Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure
Résumé
This paper presents the computational stochastic homogenization of a heterogeneous 3D-linear anisotropic elastic microstructure that cannot be described in terms of constituents at microscale, as live tissues. The random apparent elasticity field at mesoscale is then modeled in a class of non-Gaussian positive-definite tensor-valued homogeneous random fields. We present an extension of previous works consisting of a novel probabilistic model to take into account uncertainties in the spectral measure of the random apparent elasticity field. A probabilistic analysis of the random effective elasticity tensor at macroscale is performed as a function of the level of spectrum uncertainties, which allows for studying the scale separation and the representative volume element size in a robust probabilistic framework.
Origine | Fichiers produits par l'(les) auteur(s) |
---|