Transmission eigenvalues for multipoint scatterers
Résumé
We study the transmission eigenvalues for the multipoint scatterers of the Bethe-Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions d = 2 and d = 3. We show that for these scatterers: 1) each positive energy E is a transmission eigenvalue (in the strong sense) of infinite multiplicity; 2) each complex E is an interior transmission eigenvalue of infinite multiplicity. The case of dimension d = 1 is also discussed.
Origine | Fichiers produits par l'(les) auteur(s) |
---|