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Abstract

In the context of right-censored and interval-censored data we develop asymptotic for-
mulas to compute pseudo-observations for the survival function and the Restricted Mean
Survival Time (RMST). Those formulas are based on the original estimators and do not
involve computation of the jackknife estimators. For right-censored data, Von Mises expan-
sions of the Kaplan-Meier estimator are used to derive the pseudo-observations. For interval-
censored data, a general class of parametric models for the survival function is studied. An
asymptotic representation of the pseudo-observations is derived involving the Hessian ma-
trix and the score vector. Theoretical results that justify the use of pseudo-observations
in regression are also derived. The formula is illustrated on the piecewise-constant-hazard
model for the RMST. The proposed approximations are extremely accurate, even for small
sample sizes, as illustrated on Monte-Carlo simulations and real data. We also study the
gain in terms of computation time, as compared to the original jackknife method, which can
be substantial for large dataset.

Keywords: Pseudo-observations; Restricted Mean Survival Time; Von Mises expansions;
Jackknife; Interval-censoring.

1 Introduction

In order to study censored data in time to event analysis it is common to model the hazard
rate. This allows to correctly take into account censoring in the estimation procedure and
provides hazard ratio estimates in the framework of proportional hazard models. However, in
some contexts other quantities, that have a more direct interpretation related to the studied
problem, might be of interest. One example is the Restricted Mean Survival Time (RMST)
which is defined as the average survival time up to a fixed point. In that case, it is common
(see [1], [2], [3]) to first model the hazard rate using for instance a Cox model, to derive a
survival estimator from the estimated hazard rate and to obtain an estimator of the RMST by
integrating out this function. This procedure results in a cumbersome computation where it
might be difficult to disentangle the effect of each covariate on the RMST. This is a serious
drawback for medical applications and there is a need for more direct approaches. There are
several other contexts that are concerned by the difficulty of direct modelling of the quantity
of interest. This is typically the case for cumulative incidence functions in a competing risk
setting or transition probabilities in a multi-state framework.

Pseudo-observations have been developed in the seminal work of [4] to answer this problem.
Those pseudo-observations are constructed using the jackknife method from an estimator of the
survival function. Theoretical results in [5] show that the pseudo-observations can then be used
as response variables in a regression model for the quantity of interest, such as the conditional
RMST, the cumulative incidence functions in a competing risk setting or the transition proba-
bilities in a multi-state framework. This offers the possibility to directly model the quantity of
interest and it is often performed by use of a generalised linear model.
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Another more recent areas of development involving pseudo-observations concerns the study
of machine learning methods for time to event analysis. In this context, the problematic is
similar: one aims at deriving a complex model, based for instance on neural networks, for
quantities of interest such as the survival function (see [6]), the cumulative incidence function
(see [7], [8]) or the RMST (see for instance [9]). The use of pseudo-observations is then appealing
since, once the pseudo-observations are obtained, it is possible to directly use any standard
machine learning algorithm by considering those pseudo-observations as (non-censored) response
variables.

Methods based on pseudo-observations are also attractive for interval-censored data. With
those data, it is challenging to build a regression model based on semi-parametric methods, for
quantities of interest such as the RMST. This is due to the lack of informations induced by
interval-censoring. As a matter of fact, even in a nonparametric setting it may be problematic
to perform estimation of the survival function. In this context, one usually relies on the Turnbull
estimator or the convex minorant method which were introduced in [10] and [11], respectively.
In [11] it has been proved that these estimators achieve the slow rate of convergence of order
n1/3 and their distribution is not Gaussian and cannot be explicitly computed. In a regression
context, for the estimation of the hazard rate, the Cox model with nonparametric baseline was
studied in [12] but again, the baseline survival function has the n1/3 slow rate of convergence
and the asymptotic distribution of this estimator could not be derived. As a result, it is
common to rely on fully parametric models for modelling quantities such as the survival function
or the hazard rate in a regression context. In [13] and [14] a Cox model was studied using
parametric baselines such as Weibull or piecewise constant. The methods used to perform
estimation are based on maximum likelihood theory where the parametric estimators are derived
by maximising the likelihood of the observed data. This allows to recover the classical

√
n

rate of convergence of the parametric estimators. However, the derivation of the estimators
is not explicit, even in the absence of covariates, and rely on a maximisation algorithm such
as the Newton-Raphson procedure. In [15] a different approach was proposed based on the
EM algorithm by considering the true event times as unobserved variables. This method has
the advantage that direct estimators can be computed in the E-step of the algorithm when
no covariates are present, which results in a stable and robust estimation procedure. All the
aforementioned methods consider estimation of the survival function or of the hazard rate
through proportional hazard assumptions, but they are not suited for direct modelling of the
RMST, in a regression context. However, this can be achieved by using the pseudo-observations
approach. In [16], an illness-death model was considered, and conditional transition probabilities
or RMST were computed based on this approach. In order to compute the pseudo-observations,
the cumulative transition intensities were estimated using either a penalised spline approach or
assuming a Weibull distribution. Similarly, in [17] pseudo-observations were computed using a
spline approach in order to estimate parameters related to the cumulative incidence function in
a competing risk setting.

The key concept about pseudo-observations is that they are built based on the unconditional
jackknife estimator of the quantity of interest. While applying the jackknife is straightforward
in practice, a limitation of this method comes from the computation burden of calculating the
initial estimator n times, where n is the sample size. There exists some R functions designed to
improve the computation time, such as the jackknife function in the prodlim package, or the
pseudo independent function in the eventglm package, which rely on a C++ implementation
but the gain is limited as the initial estimator still needs to be implemented n times. The
computational burden is particularly important for interval-censored data where there is no
direct calculation of the estimators, even in the absence of covariates. In this paper, we develop
approximated formulas for pseudo-observations where the jackknife technique does not need
to be implemented. In our formulas, the pseudo-observations can be directly computed based
on the initial estimator. In the case of right-censored data, we provide formulas based on
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Von Mises expansion of the Kaplan-Meier estimator. In the case of interval-censored data,
we derive general formulas for parametric models that only involve the original estimator, the
score function and the Hessian of the density. Those formulas are approximations of the original
jackknife procedure in the sense that they are equal to the original pseudo-observations up to
a remainder term that tends towards 0 as n tends to infinity.

However, they turn out to have a very high precision even for moderate sample sizes. Since
they only involve the original estimator, the score vector and the Hessian matrix in a parametric
context, they are extremely fast to compute thus resulting in a drastic reduction of time.

In the next section, we present a brief summary on the pseudo-values approach. In Section 3
we develop asymptotic formulas for computing pseudo-observations of the survival function and
the RMST in the context of right-censored data. The case of interval censored data is studied
in Section 4. We first discuss the context of nonparametric estimation of the survival function
in Section 4.1. Then the asymptotic pseudo-observations formulas are developed for general
parametric models in Section 4.2. In Section 4.3, theoretical validation of pseudo-observations
for parametric models are provided: those results show that the conditional expectation of
pseudo-observations approximate the conditional expectation of the response variable of interest.
Simulations studies for modelling the conditional RMST in the context of right-censored or
interval-censored data are conducted in Section 5 where precision and computation time of the
approximate formulas are evaluated. Finally, two real data are analysed using the proposed
methodology in Section 6.

2 Backgrounds on pseudo-regression estimation methods

Let T ∗1 , . . . , T
∗
n be n independent and identically distributed (i.i.d.) time to event variables of

interest, let θ be a parameter of the form θ = E[h(T ∗i )], where h is a known function. Then
introduce Z1, . . . , Zn n i.i.d. covariates and define the conditional expectation θ(l) = E[h(T ∗l ) |
Zl]. We further assume there exists an invertible link function g such that g(θ(l)) = Z>l β, where
β is a vector of regression parameters of interest. Instead of observing the T ∗i ’s one usually
observes a sample X1, . . . , Xn of i.i.d. variables, from which an estimator θ̂ is constructed. The
lth pseudo-observation is then given by:

θ̂(l) = nθ̂ − (n− 1)θ̂(−l), (1)

where θ̂(−l) is the jackknife estimator of θ̂, that is the estimator θ̂ computed on the sample
where the lth observation has been removed.

It has been suggested (see [4]) to estimate β based on the estimating equation

U(β) =
n∑
l=1

(
θ̇(l)

)>
V −1
l (θ̂(l) − θ(l)) = 0,

where θ̇(l) denotes the derivative with respect to β of θ(l) = g−1(ZTl β) and Vl is a weight matrix.

As a result, the estimator β̂ verifies the equation U(β̂) = 0 and it has been suggested to use a
sandwich estimator to estimate the variance of β̂ (see for instance [4] for more details).

In the context of right-censored data, where the θ parameter is the survival function evalu-
ated at some time point and θ̂ is its Kaplan-Meier estimator, it has been proved in [18] and [5]
that the resulting estimating function has a mean asymptotically equal to zero. More specifi-
cally, one observes T = min(T ∗, C), ∆ = I(T ∗ ≤ C), where C is a right-censoring variable and
we define X = (T,∆). Let θ = S(t) = P(T ∗ > t), for t ∈ [0, τ ]. We further assume:

(i) C ⊥⊥ (T ∗, Z)

(ii) P(T ≥ τ) > 0.
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We set Xi = (Ti,∆i), i = 1, . . . , n be n i.i.d replications of (T,∆). The authors have proved
that:

θ̂(l) = θ + ψ̇(Xl) + oP(1), (2)

where ψ̇ is a first order influence function that verifies E(ψ̇(Xl) | Zl) = θ(l) − θ. On the

other hand, [5] have shown that the sandwich estimator used to estimate the variance of β̂ is
asymptotically biased. However, the authors have concluded that the difference between their
corrected variance estimator and the usual sandwich estimator is of minor importance and as a
consequence it is customary to use the sandwich estimator for pseudo-regression.

Once the pseudo-observations have been computed, implementation of the estimating equa-
tion along with the sandwich variance estimator can be easily performed from the geese function
in the geepack R package.

In this article, we will present approximate formulas for computing pseudo-observations in
the context of right-censoring in Section 3 and in the context of interval-censoring in Section 4.
Instead of directly using Equation (1) to obtain the pseudo-observations, we will present ap-
proximated formulas that only involve the estimator θ̂ computed on the whole sample. In both
Sections 3 and 4, we will first focus our attention on the problem of modelling θ(l) = S(t | Zl), the
conditional survival function evaluated at time t given the covariate Zl. The pseudo-observations
can be computed using an estimator of θ = S(t) the unconditional survival function. A standard
link function is g(·) = log(− log(·)) which gives rise to the Cox model. More complex functions
can be chosen for g, such as neural-networks (see for instance [19], [6], [20]), which will provide
performant prediction methods for the conditional survival function. Based on those results we
will also consider the problem of modelling

θ(l) = E(T ∗ ∧ τ | Zl) =

∫ τ

0
S(t | Zl)dt, (3)

for some τ > 0. This allows to estimate the RMST in a regression context by considering for
instance the identity function for g or again more complex link functions such as neural-networks
(see for instance [9]). In the context of right-censored data only, θ will be estimated based on
the Kaplan-Meier estimator and in the context of interval-censored data, it will be estimated
based on parametric models.

3 Approximate pseudo-observations for right-censored data

In this section, we use the same notations as in Section 2 for right-censored data. We denote by Ŝ
the Kaplan-Meier estimator of S and we define for l = 1, . . . , n, the lth jackknife estimator Ŝ(−l)

of Ŝ as the estimator constructed when omitting the lth observation Xl = (Tl,∆l). Introduce
Ĥ(t) =

∑
i I(Ti ≥ t)/n and the observed counting process Ni(t) = I(Ti ≤ t,∆i = 1), where I(·)

is the indicator function. Let

Λ̂(t) =
1

n

n∑
i=1

∫ t

0

dNi(u)

Ĥ(u)

be the standard Nelson-Aalen estimator (see [21]) of the cumulative hazard function and define
the martingale residuals

M̂l(t) = Nl(t)−
∫ t

0
I(Tl ≥ u)dΛ̂(u).
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Proposition 1. Under Assumptions (i) and (ii) in Section 2 the following results hold:

Ŝ(l)(t) = nŜ(t)− (n− 1)Ŝ(−l)(t)

= Ŝ(t)− Ŝ(t)

∫ t

0

dM̂l(u)

Ĥ(u)
+ oP(1),

and ∫ τ

0
Ŝ(l)(t)dt =

∫ τ

0
Ŝ(t)dt−

∫ τ

0

∫ τ

u
Ŝ(t)dt

dM̂l(u)

Ĥ(u)
+ oP(1)·

From those formulas it is clear that the pseudo-observations can be approximated from
quantities computed on the original sample. In other words pseudo-observations can be com-
puted without performing the jackknife procedure. This results in a drastic reduction of the
computation time of those pseudo-observations as illustrated in the simulation section. We will
also see that this approximation is very accurate even for moderate sample sizes. Besides, the
main interest for using this formula is for large sample sizes, in particular in a machine learning
context where computing pseudo-observations is the first step of the procedure before applying
algorithms such as neural networks. In those contexts, the order of the sample size is often in
millions. Even though Proposition 1 is a direct consequence of the results from [18] and [5], a
separate proof is provided in the Appendix section.

It should be noted that a different approach for obtaining a fast approximation of pseudo-
observations has been considered, based on the infinitesimal jackknife method. It has been
implemented in the survival package through the pseudo function. However, the documenta-
tion provides only limited information and the formula for the approximation is not given. This
approach is beyond the scope of the present paper and it will not be further pursued.

4 Approximate pseudo-observations for interval-censored data

In this section, we suppose that instead of directly observing T ∗ we observe a random interval
[L,R], L ≥ 0 and L ≤ R, which almost surely contains the event time: P(T ∗ ∈ [L,R]) = 1. The
right end interval is allowed to take the infinite value such that:

• if 0 < L < R <∞ the data are strictly interval-censored,

• if 0 = L < R <∞ the data are left-censored,

• if 0 < L < R =∞ the data are right-censored,

• if 0 < L = R <∞ the data are exactly observed.

Using the notations of Section 2 the data then consist of i.i.d. replications Xi = (Li, Ri),
i = 1, . . . , n. This situation is often called interval-censoring case 2 (see [22]) when exact
observations are not allowed and mixed interval censoring (see [23]) or partly interval censoring
(see [24]) otherwise. In order to derive consistent estimators of the survival function under
interval censoring one will usually assume independent censoring in the following way (see for
instance [25]): P(T ∗ ≤ t | L = l, R = r) = P(T ∗ ≤ t | l ≤ T ∗ ≤ r). This supposes that the
variables (L,R) do not convey additional information on the law of T ∗ apart from assuming T ∗

to be bracketed by L and R.

4.1 Comments on the nonparametric case

It seems appealing to use the same methodology for interval-censored data as in Section 3.
A natural nonparametric estimator in the context of interval-censored data is the Turnbull
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estimator which can be seen as an EM estimator and is consequently rather slow to compute.
The gain for avoiding computing n times the Turnbull estimator would therefore be highly
significant.

However, in [22] and [26] it has been showed that this nonparametric maximum likelihood
estimator converges at the n1/3 or (n log(n))1/3 rates. Therefore it will not be possible to derive
a relation of the following type:

θ̂ = θ +
1

n

n∑
i=1

ψ̇(Xi) + oP(n−1/2),

with ψ verifying E(ψ̇(Xl) | Zl) = θ(l)−θ such as derived in [5] and [18]. Because if that would be

the case, the convergence rate of θ̂ would be of the order n1/2 due to the central limit theorem.
However, this result is crucial to derive Equation (2) and assess the validity of the procedure.

An alternative could be to use results from [24] where it is further assumed that n1/n tends
to a positive constant as n tends to infinity, where n1 is the number of exact observations.
Under this assumption, the authors retrieved a n1/2 rate of convergence for the nonparametric
maximum likelihood estimator which converges toward a centred gaussian process. However,
the covariance function of this process is not explicit and can only be determined as the solution
of two integrals. This is caused by the construction of the nonparametric estimator that has no
closed form but verifies a self-consistency equation. The asymptotic distribution of the nonpara-
metric estimator was derived using results from infinite dimensional M-estimators in [27]. The
same properties in M-estimators could be used here to derive approximated formulas for the
nonparametric survival estimator. However, a careful examination of the proofs in [24] shows
that such formulas would lead again to implicit expressions of the pseudo-observations in the
same form as the asymptotic limit of the nonparametric survival estimator. Since it does not
seem possible to approach those expressions in a straightforward manner we will not pursue
this idea. We will focus instead in the next section in modelling the survival function using
parametric models.

4.2 Parametric modelling of the survival function

We now assume that the common density function of T ∗1 , . . . , T
∗
n depends on α0 ∈ Θ ⊂ Rd,

the true model parameter of dimension d. We will denote by f∗(t;α0), λ(t;α0), Λ(t;α0) and
S(t;α0) = exp(−Λ(t;α0)) the true density, hazard, cumulative hazard and survival functions
of T ∗, respectively. Instead of directly observing the variables of interest, one usually observes
a sample of i.i.d. variables X1, . . . , Xn which are assumed to have a common density f(t;α0).
We will use the notations ∇ log f(t;α0) and ∇2 log f(t;α0) to represent the score vector and the
Hessian matrix of this log-density where the derivatives are taken with respect to the model
parameter α and are evaluated at α = α0. The same notations will be used for f∗(t;α0).
It is important to emphasise the distinction between the notation f∗, which represents the
density of the true data, and the notation f which represents the density of the observed data.
As an illustration, in the general context of mixed interval-censored data, Xi = (Li, Ri) with
0 ≤ Li < Ri ≤ ∞ and we have (see [14] or [15])

f(Xi;α) = (S(Li;α)− S(Ri;α))I(Li 6= Ri) + (λ(Li;α)S(Li;α)) I(Li = Ri),

with the slight abuse of notation S(Ri;α) = 0 if Ri =∞. In the following, we will consider max-
imum likelihood estimation for the parameter α0 based on the observed variables X1, . . . , Xn.
The results derived in this section are not limited to the case of interval-censored data and can
be applied to any parametric framework for incomplete data.

The maximum likelihood estimator α̂ of α0 maximises with respect to α the log-likelihood
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∑
i log f(Xi;α) and, subject to regularity conditions, verifies the following equality:

√
n(α̂− α0) =

1√
n

(
− 1

n

n∑
i=1

∇2 log f(Xi; α̃)

)−1 n∑
i=1

∇ log f(Xi;α0),

where α̃ lies between α̂ and α0. Let I = −E
(
∇2 log f(X;α0)

)
be the Fisher information and

consider the jackknife version α̂(−l) of the maximum likelihood estimator. It is then straight-
forward to write:

√
n(α̂− α0) =

1√
n
I−1

n∑
i=1

∇ log f(Xi;α0) + εn,

√
n− 1(α̂(−l) − α0) =

1√
n− 1

I−1
n∑
i 6=l
∇ log f(Xi;α0) + ε(−l)

n ,

where

εn =
1√
n

(− 1

n

n∑
i=1

∇2 log f(Xi; α̃)

)−1

− I−1

 n∑
i=1

∇ log f(Xi;α0),

and ε
(−l)
n is the jackknife version of εn. As a result, the lth pseudo-observation of α̂ verifies the

relation:

nα̂− (n− 1)α̂(−l) = α0 + I−1∇ log f(Xl;α0) +
√
n εn −

√
n− 1 ε(−l)

n . (4)

In the Appendix section, it is proved that the term
√
n εn −

√
n− 1 ε

(−l)
n tends towards 0 in

probability as n tends to infinity. This entails that asymptotically, the pseudo-observation of
α̂ only depends on the true parameter, the Fisher information and the score vector, this latter
quantity being only evaluated at the observation l. Since α̂ is a consistent estimator of α0 and
Î = −

∑n
i=1∇2 log f(Xi; α̂)/n is a consistent estimator of I, a natural asymptotic approximation

for the pseudo-observation of α̂ is simply:

α̂+ Î−1∇ log f(Xl; α̂).

While this result is interesting on its own, more work needs to be done in order to derive
the pseudo-observations of S(t; α̂). The following proposition is derived based on this latter
expression of the approximate pseudo-observation for α̂. The notation ·> is used to denote the
transpose of a vector or a matrix.

Proposition 2. Under standard regularity conditions for maximum likelihood theory, the fol-
lowing relations hold:

nS(t; α̂)− (n− 1)S(t; α̂(−l)) = S(t; α̂)− S(t; α̂)∇Λ(t; α̂)>Î−1∇ log f(Xl; α̂) + oP(1),

and for τ > 0,

n

∫ τ

0
S(t; α̂)dt− (n− 1)

∫ τ

0
S(t; α̂(−l))dt

=

∫ τ

0
S(t; α̂)dt−

∫ τ

0
S(t; α̂)∇Λ(t; α̂)>dt Î−1∇ log f(Xl; α̂) + oP(1).

The same results also hold when replacing α̂, Î by α0, I in the right-hand side of the equations.
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The proof of this proposition can be found in the Appendix section. As in Section 3, the main
interest in this result lies in the fact that the approximated version of the pseudo-observation
only depends on the parameter estimator α̂ and not on its jackknife version. This means that
pseudo-observations in parametric models can be obtained without actually computing the n
jackknife estimators. Only the estimator of α0, along the Hessian matrix, the gradient of Λ
and of the log-density are needed. This is particularly interesting in the context of interval-
censored data since parametric estimators cannot be derived explicitly and numeric methods
must be implemented. Two different strategies exist for those types of data: either a direct
maximisation of the likelihood can be performed using the Newton-Raphson algorithm (see [13]
and [14] for instance) or the complete likelihood (based on the unobserved true times) can be
used through the EM algorithm in order to maximise the likelihood (see [15]). But in either
case the method is iterative. Also, it should be noted that the Newton-Raphson algorithm
requires to compute the score vector and Hessian matrix. Therefore the computational cost for
implementing the approximated pseudo-observations is similar to the cost of simply computing
the pointwise estimate from the Newton-Raphson algorithm.

Those approximated formulas are general and work for any parametric model. As an
illustration, the piecewise-constant hazard (pch) model will be used in the simulation sec-
tion. This model assumes that the hazard function verifies λ(t;α) =

∑K
k=1 αkIk(t) where

Ik(t) = I(ck−1 < t ≤ ck), c0 = 0 < c1 < · · · < cK = +∞ represent K + 1 cuts and I(·) de-
notes the indicator function. We do not specify precisely the regularity conditions for maximum
likelihood theory to hold. However, two important assumptions are first to assume the model
identifiable and second to impose the Fisher information to be positive definite in a neighbour-
hood of the true parameter. For the pch model in the context of interval-censored data, two
necessary conditions for those regularity assumptions to hold are:

P(R < +∞, [L,R] ∩ (ck−1, ck] 6= ∅) > 0,∀k = 1, . . . ,K,

P(L > ck−1) > 0,∀k = 1, . . . ,K. (5)

The first assumption is quite natural: in order to estimate αk, the probability that an interval
intersects [ck−1, ck] should be positive. The second assumption is necessary for the existence of
a maximum of the likelihood function. It should be noted that those conditions are also valid
when exact observations L = R are allowed. Exact expressions of the score vector and Hessian
matrix for the pch model along with the derivation of condition (5) are detailed in Section 9.4
of the Appendix. Details on the implementation of Proposition 2 for the pch model are given
in Section 9.3 of the Appendix.

Precision and computational cost of the approximation for the RMST are evaluated and
compared to the actual jackknife version of the pseudo-observations in the simulation section.
In particular, it is seen that the approximation is much faster than the jackknife method and
is very accurate even for small sample sizes.

4.3 Theoretical validation of pseudo-observations for parametric models

In this section we want to investigate if the approximated formula derived in Proposition 2
provides valid observations for performing pseudo-regression, similarly to the Kaplan-Meier
estimator in the context of right-censored data (see Equation (2)). In other words, if we set

ϕ(Xl;α0) =

∫ τ

0
S(t;α0)dt−

∫ τ

0
S(t;α0)∇Λ(t;α0)>dt I−1∇ log f(Xl;α0), (6)

we want to investigate under which conditions we may have

E(ϕ(Xl;α0) | Zl) = E(T ∗l ∧ τ | Zl). (7)
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It is easily seen that this equality will generally not hold by considering the simple scenario
of exact observations. In that case, Xi = T ∗i and f = f∗ is simply the density of the true
variable T ∗. If we further assume for instance that T ∗ follows a Weibull distribution, with
shape parameter a > 0 and scale parameter b > 0 (the true parameters are noted a0, b0) such
that:

f(X;α) = f(T ∗;α) =
a

b

(
T ∗

b

)a−1

exp

(
−
(
T ∗

b

)a)
,

with α = (a b)>, then ∇ log f(Xl;α) will depend on log(T ∗l ), (T ∗l )a−1 and (T ∗)a, when a 6= 1.
As a result, E(ϕ(Xl;α0) | Zl) will be a function of E(log(T ∗l ) | Zl), E((T ∗l )a0−1 | Zl) and
E((T ∗l )a0 | Zl) when a0 6= 1. When a0 = 1 (the exponential model), then E(ϕ(Xl;α0) | Zl) will
be a function of E(T ∗l | Zl), but it will still not verify Equation (7) unless τ = ∞. Performing
the same calculation for other distributions, we can similarly conclude that Equation (7) will
not hold in general.

Nevertheless, even though Equality (7) is not verified in most cases, it is still possible to
prove that the formula given by Proposition 2 provides a good approximation. The key is to
assume that there exists a value αz of the parameter α such that the conditional distribution
of T ∗ given Z = z follows a distribution with density f∗(t;αz). In that case, E(T ∗l ∧ τ | Zl =
z) =

∫ τ
0 S(t;αz)dt and by expanding S(t;αz) around S(t;α0) from a Taylor development, we

can prove that E(T ∗l ∧ τ | Zl = z) is equal to E(ϕ(Xl;α0) | Zl = z) up to two remainder terms.
Those remainder terms measure the distance between α0 and αz, and between the inverse of the
Fisher information I−1 and the quantity (−E(∇2 log f(X;α) | Z = z))−1 for any α that is on
the real line between α0 and αz. Define Θz = {α ∈ Θ : ‖α−α0‖ ≤ ‖α0−αz‖} which represents
the set of parameters that are on the real line between α0 and αz. In the next proposition, we
denote for k = 1, . . . ,K, by αk, α0,k, αz,k the kth component of α, α0 and αz, respectively.

Proposition 3. Assume there exists αz such that the conditional distribution of T ∗ given Z = z
follows a distribution with density f∗(t;αz). Assume also there exists Mz < +∞ such that

∀k, k′ ∈ {1, . . . , d}, ∀α ∈ Θz,
∂2

∂αk∂αk′

∫ τ

0
S(t;α)dt ≤Mz.

Then,

E(T ∗l ∧ τ | Zl = z) = E(ϕ(Xl;α0) | Zl = z) +R1,z +R2,z,

where

R1,z ≤
Mz

2

(
d∑

k=1

(αz,k − α0,k)

)2

,

R2,z ≤ max
α∈Θz

∣∣∣∣∫ τ

0
(∇S(t;α0))>dt

(
I−1
α,z − I−1

)
E(∇ log(f(X;α0)) | Z = z))

∣∣∣∣ ,
with

Iα,z = −E(∇2 log(f(X;α)) | Z = z).

The proposition makes the strong assumption that the conditional distribution of T ∗ given
Z = z follows a distribution with density f∗(t;αz). While this will not be true in general, it
seems reasonable to assume that, if the chosen parametric distribution for T ∗ is rich enough,
there will exist a value of the parameter α such that the parametric distribution is not too
far from the conditional distribution of T ∗ given Z = z. This advocates for flexible parametric
models such as the pch model or a spline approach such as proposed in [17]. However, this needs
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to be imposed for all possible values of Z, which again seems reasonable if discrete covariates
are considered and the number of those covariates is not too large.

Besides, it is difficult to evaluate, from the proposition, how large the remainder terms
are. Previous experiments on the Weibull distribution in [16] using the jackknife approach
suggest that the approximation is quite accurate in practice. When using the pch model, we
can establish a different type of theoretical result. In the context or right-censored data, we
show in the next proposition that if the number of cuts in the pch model tends to infinity,
then we exactly retrieve Equality (7). We were not able to prove this result in the context of
interval-censored data, we conjecture however that this result still holds in this case.

Proposition 4. Under the context of right-censored data, if T ∗ follows the pch model with cuts
c0 = 0 < c1 < · · · < cK = +∞ and if we assume standard regularity conditions for maximum
likelihood theory then the function ϕ(Xl;α0) defined in Equation (6) converges, as K tends to
infinity and max|ck+1−ck| tends to 0, towards a function ϕ∞(Xl;α0) that verifies

E(ϕ∞(Xl;α0) | Zl) = E(T ∗l ∧ τ | Zl).

This result is interesting as it shows that it is theoretically possible for Equality (7) to
hold true when using the pch model. Of course, in practice one has to choose a finite number
of cuts. However, there are some strategies to choose the number of cuts from the data. In
particular, in [15] the authors have developed a penalised method based on the adaptive-ridge
to choose the number of cuts in an efficient way. In the simulation study (Section 5.2.1), we
show that the approximation formula or the original jackknife method provide very similar and
very performant results in pseudo-regression, when modelling the distribution of T ∗ with the
pch model. The proofs of Propositions 3 and 4 are deferred to the Appendix section.

5 Simulation studies for the Restricted Mean Survival Time

We study two different simulation scenarios for the RMST: one with right-censored data and
another one with interval-censored data. In the first scenario, the approximate pseudo observa-
tions are based on the Kaplan-Meier estimator (using Proposition 1) while in the second scenario
they are based on the pch model (using Proposition 2). In both settings, the performance of the
estimators derived from the approximated formulas and the ones obtained from the standard
jackknife method is compared based on 500 replications. Implementation of the generalised
estimation equation is performed through the geese function in the geepack R package.

5.1 Right-censored data

The simulation setting is based on the one in [28]. We assume that

T ∗i = β̃>0 Zi + εi, i = 1, . . . , n,

with β̃0 = (5.5, 0.25, 0.25)>, Zi = (1, Zi,1, Zi,2)>, Zi,1 and Zi,2 are Bernoulli variables with
parameter 0.5 and εi ∼ U [−σ, σ], with σ = 3. Under this model it can easily be seen that

E(T ∗i ∧ τ | Zi) = β00 + β01Zi,1(1− Zi,2) + β10Zi,2(1− Zi,1) + β11Zi,1Zi,2, (8)

where β0 = (β00, β01, β10, β11)> can be determined computationally using Monte-Carlo samples
with size 10 million. We further set τ = 6 which corresponds to the 54.2% quantile of T ∗

and to the value β0 = (4.98, 0.14, 0.14, 0.27)>. Right-censored data were simulated from an
exponential distribution with parameter 0.07 yielding 33% of censoring on average. The results
are presented in Table 1.
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It is seen that the approximated formula gives similar results as compared to the standard
jackknife method for n = 100. For larger sample sizes, the results are almost identical. We also
compared the difference between the two estimators of β0 by looking at the standard deviation
for all four components and taking the maximum: the maximum value over all four components
is equal to 7.33× 10−3, 1.15× 10−3, 2.55× 10−4 for n = 100, n = 500, n = 1, 000 respectively
and the two estimators coincide exactly for all replications when n = 10, 000. This shows that
there is very little variations between the estimator computed from the jackknife and the one
computed from the approximated formula. In terms of computation times, there is a clear
advantage for the approximated formula which goes 10.6, 17.1, 18.3 and 77.2 times faster for
n = 100, n = 500, n = 1, 000 and n = 10, 000 respectively. Clearly the computation time for
the original jackknife method is not a linear function of the sample size and the gain for using
the approximated method is considerable for large sample sizes. It should be noted that the
computation time was evaluated for the pseudo-regression procedure, but it does not include
the computation of the initial survival estimator, it only takes into account the computation of
the pseudo-observations along with the implementation of the generalised estimating equations.
Finally, the infinitesimal jackknife implemented in the pseudo function of the survival package
was also briefly compared to our approach. It seems that the pseudo function provides very
similar results but with a faster computational time. However, since there is no available
information on the implementation of the pseudo function, it is not possible to clearly evaluate
which of the two formulas (the one obtained with the infinitesimal jackknife and the one obtained
from the Von Mises formula) has the smallest computational complexity.

Jackknife Approximated formula

n Bias(β̂) SE(β̂) MSE(β̂) Time Bias(β̂) SE(β̂) MSE(β̂) Time

100 0.056 0.269 0.075 0.223 s 0.053 0.265 0.073 0.021 s
-0.078 0.346 0.127 -0.076 0.339 0.121
-0.050 0.382 0.148 -0.052 0.375 0.143
- 0.063 0.321 0.107 -0.058 0.314 0.102

500 -0.008 0.120 0.015 1.536 s -0.007 0.120 0.015 0.090 s
0.010 0.158 0.025 0.010 0.158 0.025
0.005 0.161 0.026 0.005 0.161 0.026
0.009 0.158 0.025 0.008 0.158 0.025

1,000 -0.003 0.081 0.007 3.629 s -0.003 0.081 0.007 0.198 s
-0.003 0.111 0.012 -0.004 0.110 0.012
0.003 0.112 0.013 0.003 0.112 0.012
0.001 0.109 0.012 0.001 0.109 0.012

10, 000 -0.001 0.026 0.001 8.659 min -0.001 0.026 0.001 6.726 s
0.002 0.034 0.001 0.002 0.034 0.001
0.001 0.036 0.001 0.001 0.036 0.001
0.003 0.034 0.001 0.003 0.034 0.001

Table 1: Simulation results for the estimation of β in the RMST model (8) based on pseudo-
regression with the Kaplan-Meier estimator on 33% of right-censored data. In the pseudo-
regression, the true jackknife is compared to the approximated pseudo-estimates.

5.2 Interval-censored data

For interval censored data the survival function is estimated from the pch model, as detailed
in Section 4.2. Using this model, estimation of the model parameter α0 is performed using the
EM algorithm, as presented in [15]. An alternative method could be to directly maximise the
observed likelihood but this would result in implementing the Newton-Raphson algorithm for
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each jackknife sample with inversion of a Hessian matrix of full rank which, in turn, would result
in unstable results. In the EM algorithm, the M-step is explicit and as a result the computation
of the jackknife methods is always stable. We refer the reader to [15] for more details on the
two methods. The approximated method is implemented from the result in Proposition 2 and
details on the computation of the score vector and Hessian matrix are detailed in Section 9.3 of
the Appendix.

5.2.1 First model with a fixed value of τ

We first assume Model (8) with the same values of σ and τ . Then, in order to simulate
interval-censored data, a total of K = 5 visits were simulated such that V1 ∼ U [0, 6] and
Vk = Vk−1 + U [0, 2], for k = 2, . . . ,K. The observations for which T ∗i < V1 correspond to
left-censored observations with Li = 0 and Ri = V1, the observations for which T ∗i > VK
correspond to right-censored observations with Li = VK and Ri =∞, and the observations for
which Vk−1 < T ∗i < Vk (k = 2, . . . ,K) correspond to strictly interval-censored observations with
Li = Vk−1 and Ri = Vk. This resulted in 14.6% of left-censored data, 52.07% of interval-censored
data and 33.33% of right-censored data. For interval-censored data, the average length of the
intervals was approximately equal to 1.34. The pch model with cuts equal to 4, 5, 6, 7 was used
for the computation of the survival estimator. The pseudo-observations were generated based
on the standard jackknife and on the approximated formulas and the results for the RMST
model are presented in Table 2.

Again the results between the jackknife and the approximate formula are almost identical
while there is a huge gain in terms of computational time for the approximated formula. The
approximated formula is 1 688, 2 131, and 3 901 times faster than the jackknife method for
n = 200, n = 500 and n = 1, 000 respectively. It should be noted that the cuts must be
carefully chosen in the pch model. In particular, the regularity conditions of Equation (5) must
be satisfied. If there are only few values of Li and Ri that intersect a cut [ck−1, ck] or if the
proportion of Li’s such that Li > ck−1 is too low then the pseudo-values can be incorrect (both
for the jackknife method or using our approximated formula) which will in turn result in a poor
performance of the parameters estimation. On the other hand, if the regularity conditions hold,
the choice of the cuts will only have a minor impact on the performance of the estimator of β0

and will lead to similar results.

5.2.2 Second model with τ equal to infinity

In this scenario we assume a standard linear model for the time of interest:

T ∗i = β0 + β1Zi + εi, i = 1, . . . , n (9)

where β0 = 6, β1 = 4, Zi ∼ U [0, 2] and εi ∼ N (0, 1). Here τ =∞, and for the interval-censored
data the values of Li and Ri were determined through a visit process with a total of K = 5
simulated visits such that V1 ∼ U [0, 10] and Vk = Vk−1 + U [0, 4], for k = 2, . . . ,K. The left,
interval and right-censored observations where obtained as in Section 5.2.1. This simulation set-
ting corresponds to 10% of left-censoring, 26% of right-censoring and 64% of interval-censoring.
For interval-censored data, the average length of the intervals was approximately equal to 3.5.
The results are presented in Table 3 where the pch estimator was used with cuts equal to
6, 8, 10, 12, 14.

This scenario is challenging both due to the fact that τ equals infinity (and thus causing
estimation problems in the tails) and to the width of the intervals that are larger on average
than in Section 5.2.1. As a result, the algorithm seems to fail in some rare cases for n = 500
and generates a drastic overestimation of the parameter value. This seemed to be caused by
the generation of samples for which too few values of Li and Ri satisfy the regularity conditions
of Equation 5. In Table 3, one sample was removed for both the jackknife method and for the
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Jackknife Approximated formula

n Bias(β̂) SE(β̂) MSE(β̂) Time Bias(β̂) SE(β̂) MSE(β̂) Time

200 -0.188 0.231 0.090 6.219 min -0.187 0.232 0.089 0.221 s
0.026 0.320 0.103 0.027 0.319 0.102
0.045 0.325 0.107 0.045 0.323 0.106
0.096 0.296 0.097 0.094 0.295 0.096

500 -0.187 0.152 0.058 23.589 min -0.187 0.152 0.058 0.664 s
0.048 0.208 0.046 0.048 0.208 0.046
0.038 0.209 0.045 0.038 0.209 0.045
0.080 0.192 0.043 0.080 0.192 0.043

1,000 -0.189 0.106 0.047 87.717 min -0.189 0.106 0.047 1.349 s
0.043 0.137 0.021 0.043 0.137 0.021
0.043 0.145 0.023 0.043 0.145 0.023
0.074 0.138 0.025 0.074 0.138 0.025

Table 2: Simulation results for the estimation of β in the RMST model (8) based on pseudo-
regression with 14.6% of left-censored data, 52.07% of interval-censored data and 33.33% of
right-censored data. The piecewise constant hasard model with cuts equal to 4, 5, 6, 7 was used
for the estimation of the survival function in the computation of the pseudo-observations. In
the pseudo-regression, the true jackknife is compared to the approximated pseudo-estimates.

approximated formula. Also, 6 other samples were removed for the jackknife method. If all those
samples would have been kept, then the results would have been in favour of the approximated
formula: while its MSE would have been nearly unchanged, the MSE for the jackknife would
have been equal to 3.863 instead of 0.058 (result not shown in the table). Table 3 only displays
the results with those 7 samples generating drastic overestimations removed, but even in that
case the MSE of the approximated formula is still slightly better than the jackknife method.
All samples were kept for n = 1, 000 and the results are identical for both methods. We also
compared the absolute difference between the two estimators of β0 componentwise: 99% of
those values are less than 1.969 × 10−2 for the first component and less than 2.333 × 10−2 for
the second component, when n = 500, while 99% of those values are less than 5.061× 10−3 for
the first component and less than 6.723× 10−3 for the second component when n = 1, 000. In
terms of computation time, the approximated formula is 2 659 and 3 791 times faster than the
jackknife method for n = 500 and n = 1, 000 respectively. Again, those results emphasise the
importance of verifying the regularity conditions in Equation (5) for the pch model in choosing
the number and location of the cuts.

Jackknife Approximated formula

n Bias(β̂) SE(β̂) MSE(β̂) Time Bias(β̂) SE(β̂) MSE(β̂) Time

500 -0.130 0.202 0.058 24.461 min -0.114 0.186 0.047 0.552 s
0.094 0.174 0.039 0.083 0.153 0.030

1,000 -0.113 0.113 0.025 68.998 min -0.110 0.113 0.025 1.092 s
0.080 0.102 0.017 0.078 0.102 0.016

Table 3: Simulation results for the estimation of β in the RMST model (9) based on pseudo-
regression with 10% of left-censored data, 26% of interval-censored data and 64% of right-
censored data. The piecewise constant hasard model with cuts equal to 6, 8, 10, 12, 14 was used
for the estimation of the survival function in the computation of the pseudo-observations. In
the pseudo-regression, the true jackknife is compared to the approximated pseudo-estimates. In
the simulation setting with n = 500, 7 samples were removed.

13



6 Illustrative real data examples

6.1 The Cardiovascular Health Study (CHS)

In this data example, we mimic the analysis of the Cardiovascular Health Study (CHS) as it was
performed in [9]. This study was initiated in 1987 to determine the risk factors for development
and progression of cardiovascular disease (CVD) in older adults. The event of interest was
time to CVD. In [9], the author considers a subsample of 5, 380 individuals of whom 65.2% had
CVD during the study period and the others were right-censored. The aim of the study was to
estimate the conditional RMST with 29 covariates and τ = 5 years.

The methodology proposed in [9] uses pseudo-observations and implements a deep neural
network directly on the pseudo-observations of the RMST, that is the g link function presented
in Section 2 is a neural network. Moreover, a training dataset including 75% of the observations
and a test set based on the remaining 25% of the data are built in order to evaluate the predic-
tion performance of the method. This split of the data between training and test sets is repeated
10 times. At each repetition, the pseudo-observations must be entirely computed but only on
the training datasets. This results in computing the pseudo-observations for the RMST for 10
samples of size 4, 035. We computed those pseudo observations from the jackknife method and
the approximated formula. The former was computed in approximately 8.9 minutes while the
latter took 38.9 seconds. Therefore, our approximated formula is more than 13.7 times faster
than the original jackknife method. Since building a neural network is computationally expen-
sive and needs to be implemented for all the training samples, this reduction in computation
time is a major advantage for our approximated formula. Of note, the results of the analysis
implemented with the approximated formula are identical to the original analysis (based on the
jackknife method) and are therefore omitted.

6.2 The Signal TandmobielR data

In this section, we analyse the Signal Tandmobiel R data using the conditional RMST model
in Equation (3). This dataset is part of the bayesSurv R package. Those data were collected
from a longitudinal dental survey of 4, 468 school children born in 1989, who were annually
examined by a dentist. The time scale is age in years. The dataset is composed of 0.68% of
left-censored data, 61.69% of strictly interval-censored data and 37.63% of right-censored data.
Our aim is to study the emergence of the tooth number 14 which is a permanent first premolar.
The covariates used for the analysis are: gender (binary variable equal to 1 for boys, 0 for girls)
and the number of decayed or missing deciduous first molars due to caries among teeth 54, 64,
74, 84 of the dataset. This covariate is thus discrete taking values between 0 and 4. These
data were previously studied by [29] using the Accelerated Failure Time model (AFT). In our
analysis, the survival function is estimated from the pch model using the whole dataset and
the pseudo-observations are then computed from the approximated formula in Proposition 2.
There are 126 individuals with missing covariates and the generalised estimating equation used
to implement the RMST is therefore applied to this reduced dataset composed of 4, 342 pupils.

In the pch model, the number of cuts and locations were chosen using the adaptive-ridge
algorithm developed in [15]. This led to the selection of the four cuts 7.6, 8.4, 9 and 10. Since
the maximum likelihood estimator has converged this entails that the regularity conditions of
Equation (5) are satisfied. We can also easily check them empirically: in particular there are 3%
of strictly interval censored observations whose left intervals fell before 7.6, 40% of left intervals
that fell after 10 and the percentage of strictly interval censored observations that intersect each
other is high (values not shown). The corresponding estimated hazard and survival functions
are displayed in Figure 1. We observe a low estimated hazard value (equal to 6·10−4) from age
0 until age 7.6 due the low percentage of left intervals that fell before 7.6. This yields a very
flat decay of the survival function on this time period, then the decay increases drastically for
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the four other time periods [7.6, 8.4], [8.4, 9], [9, 10] and [10,∞). For illustration, we estimate
from the survival function that approximately 83.39% of the teeth will emerge between age 7.6
and 12.

Based on the survival estimate, we took τ = 9 and τ = 12 in the RMST analysis which
respectively correspond to the 11% and 84% estimated quantiles of T ∗ thus corresponding to
early and late emergence of the tooth. The estimated regression parameters in the RMST model
along with their Wald test are presented in Table 4. For τ = 9 we observe a weak effect of the
covariates with an intercept that is almost equal to τ , highlighting that most emergences of the
tooth will occur after 9 years of age. As a matter of fact, gender is not significant and the number
of decayed deciduous first molars is highly significant but with a weak effect. The number of
decayed deciduous first molars will accelerate the emergence of the tooth with 1 decayed molar
(respectively 4 decayed molars) yielding a reduction of 0.0097 years (respectively 0.0390 years)
for the emergence of the tooth. For τ = 12 the effect of gender is now highly significant,
meaning that gender only plays a role for late emergence of the tooth. The emergence of the
tooth for boys arrives on average 0.3336 years earlier than for girls. The number of decayed
deciduous first molars is also highly significant with 1 decayed molar (respectively 4 decayed
molars) yielding a reduction of 0.1303 years (respectively 0.5211 years) for the emergence of
the tooth. We also tried to repeat the procedure using different cut values in the pch model
and as already observed in the simulation study, this led to very similar results. The results
from [29] obtained using the AFT models were similar to our findings except that the authors
did not provide statistical tests for the effects of the covariates and it was not possible from
their method to detect that gender had mainly a role for late emergence of the tooth.

Finally, based on the approximated formulas developed in this paper, the whole procedure
(computation of the pseudo-observations and implementation of the generalised estimating equa-
tions) took about 1.78 seconds. The method was not implemented using the classical jackknife
method but according to the simulation study it would have taken more than 4 hours to obtain
the pseudo-observations, since in the simulation study the time for the jackknife procedure was
evaluated at more than 1 hour for n = 1, 000 (see Sections 5.2.1 and 5.2.2). Also, the results
would have been identical, thus highlighting the relevance of the proposed approach in practical
situations.
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Figure 1: Distribution of time to emergence of the tooth number 14. On the left: estimated
hazard function. On the right: estimated survival function. Those estimates were obtained
from the pch model with cuts equal to 7.6, 8.4, 9 and 10.
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τ = 9 τ = 12

Covariates effect se p-value effect se p-value

Intercept 8.9851 0.0047 < 10−15 10.8755 0.0306 < 10−15

Gender (1 = boy) −0.0097 0.0066 0.1422 −0.3336 0.0361 < 10−15

Nb of decayed molars −0.0180 0.0024 8.1379× 10−14 −0.1303 0.0120 < 10−15

Table 4: Restricted Mean Survival Time Model for the time to emergence of the tooth 14 with
the covariates gender and number of decayed or missing deciduous first molars due to caries
among teeth 54, 64, 74, 84. Two values of τ are analysed in Equation (3). se represents the
standard estimate of the regression parameter.

7 Conclusion

In this paper, we presented asymptotic formulas for computing pseudo-observations for time
to event data. In the context of right-censored data, those formulas are based on the Kaplan-
Meier estimator of the survival function. When dealing with interval-censoring our formulas
were developed for a general class of parametric models. Pseudo-regression is an appealing
tool when the goal is to directly model a complex quantity of interest, such as the RMST,
cumulative incidence functions in a competing risk setting or transition probabilities for multi-
state models. Our formulas were precisely developed for the RMST but they could be easily
extended for those other quantities of interest. While the pseudo-values approach is originally
based on the jackknife procedure, our formulas only involve quantities computed on the initial
sample. This results in a drastic reduction of the computational time, which is an interesting
feature when dealing with large dataset or when the data are interval-censored, since in that
case, the estimators are computationally intensive.

There has been an increasing interest of the pseudo-values approach in the machine learning
community. After having computed the pseudo-observations, standard machine learning models
can be applied to those new observations, by simply ignoring the censoring. In particular, this
methodology has been applied for estimating the survival function in [19], [6], [20] or the RMST
in [9] based on neural networks that were directly applied on the pseudo-observations. Therefore,
our formulas are particularly interesting in those settings where the dataset can be extremely
large and the algorithm usually relies on a cross-validation procedure. Using our approximated
formulas results in a significant gain in terms of computation time as illustrated on the real
data analysis. Also, the approximations made by our formulas are extremely precise, even for
moderate sample sizes, as shown in the simulation study. Surprisingly, we also saw that our
formulas are more robust than the original jackknife method which sometimes fails due to some
rare extreme values. For all these reasons, we advocate the use of our asymptotic formulas in
practical situations.

As a reviewer pointed out, there exists an alternative to our fast formula in the case of
right-censored data, in the pseudo function of the survival package. It is based on the in-
finitesimal jackknife. However, the literature on the subject is scarce and there are currently
no justifications on the derivation and the implementation of those formulas. Nevertheless, it
would be interesting to compare this approach to our Von Mises formula. More importantly, it
could be extended to the parametric setting, in order to apply it to interval-censored data, as
there already exists some approaches based on the infinitesimal jackknife to compute delta-beta
residuals, which are very closely related to pseudo-observations.

Finally, new theoretical results for parametric pseudo-regression were also developed in this
paper. Those results indicate that parametric pseudo-regression is only valid up to two extra
terms but simulation studies suggest that they are reasonably small in practice and do not
significantly impact the performance of the final estimator. They also suggest to use flexible
parametric model such as the pch model. As an extension it would be interesting to study the
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theoretical validity of splines models for pseudo-regression such as the method developed in [17].
This is let to future research.

8 Software

The asymptotic formulas developed in this paper for the pseudo-values of the survival func-
tion and the RMST can be implemented using the GitHub package FastPseudo available at
https://github.com/obouaziz/FastPseudo. The package can deal with both right-censored or
interval-censored data. In the latter case, the formulas are implemented for the pch model.
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9 Appendix

9.1 Proof of Proposition 1

Introduce H1(t) = P(T ≤ t,∆ = 1), H0(t) = P(T ≤ t,∆ = 0), H(t) = P(T ≥ t) and their
empirical counterparts, Ĥ1(t) =

∑
i I(Ti ≤ t,∆i = 1)/n, Ĥ0(t) =

∑
i I(Ti ≤ t,∆i = 0)/n,

Ĥ(t) =
∑

i I(Ti ≥ t)/n. Let ψ(A)(s, t] = Rs<u≤t
(1 + dA(u)), such that ψ(Λ)(0, t] = S(t),

where Λ(t) is the cumulative hazard function and ψ(Λ̂)(0, t] = Ŝ(t). We have the following
Von-Mises expansion [see 30, 31]:

Ŝ(−l)(t) = Ŝ(t)− Ŝ(t)(Λ̂(−l)(t)− Λ̂(t)) + oP(Λ̂(−l)(t)− Λ̂(t)).

We now derive a Von-Mises expansion for Λ̂(−l)(t) − Λ̂(t). The cumulative hazard function
and its estimator can be defined as functions of H, H1 and of Ĥ1, Ĥ respectively where Λ(t) =
g(H1, H) :=

∫ t
0 dH1(u)/H(u) and Λ̂(t) = g(Ĥ1, Ĥ). We have the following Von-Mises expansion:

Λ̂(−l)(t) = Λ̂(t) + g′
(Ĥ1,Ĥ)

(Ĥ
(−l)
1 − Ĥ1, Ĥ

(−l) − Ĥ) + oP(n−1),

where g′ is the Hadamard derivative of g, which is equal to [see 30, 31]:

g′(H1,H)(h1, h) =

∫ t

0

dh1

H
−
∫ t

0

h2dH1

H2
·

The oP(n−1) term above comes from the expressions:

Ĥ
(−l)
1 (t)− Ĥ1(t) =

1

n(n− 1)

n∑
i=1

I(Ti ≤ t,∆i = 1)− I(Tl ≤ t,∆l = 1)

n− 1

and

Ĥ(−l)(t)− Ĥ(t) =
1

n(n− 1)

n∑
i=1

I(Ti ≥ t)−
I(Tl ≥ t)
n− 1

,
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which entail as a consequence that Ĥ
(−l)
1 (t)−Ĥ1(t) and Ĥ(−l)(t)−Ĥ(t) are OP(n−1). Moreover,

using those expressions we have

g′
(Ĥ1,Ĥ)

(Ĥ
(−l)
1 − Ĥ1, Ĥ

(−l) − Ĥ) =
1

n− 1

∫ t

0

dĤ1(u)

Ĥ(u)
− 1

n− 1

I(Tl ≤ t,∆l = 1)

Ĥ(Tl)

− 1

n− 1

∫ t

0

dĤ1(u)

Ĥ(u)
+

1

n− 1

∫ t

0

I(Tl ≥ u)dĤ1(u)

(Ĥ(u))2
,

= − 1

n− 1

I(Tl ≤ t,∆l = 1)

Ĥ(Tl)
+

1

n− 1

∫ t

0

I(Tl ≥ u)dĤ1(u)

(Ĥ(u))2
·

Gathering all the different parts, we obtain

Ŝ(l)(t) = Ŝ(t) + Ŝ(t)

(∫ Tl∧t

0

dĤ1(u)

(Ĥ(u))2
− I(Tl ≤ t,∆l = 1)

Ĥ(Tl)

)
+ oP(1)

= Ŝ(t) + Ŝ(t)

(∫ t

0

I(u ≤ Tl)
Ĥ(u)

dΛ̂(u)−
∫ t

0

dNl(u)

Ĥ(u)

)
+ oP(1)

= Ŝ(t)−
∫ t

0

dM̂l(u)

Ĥ(u)
+ oP(1)·

The approximation for the RMST is then obtained by directly integrating the previous equation
as it actually follows that the convergence holds in the Skorohod space D[0, τ ] [see 30, 31] and
therefore the convergence holds uniformly with respect to t ∈ [0, τ ].

9.2 Proof of Proposition 2

Starting with Equation (4) we will first prove that
√
n εn−

√
n− 1 ε

(−l)
n tends to 0 in probability

as n tends to infinity. Set

Ĩn = − 1

n

n∑
i=1

∇2 log f(Xi; α̃), Ĩ(−l)
n = − 1

n− 1

∑
i 6=l
∇2 log f(Xi; α̃),

where α̃ lies between α̂ and α0. We have:
√
n εn −

√
n− 1 ε(−l)

n

=
(
Ĩ−1
n − I−1

) n∑
i=1

∇ log f(Xi;α0)−
((

Ĩ(−l)
n

)−1
− I−1

) n∑
i 6=l
∇ log f(Xi;α0)

=

((
Ĩ(−l)
n

)−1
− I−1

)
∇ log f(Xl;α0) +

(
Ĩ−1
n −

(
Ĩ(−l)
n

)−1
) n∑
i=1

∇ log f(Xi;α0).

Clearly for I positive definite,

((
Ĩ

(−l)
n

)−1
− I−1

)
∇ log f(Xl;α0) tends to 0 in probability.

Since
∑n

i=1∇ log f(Xi;α0)/n tends to E(∇ log f(X;α0)) = 0 in probability, we just need to

prove that Ĩ−1
n −

(
Ĩ

(−l)
n

)−1
= OP(1/n) to conclude the proof. Write:

Ĩ−1
n −

(
Ĩ(−l)
n

)−1
= Ĩ−1

n (Ĩ(−l)
n − Ĩn)

(
Ĩ(−l)
n

)−1
.

From the law of large numbers, Ĩ−1
n and

(
Ĩ

(−l)
n

)−1
tend towards I−1 in probability and

Ĩ(−l)
n − Ĩn = − 1

n(n− 1)

∑
i 6=l
∇2 log f(Xi; α̃) +

1

n
∇2 log f(Xl; α̃) = OP (1/n) .
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This proves that

nα̂− (n− 1)α̂(−l) = α0 + I−1∇ log f(Xl;α0) + oP(1). (10)

Using the consistency of Λ(t; α̂) towards Λ(t;α0) from standard maximum likelihood theory, we
now write a Taylor expansion for the cumulative hazard function around α0:

Λ(t; α̂) = Λ(t;α0) + (α̂− α0)>∇Λ(t;α0) +
1

2
(α̂− α0)>∇2Λ(t; α̃)(α̂− α0), (11)

where α̃ lies between α̂ and α0. We also write a Taylor expansion for the function x 7→ exp(−x)
around 0:

exp(−(Λ(t; α̂)− Λ(t;α0))) = 1−
(
Λ(t; α̂)− Λ(t;α0)

)
+

1

2

(
Λ(t; α̂)− Λ(t;α0)

)2
− 1

6
eξn
(
Λ(t; α̂)− Λ(t;α0)

)3
,

with ξn tends to 0 in probability as n tends to infinity. This can be rewritten as:

S(t; α̂) = S(t;α0) + S(t;α0)

(
−
(
Λ(t; α̂)− Λ(t;α0)

)
+

1

2

(
Λ(t; α̂)− Λ(t;α0)

)2)
+ oP(1/n),

using the fact that
√
n(Λ(t; α̂)− Λ(t;α0)) converges in distribution towards a centred gaussian

variable with finite variance from standard results on maximum likelihood theory and the delta-
method. As a result,

nS(t; α̂)− (n− 1)S(t; α̂(−l)) = S(t;α0) +An,1 +An,2 + oP(1), (12)

where

An,1 = −S(t;α0)
(
n
(
Λ(t; α̂)− Λ(t;α0)

)
− (n− 1)

(
Λ(t; α̂(−l))− Λ(t;α0)

))
,

An,2 = S(t;α0)
(
n
(
Λ(t; α̂)− Λ(t;α0)

)2 − (n− 1)
(
Λ(t; α̂(−l))− Λ(t;α0)

)2) 1

2
·

We start with the An,2 term. From Equation (11) we have:

n
(
Λ(t; α̂)− Λ(t;α0)

)2
= n(α̂− α0)>∇Λ(t;α0)∇Λ(t;α0)>(α̂− α0)

+ n(α̂− α0)>∇Λ(t;α0)(α̂− α0)>∇2Λ(t; α̃)(α̂− α0)

+
n

4

(
(α̂− α0)>∇2Λ(t; α̃)(α̂− α0)

)2
.

Using the consistency of α̂ − α0 and the asymptotic normality of
√
n(α̂ − α0) from standard

maximum likelihood theory, each of the last two terms in the above equation tends to 0 in
probability as n tends to infinity. Therefore

n
(
Λ(t; α̂)− Λ(t;α0)

)2 − (n− 1)
(
Λ(t; α̂(−l))− Λ(t;α0)

)2
= (α̂(−l) − α0)>∇Λ(t;α0)∇Λ(t;α0)>(n(α̂− α0)− (n− 1)(α̂(−l) − α0))

+ n(α̂− α̂(−l))>∇Λ(t;α0)∇Λ(t;α0)>(α̂− α0) + oP(1)

= (α̂(−l) − α0)>∇Λ(t;α0)∇Λ(t;α0)>(I−1∇ log f(Xl;α0) +Rn)

+ (α0 − α̂(−l) + I−1∇ log f(Xl;α0) +R′n)>∇Λ(t;α0)∇Λ(t;α0)>(α̂− α0) + oP(1),

where the last two lines were derived from Equation (10) and Rn, R′n both tend to 0 in proba-
bility. The consistency of α̂ and α̂(−l) shows that An,2 = oP(1). We now study the term An,1.
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From Equation (11),

n
(
Λ(t; α̂)− Λ(t;α0)

)
− (n− 1)

(
Λ(t; α̂(−l))− Λ(t;α0)

)
= (n(α̂− α0)− (n− 1)(α̂(−l) − α0))>∇Λ(t;α0)

+
1

2
(α̂(−l) − α0)>∇2Λ(t; α̃)(n(α̂− α0)− (n− 1)(α̂(−l) − α0))

+
1

2
n(α̂− α̂(−l))>∇2Λ(t; α̃)(α̂− α0).

Using similar arguments as before, the last two lines of this Equation tend to 0 in probability
from Equation (10) and from the consistency of α̂ and α̂(−l). Finally, using again Equation (10)

An,1 = −S(t;α0)∇ log f(Xl;α0)>I−1∇Λ(t;α0) + oP(1).

This equality combined with Equation (12) give

nS(t; α̂)− (n− 1)S(t; α̂(−l)) = S(t;α0)− S(t;α0)∇Λ(t;α0)>I−1∇ log f(Xl;α0) + oP(1).

The final result of Proposition 2 is obtained by simply replacing each quantity by its consistent
estimator. Integrating the equation in Proposition 2 directly yields the approximation for the
RMST. By careful examination of the remainder term, we directly see that its integral over
[0, τ ] is also oP(1).

9.3 Log-likelihood, score vector and Hessian matrix in the piecewise constant
hazard model

In this section, we study the parametric piecewise constant hazard model defined as follows:
λ(t;α) =

∑K
k=1 αkIk(t) where Ik(t) = I(ck−1 < t ≤ ck), c0 = 0 < c1 < · · · < cK = +∞. The

cumulative hazard function is then equal to

Λ(t;α) =
K∑
k=1

αk(ck ∧ t− ck−1)I(ck−1 ≤ t).

Under the mixed-case of interval-censored and exact data, we can directly write the log-
likelihood as the sum between the log-likelihood of strictly interval-censored observations and
the log-likelihood of exact observations. For the latter part see [32]. Recall that Xi = (Li, Ri)
and f(Xi;α) denotes the density of the observations with parameter α evaluated at Xi. For
strictly interval-censored data (Li 6= Ri), the log-likelihood `(α) can be written as (see [14]
or [15])

`(α) =
n∑
i=1

log f(Xi;α) =
n∑
i=1

{
− (1−∆i)Λ(Li;α)

+ ∆i

(
log
(

1− exp
(
Λ(Li;α)− Λ(Ri;α)

))
− Λ(Li;α)

)}
,

where we used the notation ∆i = I(Ri < +∞) to denote uncensored observations. The kth

component of the score vector is equal to:

∂`(α)

∂αk
=

n∑
i=1

∂ log f(Xi;α)

∂αk
=

n∑
i=1

{
− (ck ∧ Li − ck−1)I(ck−1 ≤ Li)

+ ∆i
(ck ∧Ri − ck−1)I(ck−1 ≤ Ri)− (ck ∧ Li − ck−1)I(ck−1 ≤ Li)

1− exp
(
Λ(Li;α)− Λ(Ri;α)

)
× exp

(
Λ(Li;α)− Λ(Ri;α)

)}
· (13)
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The k × k′ component of the Hessian matrix is equal to:

∂2`(α)

∂αk′∂αk
= −

n∑
i=1

∆i

{
(ck ∧Ri − ck−1)I(ck−1 ≤ Ri)− (ck ∧ Li − ck−1)I(ck−1 ≤ Li)

1− exp
(
Λ(Li;α)− Λ(Ri;α)

)
×
(
(c′k ∧Ri − ck′−1)I(ck′−1 ≤ Ri)− (c′k ∧ Li − ck′−1)I(ck′−1 ≤ Li)

)
× exp

(
Λ(Li;α)− Λ(Ri;α)

)
+

(ck ∧Ri − ck−1)I(ck−1 ≤ Ri)− (ck ∧ Li − ck−1)I(ck−1 ≤ Li)(
1− exp

(
Λ(Li;α)− Λ(Ri;α)

))2

×
(
(c′k ∧Ri − ck′−1)I(ck′−1 ≤ Ri)− (c′k ∧ Li − ck′−1)I(ck′−1 ≤ Li)

)
× exp

(
2
(
Λ(Li;α)− Λ(Ri;α)

))}
· (14)

The Fisher information is equal to the expectation of minus the Hessian matrix divided by n.
Looking at its expression, we directly see that a necessary condition for the Fisher information
to be positive definite is to assume that

P(∆ = 1, [L,R] ∩ (ck−1, ck] 6= ∅) > 0,∀k = 1, . . . ,K.

Another important condition for the model to be identifiable is to assume that Eα0 [f(X;α)] has
a unique maximum with respect to α, equal to α0, where the notation Eα0 means the expectation
is taken with respect to the true parameter α0. However, it is clear from Equation (13) that
Eα0 [∂f(X;α)/∂α] cannot vanish if P(L > ck−1) = 0. Therefore, a second necessary condition
for the model to be identifiable is to assume

P(L > ck−1) > 0, ∀k = 1, . . . ,K.

Those two conditions have opposite effects on the estimation method if they are violated. In case
the first one is not valid for a given k then it will not be possible to compute the corresponding
estimator α̂k from the Newton-Raphson algorithm (since the Hessian will not be invertible) while
using the EM algorithm (which does not involve the Score vector nor the Hessian matrix), the
estimator α̂k will become smaller at each iteration step until eventually reaching the value 0.
This situation can be numerically resolved in the latter case, by simply setting the iterated
estimate α̂k to 0 when it reaches a value below a fixed threshold. However this situation is
problematic for the computation of the pseudo-values. This can be easily seen by recalling
that pseudo-values should average to the initial estimator. In Proposition 2 this simply follows
from the fact that

∑n
l=1∇ log f(Xl; α̂) = 0 from regularity conditions for maximum likelihood

estimation. However, the kth component of the score vector will never vanish if the first condition
is not valid, leading to incorrect pseudo-values.

On the other hand, if the second condition is not valid for a given k, the algorithm will
attempt to minimise the term exp(−Λ(Ri;α)) from Equation (13) and as a consequence the
corresponding estimator α̂k will become larger at each iteration step of the EM algorithm,
diverging to infinity.

Finally, note that if the log-likelihood only include exact observations L = R, the conditions
then translate to P(ck−1 < L < ck) > 0,∀k = 1, . . . ,K.
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9.4 Implementation of the pseudo-observations for the survival function and
the RMST in the pch model

In this section we provide the precise expression of the terms involved in Proposition 2 for the
pch model. We have

S(t;α) = exp
(
−

K∑
k=1

αk(t ∧ ck − ck−1)I(ck−1 ≤ t)
)

∂Λ(t;α)

∂αk
= (ck ∧ t− ck−1)I(ck−1 ≤ t),

while the expression of the gradient of the density ∇ log f(Xl;α) is given by the term between
brackets in Equation (13) and Î is equal to minus the Hessian matrix (see Equation (14)) divided
by n.

For the integrated version we need to precise how to compute the integral between 0 and τ
of S(t;α) and the integral between 0 and τ of S(t;α)∇Λ(t;α). We first notice that

S(t;α) = exp
(
−

K∑
k=1

αk(ck − ck−1)I(ck ≤ t)
)

exp
(
−

K∑
k=1

αk(t− ck−1)I(ck−1 ≤ t ≤ ck)
)
,

and∫ τ

0
S(t;α)dt =

K∑
l=1

∫ cl∧τ

cl−1

S(t;α)dt I(τ > cl−1)

=
K∑
l=1

∫ cl∧τ

cl−1

exp
(
−

K∑
k=1

αk(ck − ck−1)I(ck ≤ t)
)

exp
(
− αl(t− cl−1)

)
dt I(τ > cl−1).

Set A1 = 0 and for l ≥ 2, define

Al = −
l−1∑
k=1

αk(ck − ck−1) + cl−1αl.

For the first term we now have:∫ τ

0
S(t;α)dt =

K∑
l=1

exp(Al)

∫ cl∧τ

cl−1

exp(−αlt)dt I(τ > cl−1)

=

K∑
l=1

exp(Al)α
−1
l

(
exp(−αlcl−1)− exp

(
− αl(cl ∧ τ)

))
I(τ > cl−1).

For the second term we have:∫ τ

0
S(t;α)

∂Λ(t;α)

∂αk
dt =

K∑
l=1

∫ cl∧τ

cl−1

S(t;α)(ck ∧ t− ck−1)I(ck−1 ≤ t)dt I(τ > cl−1)

=

K∑
l=k+1

∫ cl∧τ

cl−1

S(t;α)dt (ck − ck−1)I(τ > cl−1)

+

∫ ck∧τ

ck−1

tS(t;α)dt I(τ > ck−1)− ck−1

∫ ck∧τ

ck−1

S(t;α)dt I(τ > ck−1).

From the previous calculation on the first term, we easily see that on the one hand∫ cl∧τ

cl−1

S(t;α)dtI(τ > cl−1) = exp(Al)α
−1
l

(
exp(−αlcl−1)− exp

(
− αl(cl ∧ τ)

))
I(τ > cl−1).
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On the other hand, we have:∫ cl∧τ

cl−1

tS(t;α)dtI(τ > cl−1)

= exp(Al)

∫ cl∧τ

cl−1

t exp(−tαl)dtI(τ > cl−1)

= exp(Al)

(
α−2
l

(
exp

(
− cl−1αl

)
− exp

(
− (cl ∧ τ)αl

))
+ α−1

l

(
cl−1 exp

(
− cl−1αl

)
− (cl ∧ τ) exp

(
− (cl ∧ τ)αl

)))
I(τ > cl−1),

where the last equation was obtained using integration by parts. Gathering all elements allows
to implement the second equation in Proposition 2.

9.5 Proof of Proposition 3

First, from a Taylor expansion of
∫ τ

0 S(t;αz)dt around
∫ τ

0 S(t;α0)dt, we obtain:

E(T ∗l ∧ τ | Zl = z) =

∫ τ

0
S(t;αz)dt

=

∫ τ

0
S(t;α0)dt+

∫ τ

0
(∇S(t;α0))>dt(αz − α0)

+R1,z,

with

R1,z =
1

2
(αz − α0)>

∫ τ

0
∇2S(t; α̃z)dt(αz − α0)

and α̃z is on the real line between α0 and αz. Then, since αz maximises with respect to α the
expected log-likelihood E(log f(Xl;α) | Zl = z)) we have that E(∇ log f(Xl;αz) | Zl = z)) = 0.
Then, from a Taylor expansion around α0 we obtain:

0 = E(∇ log f(Xl;α0) | Zl = z)) + (αz − α0)>E(∇2 log f(Xl; ˜̃αz) | Zl = z)),

where ˜̃αz is on the real line between α0 and αz. As a result, we have:

αz − α0 = I−1E(∇ log f(Xl;α0) | Zl = z)

+
{

(−E(∇2 log f(Xl; ˜̃αz) | Zl = z)))−1 − I−1
}
E(∇ log f(Xl;α0) | Zl = z).

Gathering all parts, we have proved that

E(T ∗l ∧ τ | Zl = z) =

∫ τ

0
S(t;α0)dt+

∫ τ

0
(∇S(t;α0))>dtI−1E(∇ log f(Xl;α0) | Zl = z)

+R1,z +R2,z,

with

R2,z =

∫ τ

0
(∇S(t;α0))>dt

{
(−E(∇2 log f(Xl; ˜̃αz) | Zl = z)))−1 − I−1

}
E(∇ log f(Xl;α0) | Zl = z).

Finally, writing S(t;α0) = exp(−Λ(t;α0)), we directly obtain∫ τ

0
∇S(t;α0)dt = −

∫ τ

0
S(t;α0)∇Λ(t;α0)dt,

which concludes the proof.
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9.6 Proof of Proposition 4

Let Xi = (Ti,∆i) and assume the pch model for λ. In this model, the cumulative hazard
function evaluated at Ti, is equal to

Λ(Ti;α) =
K∑
k=1

αk(ck ∧ Ti − ck−1)I(ck−1 ≤ Ti).

However, since we want to prove the result when the mesh of the partition 0 = c0 < c1 < · · · <
cK = +∞ tends to zero, we can write without loss of generality that there exists a δ > 0, such
that for any partition whose mesh is less than δ we have for all Ti, i = 1, . . . , n,

Λ(Ti;α) =

K∑
k=1

αk(ck − ck−1)I(ck ≤ Ti).

Therefore, for a partition 0 = c0 < c1 < · · · < cK = +∞ such that maxk |ck − ck−1| < δ,

log f(Xi;α) = ∆i

K∑
k=1

log(αk)Ik(Ti)−
K∑
k=1

αk(ck − ck−1)I(ck ≤ Ti),

∂

∂αk
log f(Xi;α) =

∆i

αk
Ik(Ti)− (ck − ck−1)I(ck ≤ Ti),

∂2

∂α2
k

log f(Xi;α) = −∆i

α2
k

Ik(Ti),

∂2

∂α′k∂αk
log f(Xi;α) = 0, for k 6= k′.

We therefore have that the Fisher information I is a diagonal matrix whose kth element, k =
1, . . . ,K, is equal to E(∆iIk(Ti))/(α

0
k)

2, where α0
k is the kth component of α0. Also under

standard maximum likelihood regularity conditions, the true parameter α0 verifies that

E
(

∂

∂αk
log f(Xi;α

0
k)

)
= 0,

which is equivalent to

α0
k =

E(∆iIk(Ti))

(ck − ck−1)P(Ti ≥ ck)
·

Now, we have that E(∆lIk(Tl))/(ck − ck−1) tends to H ′1(ck−1) as (ck − ck−1) tends to 0, where
H1(t) = P(T ≤ t,∆ = 1). Therefore, as the limit (ck − ck−1) goes to 0, α0

k tends to λ(ck), the
true hazard rate evaluated at ck. In other words, the parametric hazard λ(t;α0) tends to the
true hazard function λ(t) as (ck − ck−1) goes to 0.

Then, ∇Λ(t;α0) is a vector whose kth component is equal to (ck − ck−1)I(ck ≤ t). As a
consequence,

∇Λ(t;α0)>I−1∇ log f(Xl;α0)

=
K∑
k=1

I(ck ≤ t)
(α0

k)
2(ck − ck−1)

E(∆lIk(Tl))

(
∆l

α0
k

Ik(Tl)− (ck − ck−1)I(ck ≤ Tl)
)
.

In the first term of this equation, there can only be one interval of the form [ck−1, ck] that
contains Tl and therefore the sum over k is not zero for only one value of k. As the limit of
(ck − ck−1) goes to 0, Tl gets closer to ck and ck−1 and α0

k tends to λ(Tl). More precisely,

lim
ck−ck−1→0

K∑
k=1

I(ck ≤ t)
(α0

k)
2(ck − ck−1)

E(∆lIk(Tl))

∆l

α0
k

Ik(Tl) =
∆lI(Tl ≤ t)λ(Tl)

H ′1(Tl)
·
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On the other hand, the second term of the equation is simply a Riemann integral. We have:

lim
ck−ck−1→0

K∑
k=1

I(ck ≤ t)
(α0

k)
2(ck − ck−1)2

E(∆lIk(Tl))
I(ck ≤ Tl) =

∫ Tl∧t

0

(λ(u))2

H ′1(u)
du·

Noticing that λ(t) = H ′1(t)/H(t), with H(t) = P(T ≥ t), we therefore have proved

lim
ck−ck−1→0

∇Λ(t;α0)>I−1∇ log f(Xl;α0) =
∆lI(Tl ≤ t)
H(Tl)

−
∫ Tl∧t

0

dH1(u)

(H(u))2
·

We now want to compute the conditional expectation with respect to Zl of this quantity. Let
HZ

1 (t) = P(T ≤ t,∆ = 1 | Z), HZ(t) = P(T ≥ t | Z) and write

E
(

∆lI(Tl ≤ t)
H(Tl)

−
∫ Tl∧t

0

dH1(u)

(H(u))2
| Zl
)

=

∫ t

0

dHZl
1 (u)

H(u)
−
∫ t

0

HZl(u)dH1(u)

(H(u))2

=

∫ t

0

(
(HZl

1 (u))′

HZl(u)
− (H1(u))′

H(u)

)
HZl(u)

H(u)
du

=

∫ t

0
(λZl(u)− λ(u))

HZl(u)

H(u)
du,

where λZl represents the conditional hazard function. Setting qZl
(u) = (λZl(u)−λ(u))HZl(u)/H(u)

as in [5] we obtain from their proofs in Section A.2, Equation (11), that −SZl/S is a primitive
of qZl

, where SZl is the conditional survival function of T ∗. As a consequence,∫ t

0
(λZl(u)− λ(u))

dHZl(u)

H(u)
= 1− SZl(t)

S(t)
·

Gathering all the parts, we have proved that

lim
ck−ck−1→0

E (ϕ(Xl;α0) | Zl) =

∫ τ

0
S(t)dt−

∫ τ

0
S(t)

(
1− SZl(t)

S(t)

)
dt

=

∫ τ

0
SZl(t)dt = E(Tl ∧ τ | Zl),

which concludes the proof.
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