Hypersphere fitting from noisy data using an EM algorithm - Archive ouverte HAL
Article Dans Une Revue IEEE Signal Processing Letters Année : 2021

Hypersphere fitting from noisy data using an EM algorithm

Résumé

This letter studies a new expectation maximization (EM) algorithm to solve the problem of circle, sphere and more generally hypersphere fitting. This algorithm relies on the introduction of random latent vectors having a priori independent von Mises-Fisher distributions defined on the hypersphere. This statistical model leads to a complete data likelihood whose expected value, conditioned on the observed data, has a Von Mises-Fisher distribution. As a result, the inference problem can be solved with a simple EM algorithm. The performance of the resulting hypersphere fitting algorithm is evaluated for circle and sphere fitting.
Fichier principal
Vignette du fichier
Lesouple_27670.pdf (1017.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03329377 , version 1 (30-08-2021)

Identifiants

Citer

Julien Lesouple, Barbara Pilastre, Yoann Altmann, Jean-Yves Tourneret. Hypersphere fitting from noisy data using an EM algorithm. IEEE Signal Processing Letters, 2021, 28, pp.314-318. ⟨10.1109/LSP.2021.3051851⟩. ⟨hal-03329377⟩
80 Consultations
225 Téléchargements

Altmetric

Partager

More