Optimization for Lot-Sizing Problems Under Uncertainty: A Data-Driven Perspective - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Optimization for Lot-Sizing Problems Under Uncertainty: A Data-Driven Perspective

Résumé

In a manufacturing context, the lot-sizing problems (LSP) determine the quantity to produce over a planning horizon. Often, the parameters used in the LSP models are unknown when the decisions are made, and this uncertainty has a critical impact on the quality of the decisions. However, the large amount of data that can nowadays be collected from the shop floor allows inferring information on the LSP parameters and their variability. Therefore, a recent research trend is to properly account for the uncertainty in the LSP optimization models. This work presents a survey on data-driven optimization approaches for the LSPs. We also provide a comparison of some promising optimization methodologies in the context of data-driven modeling of LSPs.
Fichier principal
Vignette du fichier
520755_1_En_75_Chapter.pdf (377.95 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Licence

Dates et versions

hal-03337325 , version 1 (07-09-2021)
hal-03337325 , version 2 (09-06-2023)

Licence

Identifiants

Citer

Paula Metzker, Simon Thevenin, Yossiri Adulyasak, Alexandre Dolgui. Optimization for Lot-Sizing Problems Under Uncertainty: A Data-Driven Perspective. IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2021, Nantes, France. pp.703 - 709, ⟨10.1007/978-3-030-85902-2_75⟩. ⟨hal-03337325v2⟩
178 Consultations
217 Téléchargements

Altmetric

Partager

More