) = PC;do(P )(T |x).

(4)

We also define the relative ITE β(x) and relative IPE α(x) as:

α(x) =
(
PC(Y |P, x)− PC(Y |P , x)

) /
PC(Y |P , x),

β(x) =
(
PC(Y |T, x)− PC(Y |T , x)

) /
PC(Y |T , x).
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We propose to exploit the mediation variable T by splitting the P to Y path into two subpaths (from P to
T and from T to Y ), both with a higher signal-to-noise ratio. Indeed, under C we can insert T into the
PC;do(P )(Y |x) expression as presented in the next lemma.

Lemma 1 Assuming C, and for any x ∈ X , the positive outcome probability under treatment, PC;do(P )(Y |x),
can be written as follows:

PC;do(P )(Y |x) = PC(Y |x, T ) + τ ITE(x)γ(x). (5)

Proof.
Assuming the SCM C truly describes the relationships between P,X, T, Y , we have:

PC;do(P )(Y |x) = PC;do(P )(Y, T |x) + PC;do(P )(Y, T |x)

= PC;do(P )(Y |x, T )PC;do(P )(T |x) + PC;do(P )(Y |x, T )PC;do(P )(T |x)

= PC(Y |x, T )PC;do(P )(T |x) + PC(Y |x, T ) PC;do(P )(T |x)︸ ︷︷ ︸
1−PC;do(P )(T |x)

= PC(T |x, P )
(
PC(Y |x, T )− PC(Y |x, T )

)
+ PC(Y |x, T ),

where we used assumptions described Equation 3, namely:

• PC;do(T )(Y |x) = PC(Y |T, x) (Valid covariate adjustment),

• PC;do(P )(·|x, ·) = PC(·|x, P, ·) (Randomized prescription),

• PC(Y |x, P, T ) = PC(Y |x, T ) (Exclusive treatment effect),

and the claim follows. �
In the illustrative setting of computational advertising, where C is typically satisfied, Lemma 1 states

that the conversion rate of a web user given they were targeted by an advertising campaign is equal to their
organic conversion rate, plus the product of the effect of ad exposure on this user times the probability that
this user was effectively exposed.

In Proposition 2, we present a result linking the IPE, the ITE and the individual compliance:

Proposition 2 Assuming C and for any x ∈ X , the IPE decomposes as follows:

τ IPE(x) = τ ITE(x)γ(x) (6)

Proof
We have an analogous version of (5) for the term PC;do(P )(Y |x):

PC;do(P )(Y |x) = PC(Y |x, T ) + PC(T |x, P )
(
PC(Y |x, T )− PC(Y |x, T )

)
.

Since P ⇒ T (One-sided non-compliance assumption), we get that, ∀x ∈ X , PC(T |x, P ) = 0, and finally:

PC;do(P )(Y |x) = PC(Y |x, T ).

Then:

τ IPE(x) = PC;do(P )(Y |x)− PC;do(P )(Y |x)

= PC(T |x, P )
(
PC(Y |x, T )− PC(Y |x, T )

)
.

which completes the proof.
�

In intuitive terms, Proposition 2 states that the effect of treatment prescription on a given individual
is equal to the effect of treatment intake on this individual, multiplied by their compliance. In the online
advertising setting, this means that the effect of targeting a user with an advertising campaign is equal to the
effect of effectively exposing them to advertisement times the probability of the campaign succeeding in doing
so.
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4 PROPOSED APPROACH

4.1 Definition and basic properties

The expression proven in Proposition 2 calls for a novel way to estimate τ IPE(x), by first estimating separately
both factors τ ITE(x) and γ(x), then multiplying these estimators to form a compliance-aware individual
prescription effect (C-IPE) estimator.
Formally, let τ̂ ITE be an estimator of τ ITE and γ̂ be an estimator of γ. We define the associated ‘plug-in’
C-IPE estimator τ̂C−IPE , for any x, as:

τ̂C−IPE(x) = τ̂ ITE(x)γ̂(x). (7)

In practice, τ̂ ITE may be any individual treatment effect estimator. Indeed, under C, the individual
causal effect of T on Y given X is identifiable since {X} is a valid adjustment set for (T, Y ) as explained in
Section 3. C-IPE is not an estimator per say, but rather a meta-estimator : a black-box in which any classical
ITE and compliance estimators can be plugged-in.

Assuming that for all x, τ̂ ITE(x) and γ̂(x) are consistent estimators of resp. τ ITE(x) and γ(x), Proposi-
tion 2 then ensures that τ̂C−IPE(x) is a consistent estimator of the associated τ IPE(x).

4.2 Asymptotic variance properties

Thanks to its expression as a function of an ITE estimator, the C-IPE estimator focuses on the individuals
who actually received treatment, who are exclusively contributing to the signal (Exclusive treatment effect
assumption in Proposition 1). We therefore expect the C-IPE estimator to have lower variance than any
standard IPE estimator which does not exploit observable compliance.
Comparing C-IPE and IPE estimators is all the more fair than we use an analogous version of the standard
IPE estimator τ̂ IPE for the ITE estimator τ̂ ITE which is plugged in the C-IPE estimator τ̂C−IPE(x). Doing
so is feasible since the valid covariate adjustment assumption guarantees that both τ IPE and τ ITE are
identifiable and therefore estimable with standard treatment effect estimators. We refer to this approach as
symmetrically formed estimators comparison, and use it to conduct our experiments in Section 5.
In the following proposition, we compare the asymptotic variance of estimators τ̂C−IPE and τ̂ IPE in the
following simple yet realistic setting:

Single-stratum setting We focus on the IPE estimation for a single value x0 of X, for which we assume
to observe n i.i.d. samples {(x0, Pi, Ti, Yi)}1≤i≤n. All stated results generalise to any stratum S ⊂ X for
which there exists xS ∈ X such that the reducted feature variable X ′ , xSI{X∈S} +XI{X/∈S} still defines a
valid adjustment set for (T, Y ).

Notations Consistently with notations presented in Equations (4), α(x0), β(x0) refer respectively to the
relative IPE and relative ITE in stratum {X = x0} (and are assumed to be positive in this illustrative
setting), and we denote γ̂(x0), τ̂ IPE(x0) and τ̂ ITE(x0) respectively the maximum-likelihood estimator (MLE)
of γ(x0), and the MLE-based two-model estimators (difference of two MLE estimators) of τ IPE(x0) and
τ ITE(x0). We define the associated C-IPE estimator as τ̂C−IPE(x0) , γ̂(x0)τ̂ ITE(x0). Note that we use
the MLE-based Two-Model estimator for both τ̂ ITE and τ̂ IPE , thus satisfying the symmetrically formed
estimators comparison setting. Lastly, we denote p1(x0) = PC(Y |P, x0).
In the following Proposition, we present an asymptotic bound for the ratio of the standard deviation (sd) of
C-IPE and IPE estimators.

Proposition 3 Under C defined in Section 3.1 with PC(P ) = 1
2 , assuming we observe n i.i.d. samples in

stratum {X = x0}, we have:

lim
n→∞

sd(τ̂C−IPE)

sd(τ̂ IPE)
≤

√(
2(1 + β)

(1− p1)(2 + α)

)
γ (8)
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where we dropped the reference to x0 for clarity.

This theoretical bound shows that the ratio of standard deviations of C-IPE and IPE estimators gets smaller
when the compliance factor γ decreases, which was expected. Of course the PC(P ) = 1

2 assumption is not
necessary to obtain such a bound but is simply there to keep the result as concise as possible.

Before proving Proposition 3, let us note that additional assumptions need to be made on β and p1 in order
to derive an informative bound in practice. In real-world datasets (presented in Section 5), we consistently

observe β̂(x) ≤ 12 and p̂1(x) ≤ 0.05, with estimators described in Section 5. Under such assumptions on
the orders of magnitude of β and p1, we can derive a useful-in-practice bound, as presented in the following
remark.

Remark 1 If we additionally assume β ≤ 12, and p1 ≤ 0.05 we have:

lim
n→∞

sd(τ̂C−IPE)

sd(τ̂ IPE)
≤ 4
√
γ (9)

where we dropped the reference to x0 for clarity.

This bound is derived from loose upper-bounds on β and p1 and is only presented for illustrative purposes. It
is however still informative in case of low compliance γ. For instance, if γ ≤ 10−2, Equation (9) reveals that
the asymptotic standard deviation of τ̂C−IPE is more than twice smaller than the one of τ̂ IPE .

We now provide a detailed sketch of proof for the bound provided by (8). Proposition 3.

Proof of Proposition 3.
The proof is split in four steps: (1) Maximum-Likelihood and treatment effect estimators, (2) Variance of
estimators derivation, (3) Variances upper and lower bounds derivation and (4) Wrap up. Every random
quantity is henceforth implicitly considered to be ‘with respect to x0’.

1. Maximum-Likelihood and treatment effect estimators. We have n i.i.d. samples {(Pi, Ti, Yi)}1≤i≤n
of variables (P, T, Y ), and that we suppose PC(P ) = 1

2 , and define the following compact notations: t = PC(P ),

γ = PC(T |P ), p0 = PC(Y |P ), p1 = PC(Y |P ), q0 = PC(Y |T ) and q1 = PC(Y |T ).
Corresponding MLEs p̂0, p̂1, q̂0, q̂1, t̂ and γ̂ are given empirical frequencies, for example:

t̂ =
1

n

n∑
i=1

Pi p̂1 =
1

n∑
i=1

Pi

n∑
i=1

PiYi

Therefore, direct estimators (2-model) for τ IPE , τ ITE are given by

τ̂ IPE = p̂1 − p̂0 τ̂ ITE = q̂1 − q̂0

and the corresponding τC−IPE estimator therefore writes:

τ̂C−IPE = (q̂1 − q̂0)γ̂.

2. Variance of estimators derivation
2.a. τ̂ IPE variance derivation

For any random variables X,Y , we remind that:

Var(X) = Var(E[X|Y ]) + E[Var(X|Y )]. (10)

Which applied with X = τ̂ IPE = p̂1 − p̂0 and Y = {Pk}k := {P1, . . . , Pn}, gives:

Var(τ̂ IPE) = E
[
Var(τ̂ IPE |{Pk}k)

]︸ ︷︷ ︸
A

+ Var
[
E(τ̂ IPE |{Pk}k)

]︸ ︷︷ ︸
B

. (11)
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To compute A , we remark that the term Var(τ̂ IPE |{Pk}k) decomposes as:

Var(τ̂ IPE |{Pk}k) = Var(p̂1|{Pk}k) + Var(p̂0|{Pk}k)

−2Cov(p̂1, p̂0|{Pk}k).
(12)

Straightforward derivations bring

A = E
[

1∑
i Pi

]
p1(1− p1) + E

[
1∑

i(1− Pi)

]
p0(1− p0). (13)

To compute B , we begin by writing

E(τ̂ IPE |{Pk}k) = E(p̂1|{Pk}k)︸ ︷︷ ︸
p1

−E(p̂0|{Pk}k)︸ ︷︷ ︸
p0

.

Therefore E(τ̂ IPE |{Pk}k) = p1 − p0 is constant relatively to {Tk}k, and we have B = 0. Combining this
with Equations (11) and (13) we end up with:

Var(τ̂ IPE) = E
[

1∑
i Pi

]
p1(1− p1) + E

[
1∑

i(1− Pi)

]
p0(1− p0). (14)

2.b. τ̂C−IPE variance derivation
Using Equation (10) with X = τ̂C−IPE = γ̂(q̂1 − q̂0) and Y = {Pk, Tk}k we may write:

Var(τ̂C−IPE) = E
[
Var(τ̂C−IPE |{Pk, Tk}k)

]}
= C

+ Var
[
E(τ̂C−IPE |{Pk, Tk}k)

]}
= D .

(15)

To compute C , we use τ̂C−IPE = γ̂(q̂1 − q̂0), and remark that E[γ̂|{Pk, Tk}k] = γ̂, which brings:

Var(γ̂(q̂1 − q̂0)|{Pk, Tk}k) = γ̂2Var((q̂1 − q̂0)|{Pk, Tk}k)

By analogy with Equation (14), we now have

Var(γ̂(q̂1 − q̂0)|{Pk, Tk}k) =
γ̂2∑
i Ti

q1(1− q1) +
γ̂2∑

i(1− Ti)
q0(1− q0). (16)

Injecting γ̂ =
∑

i Ti∑
i Pi

=
∑

i TiPi∑
i Pi

in (16) and taking the expectancy we finally have

C = E

[ ∑
i Ti

(
∑

i Pi)
2

]
q1(1− q1) + E

[
(
∑

i Ti)
2

(
∑

i Pi)
2∑

i(1− Ti)

]
q0(1− q0). (17)

Turning now to D , and using the fact that γ̂ is {Pk, Tk}k−measurable, we get:

E(τ̂C−IPE |{Pk, Tk}k) = γ̂(E(q̂1|{Pk, Tk}k)︸ ︷︷ ︸
q1

−E(q̂0|{Pk, Tk}k)︸ ︷︷ ︸
q0

). (18)

which gives D = (q1 − q0)2Var(γ̂).

Now, using the fact that Var(γ̂) = E(Var(γ̂|{Pk})) + Var(E[γ̂|{Pk}]), we get: Var(γ̂) = E
(

1∑
i Pi

)
γ(1− γ)

and finally get

D = (q1 − q0)2E
[

1∑
i Pi

]
γ(1− γ). (19)
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Combining Equations (15), (17) and (19), we have:

Var(τ̂C−IPE) = E

[ ∑
i Ti

(
∑

i Pi)
2

]
q1(1− q1)

+E

[
(
∑

i Ti)
2

(
∑

i Pi)
2∑

i(1− Ti)

]
q0(1− q0)

+(q1 − q0)2E
(

1∑
i Pi

)
γ(1− γ).

(20)

3. Asymptotic variance upper and lower bounds
3.a Asymptotic lower bound of Var(τ̂ IPE)
Multiplying (14) by n and using the law of large numbers we get

lim
n→∞

nVar(τ̂ IPE) = 2 (p1(1− p1) + p0(1− p0)) . (21)

Now, using p1 = (1 + α)p0, and α ≥ 0 we can write:

lim
n→∞

nVar(τ̂ IPE) ≥ 2p0(1− p1)(2 + α). (22)

3.a Asymptotic upper bound of Var(τ̂C−IPE)
Again, from (20), we have by the law of large numbers

lim
n→∞

nVar(τ̂C−IPE) = 2γq1(1− q1) +
2γ2

2− γ
q0(1− q0) + 2γ(1− γ)(q1 − q0)2. (23)

Now, using that for any q ∈ [0, 1], q(1 − q) ≤ q, and reminding that q1 = (1 + β)q0 ≤ 1 where β ≥ 0 by
assumption, we get the following asymptotic upper bound for Var(τ̂C−IPE):

lim
n→∞

nVar(τ̂C−IPE) ≤ 4q0γ(1 + β). (24)

4. Wrap up
We remind that One-sided non-compliance and Exclusive treatment effect imply straightforwardly that p0 = q0
(as shown in the beginning of the proof of Proposition 2). Now, combining Equations (22) and (24) (ratio of
positive values), we get

lim
n→∞

Var(τ̂C−IPE)

Var(τ̂ IPE)
≤ 2

1 + β

(1− p1)(2 + α)
γ.

Taking the square root of this equation delivers the wanted result.
�

5 EXPERIMENTS

To qualify the performance of the C-IPE estimator, we study its benefits in a variety of settings. Firstly
we study its properties on simulation-based studies, hereafter denoted by ‘Synthetic Datasets’, for which
(i) the IPE ground truth is known (ii) the level of compliance can be controlled and (iii) we can appreciate
performance with respect to an Oracle. Lastly we apply our approach to transform baseline IPE estimators
and compare their performance (AUUC) on three real-world, large scale datasets: an open dataset from
Criteo, named ‘CRITEO-UPLIFT1 Dataset’1, and two private datasets from an online advertising company
on which we have privileged access, designated by ‘Private datasets’.

1https://ailab.criteo.com/criteo-uplift-prediction-dataset/
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Table 2: Distribution of Users Effectively Treated (T = 1) and Visits (Y = 1) on CRITEO-UPLIFT1 Split on
Treatment Groups

treatment (P ) exposure (T ) outcome (Y )

0 (2,096,236) - 3.82% (79,986)
1 (12,161,477) 3.65% (444,384) 4.93% (599,170)

Table 3: Distribution of Visits (Y = 1) on CRITEO-UPLIFT1 Projected on Exposure Groups

exposure (T ) outcome (Y )

0 (13,813,329) 3.58% (495,003)
1 (444,384) 41.4% (184,153)

In each experiment we take care of comparing symmetrically formed estimators: we consider baseline
treatment effect estimators which we use both as (i) an IPE estimator and as (ii) an ITE estimator to
be plugged in the C-IPE decomposition. To simplify experiments we chose two baseline estimators: Two
Models (2M) and Shared Data Representation (SDR) as they easily scale to large datasets and have been
found competitive in prior studies (Betlei et al., 2018). For reproducibility sake we have implemented all
models using the Scikit-Learn Python library (Pedregosa et al., 2011) and all code is available online2. All
experiments were run on a machine with 48 CPUs (Intel(R) Xeon(R) Gold 6146 CPU @ 3.20GHz), with
2 Threads per core, and 500Go of RAM. Finally, we note that the state of the art is always evolving and
improving. We did not use the most advanced models because we do not aim at outperforming them. Instead,
we claim that the C-IPE estimator can improve any IPE estimator if plugged-in as the ITE factor in (7) in a
low compliance setting.

5.1 Datasets

Synthetic Datasets We define a simulation setting in which X = {0, 1}10, n = 2.106. The outcome is
generated according to:

Y ∼ Bern (p0 (1 + PTβ(x))) , (25)

where P ∼ Bern(0.5), T ∼ Bern(γ(x)), and p0 = PC(Y |T , x) = 0.1, using notations from Equations (4).
This procedure allows for varying γ(x) and β(x) to simulate different levels of compliance and relative ITE,
respectively.

CRITEO-UPLIFT1 Dataset This open dataset from Criteo contains online advertising data from a
randomized controlled trial. Key statistics for this dataset are summarized in Table 2 and 3. Notably, average
treatment prescription E[P ] ≈ .85 indicates that 15% of users were assigned to the control group and shown
no advertisement. For the rest of the population, the advertisers participated in online ad auctions. Among
the users that advertisers tried to expose (P = 1), only 3.65% actually saw an ad, which corresponds to a
very low average compliance level E[γ(X)], which we expect to highlight C-IPE estimator benefits. Effective
exposure to ads is encoded by the T variable in this setup, while the outcome Y encodes ‘at least one visit on
the advertiser website’. As illustrated in Figure 2, the mean of Y is more than 10 times higher for exposed
users (T = 1) than for non-exposed ones (T = 0).

2https://github.com/KDD-anonymous-code/individual_treatment_prescription
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P = 0 P = 1

Y = 1 T = 1

T = 0

Figure 2: Illustration of the Exclusive Treatment Effect Assumption in the CRITEO-UPLIFT1 Dataset:
the effect of P on Y goes mainly through the realization of T

Private Datasets We have access to two private datasets of roughly 90 million instances, which contain
binary treatment prescription P and outcome Y , and a suitable variable T that embodies an observable
compliance. They have a higher average compliance γ (7.8% and 10.4%), higher number of features (48) and
similar signal strength than the CRITEO-UPLIFT1 dataset. The purpose of extending the study to these
datasets is to verify the relationship between compliance level and performance, predicted by the theoretical
study in Section 4.2. The corresponding data has been collected in the same geographical location, during
two separate time periods).

5.2 Experiments

In all experiments, nuisance models required by the 2M and SDR estimators are learned as regularized logistic
regressions using second order cross-features. This is also the case for the additional nuisance model needed
for the C-IPE estimator: the compliance γ̂(.). Hyperparameters (regularization norm and strength) of each
of these models is carefully selected using internal cross validation, as detailed in appendix.

Compliance Sensitivity Experiment (Simulation) We aim to highlight how the compliance level γ
influences the performance of both standard IPE estimators and C-IPE estimators. For this purpose we
use a wide range of values γ ∈ [10−4; .99], and generate synthetic datasets as described in Section 5.1 with
a different relative ITE values β ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8} for each of the 10 contexts. We report the
PEHE metric for both IPE2M and C− IPE2M estimators, and approximate their variance by repeating the
experiment with 51 random test/train splits. Recall that PEHE is the mean squared difference between the
IPE ground truth and the estimators predictions.

We observe on Figure 3 that the C-IPE estimator significantly outperforms the standard IPE estimator
when the level of compliance γ is low, and has similar performance when γ gets closer to 1. This shows that
our compliance-aware approach significantly reduces the noise induced by non-compliance and is able to
detect smaller IPE signals. This is true in particular for compliance levels γ in the range that is observe on
the real datasets that we are using.
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Figure 3: Compliance Sensitivity (Simulation study). PEHE (lower is better) of IPE vs C-IPE estima-
tors at varying compliance level γ. Solid line represents the median, and dashed line represents 5%
and 95% of confidence intervals. , and : compliance level γ for resp. CRITEO-UPLIFT1 and
private datasets 1 & 2. The x-axis has a simlog scale.

Baseline Experiment (Simulation) We simulate a realistic scenario where there exists heterogeneity
in compliance γ and treatment effects τ IPE . More precisely, for each instance value x, we draw once and
for all γ ∈ {0.01, 0.005} and β ∈ {−1, 1, 3, 5, 7} uniformly and independently. The associated outcome
Y is computed according to (25). We study four methods: standard two-models (IPE2M), shared data
representation (IPESDR) and their compliance-aware variants (C− IPE2M, and C− IPESDR). We focus on
the AUUC metric, which measures the capacity of the model to rank individuals according to their IPE .
The AUUC has the important advantage of not requiring access to the causal effect ground truth, which is
typically the case in real-world applications. For more meaningful performance representation, we substract
the AUUC of a ‘random model’ to all raw AUUC values, obtaining ∆AUUC. Finally, for scaling purposes, we
also report in Figure 4 results for an Oracle estimator that has access to the drawn (β, γ), and for IPEbest,
the best possible estimator which does not exploit the observable compliance T (it predicts for each x its
empirical IPE average based on the training set). Again, variance is estimated by repeating the experiment
with 51 random test/train splits.

Figure 4 assesses the performance of IPE estimators versus their C-IPE variants, using the ∆AUUC
metric. C-IPE estimators yield a higher ∆AUUC on more than 90% of the random splits. Moreover the
Oracle (best model possible) does not significantly outperform C-IPE estimators, note that even the Oracle
can misrank users because the validation set is noisy and empirical IPEs do not always follow the expected
ranking. Overall, Figure 4 does not show any limitation of the IPE2M and IPESDR estimators, but rather
highlights the ineffectiveness of such direct IPE estimators in low compliance settings. This phenomenon can
be improved by our compliance-aware approach thanks to the higher signal of the causal effect of T on Y . Of
course, this synthetic data encodes a simpler setting than real-world data, but the fact that our proposed
compliance-aware approach performs that well still confirms our theoretical analysis.

Real-world Experiment (CRITEO-UPLIFT1) To qualify the benefit of C-IPE versus standard IPE for
real-world applications we report ∆AUUC on the CRITEO-UPLIFT1 dataset. We study four methods: two
IPE estimators (IPE2M, and IPESDR) and their compliance-aware variants (C− IPE2M, and C− IPESDR).
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Figure 4: Baseline Experiment (Simulation). ∆AUUC (higher is better) of two IPE estimators, corre-
sponding C-IPE estimators and Oracle model (theoretical truth). Box plots are done on 51 random splits,
whiskers at 5/95 percentiles. Note how C-IPE systematically increases AUUC of base estimators.

For the additional γ̂(x) model, care is taken to weight the LLH as there is a high imbalance between T = 1
and T = 0 classes. We use as an hyper-parameter grid the Cartesian product of {L1, L2} (regularization)
and {0.01, 1, 102, 105} (C, inverse of regularization strength) for γ̂(x). Best hyper-parameters found are L1
regularization and C = 100. Results are presented on Figure 5.
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Figure 5: Real-World Experiment (CRITEO-UPLIFT1). ∆AUUC (higher is better) on test data for
two IPE estimators and corresponding C-IPE estimators. Box plots computed on 51 random splits, whiskers
at 5/95 percentiles. Note the higher ∆AUUC and reduced variance of C-IPE estimators.

The C-IPE version of each estimator has a lower ∆AUUC variance. This was expected from Proposition 3
and Remark 1. Moreover, although the confidence intervals are slightly superposed, C-IPE estimators
outperform their IPE counterparts on each of the 51 splits.
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Figure 6: Real-world Experiment (Private Datasets). ∆AUUC (higher is better) of two IPE estimators
and one C-IPE estimator (based on two-models). Box plots are done on 33 bootstraps, whiskers at 5/95
percentiles.

Real-world Experiment (Private Datasets)

Figure 6 illustrates the differences in ∆AUUC of the learned models and a random model on 33 bootstraps.
The C-IPE models performs better than the two IPE models by having an AUUC significantly better than
the random model, when the two IPE models do not perform better than the random model. An interesting
finding of this experiment is that, in practice, the mild expected benefit of C-IPE, predicted by the theory
(because of a higher compliance than in CRITEO-UPLIFT1 dataset) does not seem discernible. This is
however only an indication as there are multiple differences between the two datasets that might explain such
a behavior.

6 CONCLUSION AND FUTURE WORK

We propose a novel approach on individual prescription effect (IPE) estimation exploiting observed compliance
to the treatment prescription.
Using the structural causal model framework, we define assumptions under which the IPE can be expressed
as a product of the individual treatment effect (ITE) and the individual level of compliance. In this setting,
our compliance-aware individual prescription effect (C-IPE) estimator is consistent. Moreover its asymptotic
variance improves − compared to its standard estimator counterpart − as the level of compliance decreases.
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Experimentally, we show how the performance of several baseline IPE estimators improve when plugged
in the C-IPE meta-estimator. We also observe that the relationship between estimators performance and
compliance behaves as predicted by our theoretical results.
Finally, this work opens several perspectives among which: (i) further study of the stability of our results under
variations of assumptions, (ii) derivation of bound tightness guarantees and properties in high-dimensional
contexts, and (iii) exploration of how representation learning approaches may uncover by themselves C-IPE-like
estimator decomposition under weaker causal assumptions.
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A PROOFS

A.1 Proof of Proposition 1

First of all, the SCM C is Markovian with respect to its own entailed distribution (Proposition 6.31 of Peters
et al. (2017)): this implies that every conditional independence encoded in the graph GC holds in distribution
PC.
Randomized prescription , is implied by the Markov property and the fact that P and X are d-separated
by the empty set in GC: all paths between P and X contain either → T ← or → Y ←, which are blocked by
not including neither T nor Y .
Exclusive treatment effect is implied by the Markov property and the fact that the set {X,T} d-separates
P and Y in GC. This is shown by listing all paths between P and Y and observing that they are all blocked
by the set {X,T}.
One-sided non-compliance is straightforwardly implied by the structural assignment of T given in Equa-
tions (2).
Valid covariate adjustment relies on the back-door criterion for valid adjustment sets. We remark that
{X} satisfies the back-door criterion for (T ,Y ) because (i) it is not a descendant of T and (ii) it blocks all
paths from T to Y that enter Y through the backdoor: it is therefore a valid adjustment set for the ordered
pair (T, Y ).

�

B ADDITIONAL RESULTS AND EXPERIMENTATION DE-
TAILS

B.1 AUUC

AUUC (Rzepakowski and Jaroszewicz, 2012, 2010; Radcliffe and Surry, 2011) is the Area Under the Uplift
Curve. It is obtained by ranking the users of a test set according to their predicted uplift, in descending
order. In what follows, we will focus on the evaluation of IPEmodels (effect of IPE on Y ).
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The uplift curve starts at the point (0, 0), then for each user (in decreasing order of the predicted uplift)
it goes up of 1 point if the user is in group P = 1 with Y = 1, it goes down of 1 point if the user is in group
P = 0 with Y = 1, and it stays flat if the user has zero outcome (Y = 0). So the label l is Y ∗ (2P − 1). We
normalise the x-axis so that it goes from 0 to 1.

The aim of an IPEmodel is to rank first the users with positive outcome and assigned to prescription
(P = 1), then the users with negative outcome, and finally the users with positive outcome and assigned to
non-prescription (P = 0). A model respecting such a ranking would have a maximal AUUC.

û

l cumul

10

5

Figure 7: Example of uplift curves for (i) a perfect model (blue), a random model (green) and an example
IPE model (red). The AUUC of these models correspond to the area under their respective uplift curves.

The value of the AUUC highly depends on the dataset it is computed on (the test set in the experiments
presented in the main text). The first point of the uplift curve is always (0, 0) and the last one is always
(1, U) were U =

∑
Y P −

∑
Y (1− P ). The variability of the test set (when we do different splits such as in

the experiments presented in the main text) accounts for an important part of the variability of the metric
on different splits, which we handle by subtracting the (average) AUUC of a random model − equal to U

2 −
to the AUUC of the evaluated models: this measure is called ∆AUUC.

B.2 Model training

Our goal is to compare the performance of two approaches for the esimation of the IPE (Individual Treatment
Prescription Effect): (1) our proposed C-IPE (compliance-aware Individual Treatment Effect) approach, which
exploits observed compliance, and (2) standard IPEestimators which do not exploit observed compliance.
We implement two kinds of models for both IPE and ITE (Individual Treatment Intake Effect) factors used
inside C-IPEestimators. These models are (1) the Two-Models, with one model learned on the group P = 1
and one model learned on the group P = 0, and (2) Shared Data Representation (SDR) (Betlei et al., 2018),
which is inspired from multi-task learning and has more capacity than the basic Two-Models approach.

On synthetic data, we also compare the models to two theoretical models: IPEbest and Oracle:

• IPEbest is the best possible model learn-able using training data but without exploiting information
from variable T (or equivalently, compliance). In short, this model predicts the difference between the
empirical positive outcome rate in the group P = 1 and in the group P = 0, and does so for each user
context x ∈ X . This approach is valid in the case of our synthetic dataset since we observe a high
number of users for each possible context x.
This is indeed the best possible learnable model, because the dataset is generated with one different
probability of positive outcome per category: there is no additional information any model could capture
without exploiting the variable T .
IPEbest allows us to show that, in our synthetic dataset, two models and SDR perform close to
the best possible IPE approach. In that specific low-dimensional case, there is therefore no need to
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Figure 8: ∆AUUC (higher is better) of two IPE models, corresponding C-IPE models and Oracle model
(theoretical truth). Box plots are done on 51 random splits, whiskers at 5/95 percentiles. Note how
C-IPE systematically increases the AUUC of standard IPE estimators

implement more complex models (Figure 8) such as doubly-robust methods or tree/forest-based methods.

• Oracle predicts the theoretical ground truth uplift (used to generate the dataset). Its AUUC represents
the maximum theoretically reachable AUUC (expected). In practice, we observe that it is however
not the best model on all random splits. This can be explained by the fact that the (test) dataset is
randomly generated, and that the ranking of users in the test set can therefore differ slightly from the
theoretical ranking.

All learned models (IPE, C-IPE and IPEbest) suffer from the randomness of the training dataset.

B.3 Model testing

In addition of the randomness of the training dataset, the test dataset is also random. This adds noise to the
AUUC values that are computed in practice. We design a metric called, AUUCthout that computes the AUUC
on a theoretical test set. This metric may only be implemented on synthetic data. It uses the ”Theoretical
Outcome” (thout) of each category of users as a label, thus circumventing the randomness inherent to the
test set generation.

Figure 9 represents the performance of the same models as in Figure 8 but with the AUUCthout metric
(AUUC on a theoretical test set).

As expected, the Oracle has no variance because it does not − by design − suffer from the randomness of
the training set and the AUUCthout metric gets rid of the variance of the test set.
C-IPE models also have little to no AUUCthout variance in practice. This can be explained by the fact
that these models learn treatment intake effect (ITE ) signal, which is far less noisy than the IPE signal in
low-compliance settings, and therefore suffer from less random variability.

C Code

The full code used for (1) the experiments on synthetic data and (2) experiments on real-world open
data described in this paper can be found at https://github.com/KDD-anonymous-code/individual_

treatment_prescription file, and is formatted so as to comfortably re-run all experiments, and
compare the results with the ones presented in the paper.
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Figure 9: ∆AUUCthout (higher is better) of two IPE models, corresponding C-IPE models and Oracle
model (theoretical truth). Box plots are done on 51 random splits, whiskers at 5/95 percentiles. Note how
C-IPE systematically increases the AUUC of standard IPE estimators
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