Fast approximations of pseudo-observations in the context of right-censoring and interval-censoring
Résumé
In the context of right-censored and interval-censored data we develop asymptotic formulas to compute pseudo-observations for the survival function and the Restricted Mean Survival Time (RMST). Those formulas are based on the original estimators and do not involve computation of the jackknife estimators. For right-censored data, Von Mises expansions of the Kaplan-Meier estimator are used to derive the pseudo-observations. For interval censored data, a general class of parametric models for the survival function is studied. An asymptotic representation of the pseudo-observations is derived involving the Hessian matrix and the score vector of the density. The formula is illustrated on the piecewise-constant hazard model for the RMST. The proposed approximations are extremely accurate, even for small sample sizes, as illustrated on Monte-Carlo simulations and real data. We also study the gain in terms of computation time, as compared to the original jackknife method, which can be substantial for large dataset.
Origine | Fichiers produits par l'(les) auteur(s) |
---|