Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure - Archive ouverte HAL
Article Dans Une Revue Computational Mechanics Année : 2021

Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure

Résumé

This paper presents the computational stochastic homogenization of a heterogeneous 3D-linear anisotropic elastic microstructure that cannot be described in terms of constituents at microscale, as live tissues. The random apparent elasticity field at mesoscale is then modeled in a class of non-Gaussian positive-definite tensor-valued homogeneous random fields. We present an extension of previous works consisting of a novel probabilistic model to take into account uncertainties in the spectral measure of the random apparent elasticity field. A probabilistic analysis of the random effective elasticity tensor at macroscale is performed as a function of the level of spectrum uncertainties, which allows for studying the scale separation and the representative volume element size in a robust probabilistic framework.
Fichier principal
Vignette du fichier
publi-2021-CM-()1-19_soize_preprint.pdf (363.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03321743 , version 1 (18-08-2021)

Identifiants

Citer

Christian Soize. Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure. Computational Mechanics, 2021, 68, pp.1003-1021. ⟨10.1007/s00466-021-02056-8⟩. ⟨hal-03321743⟩
48 Consultations
88 Téléchargements

Altmetric

Partager

More