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Abstract

This paper presents the computational stochastic homogenization of a heterogeneous 3D-linear
anisotropic elastic microstructure that cannot be described in terms of constituents at microscale,
as live tissues. The random apparent elasticity field at mesoscale is then modeled in a class of
non-Gaussian positive-definite tensor-valued homogeneous random fields. We present an exten-
sion of previous works consisting of a novel probabilistic model to take into account uncertain-
ties in the spectral measure of the random apparent elasticity field. A probabilistic analysis of the
random effective elasticity tensor at macroscale is performed as a function of the level of spec-
trum uncertainties, which allows for studying the scale separation and the representative volume
element size in a robust probabilistic framework.

Key words: Stochastic homogenization, Non-Gaussian random fields, Uncertain spectral
measure, Heterogeneous microstructure, Uncertainty Quantification, Live tissues

1. Introduction

The homogenization of linear elastic materials with heterogeneous microstructures composed
of several phases with well defined constituents (from a continuum mechanics point of view) and
the calculation of the macroscopic properties (effective properties) have received considerable
attention (see for instance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]), for stochastic homogenization (see
[12, 13, 14, 15, 16, 17, 18, 19]), for computational multiresolution materials and multiscale
method (see for instance [20, 21, 22, 23, 24, 25, 26]), and more recently, for data-driven and
machine learning approaches applied to heterogeneous materials (see for instance [27, 28, 29,
30, 31, 32, 33]).

In linear elasticity, the random microstructure is considered as homogenizable if there exists a
Representative Volume Element (RVE) for which the random fluctuations of the random effective
stiffness tensor around its statistical mean value are ”negligible”. The analysis of the RVE size
has received a particular attention (see for instance [34, 35, 36, 37, 38, 39]). Often, the statistics-
based bounding techniques only use the lower-order statistics (first- and second-order moments)
and the probability distributions, which give the detailed probabilistic information, are not taken
into account.
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Figure 1: Typical scales of the domain for the boundary value problem; types of stochastic modeling for a simple
microstructure and for a complex microstructure; notion of apparent and effective properties. Figure from [48].

For linear elastic heterogeneous microstructure, which cannot be described in terms of con-
stituents at microscale (such as living tissues for which the constituents/phases cannot be de-
scribed at microscale), a stochastic homogenization has been proposed in [40]. A probabilistic
analysis of the RVE and of the random effective elasticity tensor has been carried out by using
a prior probabilistic model of the random apparent elasticity field at mesoscale. In such a case,
the hyperparameters of such a prior probabilistic model can be identified from experiments by
solving statistical inverse problems as proposed in [32, 33, 41, 42, 43, 44, 45, 46, 47]. Fig. 1
shows the typical scales of the domain for the boundary value problems in the framework of
multiscale modeling of heterogeneous materials. It can be seen the types of stochastic modeling
for a simple microstructure and for a complex microstructure, and the notion of apparent and
effective properties. In particular, it can be seen that, for a heterogeneous complex microstruc-
ture, a stochastic model of the apparent properties of the microstructure can be constructed at the
mesoscale that corresponds to the scale of the spatial correlation length of the microstructure.
This case constitutes the framework of the present paper.

The construction of prior probabilistic models requires the use of the random fields theory
that has extensively been developed [49, 50, 51, 52, 53], in particular in the context of continuum
physics [18, 48, 54, 55]. However, such a construction of the random apparent tensor-valued
elasticity field at mesoscale requires specific developments due to the symmetry and positiveness
properties of this random field that is non-Gaussian. Such a construction was proposed in [56]
for elliptic stochastic partial differential operators and was used for performing the probabilistic
analysis of stochastic homogenization and the RVE in [40]. This type of construction has been
extended [48, 55, 57, 58, 59] in order to take into account more complex situations for which
there is a material symmetry (see for instance [60] for the characterization of material symme-
tries), which belongs to a given symmetry class for the mean value of the random elasticity field
and considering the statistical fluctuations either in the same symmetry class, or in another sym-
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metry class, or in a mixture of two symmetry classes.

Objective and novelties of the paper. The objective of this paper is the computational stochas-
tic homogenization of a 3D-linear elastic heterogeneous microstructure. The apparent elasticity
field at mesoscale is modeled by a non-Gaussian positive-definite fourth-order tensor-valued
homogeneous random field. This paper present an extension of the works [47, 48, 56, 57, 61]
devoted to random field representations for stochastic elliptic boundary value problems and com-
putational stochastic homogenization. We propose a novel probabilistic modeling to take into
account uncertainties in the spectral measure of the random apparent elasticity field and we solve
a stochastic elliptic boundary value problem (BVP) to perform the computational stochastic ho-
mogenization. Mathematical aspects associated with this paper can be found in [62].

The computational stochastic homogenization with uncertain spectral measure we propose
allows several problems to be analyzed and solved in the context of the given hypotheses on the
microstructures.
− First of all, the approach allows a robust probabilistic analysis of the random effective elastic-
ity tensor to be carried out with respect to uncertainties of the spectral measure of the random
apparent elasticity field. This spectral measure drives the spatial correlation structure in terms of
spatial correlation lengths and the spectral distribution of the statistical fluctuations at mesoscale.
− Then, the framework used also allows a robust probabilistic analysis of the RVE size to be
performed and therefore, to study the scale separation.
− Finally, an important aspect is related to the robust experimental identification of the hyper-
parameters of the prior probability model of the random apparent elasticity field at mesoscale
from multiscale measurements (macroscale and micro/mesoscale). Such a case is particularly
important when the experimental test specimen is smaller that the RVE. In that condition, at
macroscale, the effective elasticity tensor has significant statistical fluctuations. So it is very im-
portant to be able to identify experimentally and in a robust way the prior probability model of
the random apparent elasticity field at mesoscale in order to be able to use the identified random
field to make the computational stochastic homogenization on a RVE for which there will be a
scale separation.

Organization of the paper. In Section 1, we present the principle of the construction of the
random apparent elasticity field {C̃(x), x ∈ R3} at mesoscale, in presence of uncertainties in its
spectral measure. Section 3 deals with the definition of the stochastic elliptic boundary value
problem at mesoscale, which is used for performing the computational stochastic homogeniza-
tion and for constructing the random effective elasticity tensor C̃eff at macroscale. Section 4
is devoted to the construction of the random apparent elasticity field with an uncertain spectral
measure. In Section 5, we analyze the solution of the stochastic boundary value problem and
we introduce the random eigenvalues of the random effective elasticity matrix. In Section 6,
we define the models and data for performing the computational stochastic homogenization with
uncertain spectral measure. The estimation of the parameters of the computational stochastic
homogenization is performed in Section 7 on the basis of a convergence analysis. Finally, the
numerical results with a discussion of the computational stochastic homogenization are presented
in Section 8.
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Notations
The following notations are used:
x: lower-case Latin or Greek letters are deterministic real

variables.
x: boldface lower-case Latin, Greek, and calligraphic letters

are deterministic vectors.
X: upper-case Latin, Greek, and calligraphic letters are real-

valued random variables.
X: boldface upper-case Latin or Greek letters are vector-

valued random variables.
[x]: lower-case Latin of Greek letters between brackets are

deterministic matrices.
[X]: boldface upper-case letters between brackets are matrix-

valued random variables.
[y]: deterministic matrix-valued parameter that controls the

spectral measure uncertainties.
[Y]: random matrix modeling [y].
C: fourth-order tensor-valued random field.
C(· ; [y]): parameterized random apparent elasticity field.
C(· ; [y]): normalization of random field C(· ; [y]).
C̃: random apparent elasticity field equal to C(· ; [Y]).
Ceff([y]): parameterized random effective elasticity tensor.
C̃eff: random effective elasticity tensor equal to Ceff([Y]) .
N, R: set of all the integers, set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
Mn,m: set of all the (n × m) real matrices.
Mn: set of all the square (n × n) real matrices.
MS

n : set of all the symmetric (n × n) real matrices.
M+

n : set of all the positive-definite (n × n) real matrices.
[In]: identity matrix in Mn.
x = (x1, . . . , xn): point in Rn.
〈x, x′〉2 = x1x′1 + . . . + xnx′n: inner product in Rn.
‖x‖2: norm in Rn such that ‖x‖2 = 〈x, x〉2.
‖ [a] ‖2 = supx{‖[a]x‖2/‖x‖2} for [a] ∈Mn and x ∈ Rn.
[x]T : transpose of matrix [x].
tr{[x]}: trace of the square matrix [x].
〈[x], [x′]〉F = tr{[x]T [x′]}, inner product in Mn,m.
‖ [x] ‖F : Frobenius norm such that ‖[x]‖2F = 〈[x], [x]〉F .
1B: indicatrix function of set B.
ι: imaginary unit.
δ: dispersion parameter such that δ = δ1 = δ2 = δ3, which

controls the level of the spectral measure uncertainties.
δ j: dispersion parameter controlling the uncertainties in the

spectral measure for space coordinate j.
δc: dispersion parameter controlling the statistical

fluctuations of the random apparent elasticity field.
δkk′ : Kronecker’s symbol.
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δx0 : Dirac measure at point x0.
a.s: almost surely.
E: mathematical expectation.
(Θ,T ,P): probability space.

2. Principle of the construction

The physical space R3 is referred to a Cartesian reference system for which the generic point
is x = (x1, x2, x3). At mesoscale the linear elastic heterogeneous medium is described by the
random apparent elasticity field, {C̃(x), x ∈ R3}, which is a non-Gaussian fourth-order tensor-
valued random field C̃ = {C̃i jpq}i jpq with i, j, p, and q in {1, 2, 3}.

As explained in Section 1, we could consider a given symmetry class for the mean value of
the random elasticity field and consider the statistical fluctuations either in the same symmetry
class, or in another symmetry class, or in a mixture of two symmetry classes (as proposed in
[57, 58, 48]). However, although the case of the mixture of two symmetry classes does not pose
any theoretical problems and could very well have been considered to implement the proposed
model for the uncertain spectral measure, this situation would have considerably complicated
the presentation of the proposed construction to the detriment of readability. The extension of
the developments presented can therefore be made without particular theoretical difficulties and
we consider the following more simple case. We start the construction of this random field
with the formulation proposed in [56]. It is assumed that the mean value of random apparent
elasticity field C̃ is independent of x and belongs to any material symmetry class (isotropic,
transverse isotropic, orthotropic, etc.). The statistical fluctuations of C̃ around the mean value
are assumed to be anisotropic and statistically homogeneous in R3. This means that the mean
elasticity field E{C̃} is constant and can be chosen in any symmetry class (in the application
presented in Section 6, we will use the isotropic class), and that the stochastic elasticity field
C̃ − E{C̃} is anisotropic almost-surely and is statistically homogeneous (in the strong sense for
the shift group on R3 defined by the shifts x 7→ x + ζ, for all ζ in R3).

An important quantity that controls the mesoscale statistical fluctuations is the spectral mea-
sure of C̃, which allows the spatial correlation structure to be described and that we will assumed
to be uncertain in this paper.

We introduce a parameterization of the spectral measure of C̃, which involves a matrix-valued
parameter [y] belonging to an admissible set Cy. The uncertain spectral measure is obtained
by modeling [y] by a matrix-valued random variable [Y] whose support of its probability dis-
tribution is Cy. We then construct a non-Gaussian positive-definite fourth-order tensor-valued
homogeneous random field C(· ; [y]) that is parameterized with [y] such that C̃ = C(· ; [Y]).

For all x fixed in R3 and [y] fixed in Cy, the fourth-order random tensor C(x; [y]) verifies the
usual symmetry and positiveness properties. The representation in Voigt notation is used for the
constitutive equation. Let i = (i, j) with 1 ≤ i ≤ j ≤ 3 and j = (p, q) with 1 ≤ p ≤ q ≤ 3
be the indices with values in {1, . . . , 6}, which allow for defining the M+

6 -valued random matrix
[C(x; [y])] such that [C(x; [y])]ij = Ci jpq(x; [y]).

For fixed [y] in Cy, the random effective elasticity tensor Ceff([y]) satisfies the symmetry and
positive-definiteness properties [63]. We can thus define the M+

6 -valued random effective elas-
ticity matrix [Ceff([y])] associated with random tensor Ceff([y]), which is such that [Ceff([y])]ij =

Ceff
i j`r([y]) in which i = (i, j) with 1 ≤ i ≤ j ≤ 3 and j = (`, r) with 1 ≤ ` ≤ r ≤ 3. The pa-

rameterized effective elasticity matrix [Ceff([y])] is a random matrix in M+
6 , which is obtained by
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stochastic homogenization solving a stochastic elliptic BVP on a bounded domain Ω of R3. The
random effective elasticity matrix [C̃eff], corresponding to the random apparent elasticity field
with uncertain spectral measure, is then given by [C̃eff] = [Ceff([Y])].

3. Stochastic elliptic boundary value problem for the computational stochastic homoge-
nization and random effective elasticity tensor

The heterogeneous linear elastic microstructure occupies the 3-D bounded open domain
Ω ⊂ R3 with boundary ∂Ω. The homogenization method on Ω is that proposed in [63] for
homogeneous deformations on the boundary ∂Ω (and that we have already used in [40]). The
convention for summations over repeated Latin indices j, p, and q taking values in {1, 2, 3} is
used. Let [y] be fixed in Cy. For all ` and r in {1, 2, 3}, we have to find the R3-valued random

field {Ũ
`r

(x) = (Ũ`r
1 (x), Ũ`r

2 (x), Ũ`r
3 (x)), x ∈ Ω}, defined on a probability space (Θ,T ,P), indexed

by Ω = Ω ∪ ∂Ω, such that for i ∈ {1, 2, 3} and almost surely,

−
∂

∂x j
(Ci jpq(x; [y]) εpq(Ũ

`r
(x)) = 0 , ∀x ∈ Ω , (1)

Ũ
`r

(x) = ũ`r0 (x) , ∀x ∈ ∂Ω , (2)

in which the strain tensor is written as εpq(u) = (∂up/∂xq + ∂uq/∂xp)/2 for u = (u1, u2, u3) and
where for all x in ∂Ω, ũ`r0 (x) = (̃u`r0,1(x), ũ`r0,2(x), ũ`r0,3(x)) is defined by

ũ`r0, j(x) = (δ j`xr + δ jr x`)/2 , j ∈ {1, 2, 3} , (3)

with δ j` the Kronecker symbol. For [y] fixed in Cy, for i, j, `, and r in {1, 2, 3} the component
Ceff

i j`r([y]) of the random fourth-order effective elasticity tensor Ceff([y]) is defined by

Ceff
i j`r([y]) =

1
|Ω|

∫
Ω

Ci jpq(x; [y]) εpq(Ũ
`r

(x)) dx ,

in which Ũ
`r

is the R3-valued random field that satisfies Eqs. (1) to (3) and where |Ω| =
∫

Ω
dx.

The fourth-order effective tensor Ceff([y]) satisfies the symmetry and positive-definiteness prop-
erties. We can thus define the M+

6 -valued random effective elasticity matrix [Ceff([y])] that is
associated with random tensor Ceff([y]) as explained in Section 2.

4. Construction of random apparent elasticity field with uncertain spectral measure

4.1. Normalization of random field [C(· ; [y])]
Let [C] be a given matrix in M+

6 independent of x and [y]. We define {[C(x; [y])], x ∈ R3} as
a non-Gaussian M+

6 -valued second-order random field, on probability space (Θ, T ,P), indexed
by R3, homogeneous, mean-square continuous, with mean value [C] = E{[C(x; [y])]} that is
therefore independent of x and [y]. Let [L] be the upper triangular (6 × 6) real matrix such that
[C] = [L]T [L]. For fixed [y], the normalized representation of [C(x; [y])] is written as,

[C(x; [y])] =
1

1 + ε
[L]T (ε [I6] + [C(x; [y])])[L] , (4)
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in which ε > 0 is given and where {[C(x; [y])], x ∈ R3} is a M+
6 -valued random field (by con-

struction), defined on (Θ,T ,P), indexed by R3. Then [C(· ; [y])] is homogeneous, mean-square
continuous, and such that

E{[C(x; [y])]} = [I6] , ∀ x ∈ R3 .

It should be noted that the lower bound ε [C]/(1 + ε) used in Eq. (4) could be replaced by a
more general lower bound [Cb] in M+

6 as proposed in [48, 58, 61]. Note also that the mean
value E{[C̃(x)]} of the normalized random apparent elasticity field [C̃(x)} = [C(x; [Y])] with
uncertain spectral measure will not be equal to [I6] (that is not a difficulty) and we will have
E{[C̃(x)]} ' [I6].

4.2. Principle of construction of random field [C(· ; [y])] given [y]
By construction (see Section 4.1), [C(· ; [y])] is a M+

6 -valued random field indexed by R3

and homogeneous. For all x fixed in R3 and [y] fixed in Cy, the M+
6 -valued random variable

[C(x; [y])] is constructed by using the Maximum Entropy Principle under the following available
information,

E{[C(x; [y])]}= [I6] , E{log(det[C(x; [y])])}=bc , (5)

in which bc is independent of x and [y] and such that |bc| < +∞. The second equality is in-
troduced in order that the random matrix [C(x; [y])]−1 (that exists almost surely) be such that
E{‖[C(x; [y])]−1‖22} ≤ E{‖[C(x; [y])]−1‖2F} < +∞. With such a construction, [C(x; [y])] will ap-
pear as a nonlinear transformation of 6 × (6 + 1)/2 = 21 independent normalized Gaussian
real-valued random variables denoted by {Gmn(x; [y]), 1 ≤ m ≤ n ≤ 6} and such that

E{Gmn(x; [y])} = 0 , E{Gmn(x; [y])2} = 1 . (6)

The spatial correlation structure of random field {[C(x; [y])], x ∈ R3} is introduced by consider-
ing 21 independent real-valued random fields {Gmn(x; [y]), x ∈ R3} for 1 ≤ m ≤ n ≤ 6, corre-
sponding to 21 independent copies of a unique normalized Gaussian homogeneous mean-square
continuous real-valued random field {G(x; [y]), x ∈ R3} given its normalized spectral measure
parameterized by [y]. Note that the Gaussian random field G(· ; [y]) is entirely defined by its
normalized spectral measure (parameterized by [y]) because, for all x in R3, E{G(x; [y])} = 0
and E{G(x; [y])2} = 1. The constant bc is eliminated in favor of a hyperparameter δc > 0, which
allows for controlling the level of statistical fluctuations of [C(x; [y])], defined by

δc = (E{‖[C(x; [y])] − [I6]‖2F}/6)1/2 , (7)

which is independent of x and chosen independent of [y].

4.3. Construction of random field [C(· ; [y])] given [y]
The following construction of random field [C(· ; [y])] given [y] is adapted from the construc-

tion proposed in [40, 48, 56, 61] and is summarized below.

Probability distribution of the random matrix [C(x; [y])]. Let dS C = 215/2 ∏
1≤m≤n≤6 dCmn be the

volume element on Euclidean space MS
6 in which dCmn is the Lebesgue measure on R. For all x

fixed in R3, the probability measure P[C(x;[y])](dS C) of the M+
6 -valued random variable [C(x; [y])]

constructed with the Maximum Entropy Principle under the constraints defined by Eq. (5), is
7



independent of x (homogeneous random field), independent of [y] (this marginal probability
measure does not depend of the correlation structure), and can be found in [56].

Construction of a representation of random matrix [C(x; [y])]. For all x fixed in R3 and [y] fixed
in Cy, random matrix [C(x; [y])] is written as

[C(x; [y])] = [L(x; [y])]T [L(x; [y])] , (8)

in which [L(x; [y])] is an upper triangular random matrix in M6 for which its entries are defined
as follows. The 21 random variables {[L(x; [y])]mn, 1 ≤ m ≤ n ≤ 6} are mutually independent.
For 1 ≤ m < n ≤ 6, we have

[L(x; [y])]mn = σc Gmn(x; [y]) ,

with σc = δc/
√

7 and where Gmn(x; [y]) is a normalized Gaussian real-valued random variable
(see Eq. (6)). For 1 ≤ m = n ≤ 6, we have

[L(x; [y])]mm = σc
√

2 h(Gmm(x; [y]);αm) , (9)

in which αm = 1/(2σ2
c)+(1−m)/2 such that α1 > . . . > α6 > 3 and where Gmm(x; [y]) is a normal-

ized Gaussian real-valued random variable (see Eq. (6)). The function b 7→ h(b;α) is such that
Γα = h(N ;α) is a Gamma random variable with parameter α when N is the normalized Gaus-
sian real-valued random variable. Hyperparameter δc must belong to the real interval ]0 ,

√
7/11[.

Construction of the family of random fields {Gmn(· ; [y])}. The 21 random fields {Gmn(x; [y]), x ∈
R3} for 1 ≤ m ≤ n ≤ 6 are 21 independent copies of a normalized Gaussian homogeneous
mean-square continuous real-valued random field {G(x; [y]), x ∈ R3},

E{G(x; [y])} = 0 , E{G(x; [y])2} = 1 , ∀x ∈ R3 , (10)

and which will be defined in Section 4.4 for imposing its spatial correlation structure via its
spectral measure. parameterized by [y].

4.4. Construction of the random field G(· ; [y]) with uncertain spectral measure parameterized
by [y]

In the following, we will introduce a nominal value [y] of [y]. In order to simplify the
notation, for [y] = [y], the random field {G(x; [y]), x ∈ R3} will simply be denoted by {G(x), x ∈
R3}, that is to say, G = G(· ; [y]).

In this section, we construct the normalized Gaussian, homogeneous, second-order, mean-
square continuous random field {G(x), x ∈ R3}. Therefore, there exists a positive bounded spec-
tral measure mG(dk) on R3 such that the correlation function rG(ζ) = E{G(x + ζ) G(x)} of G is
written, for all x and ζ in R3, as

rG(ζ) =

∫
R3

eιk·ζmG(dk) =

∫
R3

cos(k·ζ) mG(dk) , (11)

in which ι =
√
−1, where k·ζ =

∑3
j=1 k jζ j, and where dk = dk1dk2dk3.
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4.4.1. Spectral density function and spatial correlation lengths of random field G
Let us assume that mG(dk) = s(k) dk admits a spectral density function k 7→ s(k) from R3

into R+. Equations (10) and (11) yield rG(0) = E{G(x)2} = 1, and consequently,
∫
R3 s(k) dk = 1.

In addition, it is assumed that s has a compact support K = ∂K∪K with K =
∏3

j=1 ]−K j,K j[ in
which K j ∈ [Kmin

j ,Kmax
j ] with 0 < Kmin

j < Kmax
j < +∞, and that s is a continuous function on R3.

Since supp s = K, we must have s(k) = 0 for all k in ∂K. We have∫
R3

s(k) dk =

∫
K

s(k) dk = 1 , (12)

and s(−k) = s(k) for all k in R3 because random field G is real. In addition to this symmetry
property, it is assumed that s satisfies the quadrant symmetry [52] that is defined as follows. Let
k{− j} be a vector k for which its component k j is replaced by −k j. Then for all k in R3 and for
all j ∈ {1, 2, 3}, the quadrant symmetry of s means that s(k{− j}) = s(k). The quadrant symmetry
is often of practical importance in terms of modeling. This type of symmetry occurs naturally in
many models of covariance function used for the applications such as for the isotropic, spherical,
radial, ellipsoidal covariance functions and for a separable correlation structure.

The spatial correlation length (without uncertainties in the spectral measure) for coordinate
ζ j is defined by

Lc j =

∫ +∞

0
|rG(0, . . . , ζ j, . . . , 0)| dζ j , (13)

and is assumed to be finite.

4.4.2. Definition of the spectral domain sampling
Let νs be a given even integer. For j in {1, 2, 3}, we define ∆ j = 2 K j/νs as the sampling step

of interval [−K j,K j] and we introduce its spectral sampling points,

k jβ j = −K j + (β j − 1/2) ∆ j , β j = 1, . . . , νs .

Let B be the finite subset of N3 such that

B = {β = (β1, β2, β3) , β j = 1, . . . , νs for j = 1, 2, 3} .

Let ∆, K, ν be such that ∆ = ∆1∆2∆3, K = K1K2K3, ν = (νs)3, and let kβ be such that

∀β ∈ B , kβ = (k1β1 , k2β2 , k3β3 ) ∈ K ⊂ R3 .

4.4.3. Discretization of the spectral measure and convergence properties
Let δkβ (k) = ⊗3

j=1δk jβ j
(k j) be the Dirac measure on R3 at sampling point kβ ∈ K ⊂ R3 defined

in Section 4.4.2. Let mν
G(dk) be the positive bounded measure on R3 defined by

mν
G(dk) =

∑
β∈B

s∆
β δkβ (k) , s∆

β = ∆ s(kβ) , (14)

which is such that mν
G(R3) =

∑
β∈B s∆

β = ην with ην > 0. The sequence of measures {mν
G(dk)}ν

converges narrowly towards the measure mG(dk) and the positive sequence {ην}ν converges to-
wards 1 [62, 64].
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In the following, it is assumed that ν = (νs)3 is chosen sufficiently large in order that
|
∑
β∈B s∆

β − 1| ≤ εs � 1 and consequently, we will write∑
β∈B

s∆
β ' 1 . (15)

4.4.4. Definition of the dimensionless spectral density function
For all k in R3, the spectral density function k 7→ s(k) (defined in Section 4.4.1) is written as

s(k1, k2, k3) = (K1K2K3)−1χ(
k1

K1
,

k2

K2
,

k3

K3
) , (16)

with χ a given function κ = (κ1, κ2, κ3) 7→ χ(κ1, κ2, κ3) from R3 into R+ with compact support
[−1, 1]3. Function χ has the same properties as s, that is to say, χ(−κ) = χ(κ), quadrant symmetry,
and continuity. For j = 1, 2, 3, the change of variable κ j = k j/K j yields

s(k) dk = χ(κ) dκ ,

and thus mG(dk) = µG(dκ) with µG(dκ) = χ(κ) dκ. Therefore, Eq. (12) yields∫
R3
χ(κ) dκ =

∫
[−1,1]3

χ(κ) dκ = 1 .

The dimensionless spectral domain sampling is directly deduced from Section 4.4.2,

∀β ∈ B , κβ = (κβ1 , κβ2 , κβ3 ) ∈] − 1, 1[3⊂ R3 ,

in which for j ∈ {1, 2, 3}, we have

κβ j = −1 + (β j −
1
2

)
2
νs

, β j ∈ {1, . . . , νs} . (17)

The discretization µνG(dκ) of µG(dκ), such that µνG(dκ) = mν
G(dk), is written as

µνG(dκ) =
∑
β∈B

χ∆
β δκβ (κ) , χ∆

β = (2/νs)3 χ(κβ) ,

in which δκβ = ⊗3
j=1δκβ j

(κ j) and where, from Eq. (15),∑
β∈B

χ∆
β ' 1 . (18)

It can be seen that measure µνG(dκ) is independent of K1, K2, and K3. In order to introduce
the probability model of uncertainties in the spectral measure, we define hereinafter an adapted
parameterization [y] that takes into account quadrant symmetry.
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4.4.5. Parameterization of the discretized dimensionless spectral measure
Let ν̂s = νs/2 in which νs is an even integer. Let Cy be the subset of M3,̂νs defined by

Cy = { [y] ∈M3,̂νs , [y] ĵβ ∈ [0, 1] ,∀ j , ∀β̂ } ,

in which j ∈ {1, 2, 3} and β̂ ∈ {1, . . . , ν̂s}. Let [y] be in Cy such that

[y] ĵβ = 1/2 , ∀ j ∈ {1, 2, 3} , ∀ β̂ ∈ {1, . . . , ν̂s} .

We now introduce the subset B̂ ⊂ B ⊂ N3 such that

B̂ = {̂β = (̂β1, β̂2, β̂3) , β̂ j = 1, . . . , ν̂s for j = 1, 2, 3} ,

which has ν̂ = (̂νs)3 = ν/8 elements. We define the finite family of functions [y] 7→ aβ̂([y]) from

Cy into R such that, for all β̂ in B̂,

aβ̂([y]) =
√
χ∆

β̂
qβ̂([y]; δs) ,

in which δs > 0 is a hyperparameter that will allow the level of spectrum uncertainties to be
controlled and where [y] 7→ qβ̂([y]; δs) is any given continuous real function on Cy such that

qβ̂([y]; δs) = 1 . (19)

For all [y] in Cy, let {aβ([y]),β ∈ B} be the ν real numbers that are directly constructed from
{aβ̂([y]), β̂ ∈ B̂} using the quadrant symmetry (see Section 4.4.1). An example of such a con-
struction is given in Section 6.1. For all β in B, we define the function [y] 7→ χ̃∆

β ([y]) from Cy

into R+ such that
χ̃∆
β ([y]) = aβ([y])2(

∑
β′∈B

aβ′ ([y])2)−1 . (20)

The dimensionless spectral measure µ̃νG(dκ; [y]) for [y] given in Cy is then defined by

µ̃νG(dκ; [y]) =
∑
β∈B

χ̃∆
β ([y]) δκβ (κ) . (21)

4.4.6. Random discretized dimensionless spectral measure
Using Sections 4.4.4 and 4.4.5, and assuming that Eq. (18) holds, it can then easily be proven

the following results.

(i) For all β in B, function [y] 7→ χ̃∆
β ([y]) is continuous on Cy, such that χ̃∆

β ([y]) ' χ∆
β , and we

have
∀ [y] ∈ Cy ,

∑
β∈B

χ̃∆
β ([y]) = 1 .

(ii) Let [Y] be the M3,̂νs -valued random variable, defined on (Θ,T ,P), whose support of its
probability measure is Cy ⊂ M3,̂νs , and such that {[Y] ĵβ , j ∈ {1, 2, 3} , β̂ ∈ {1, . . . , ν̂s}} are 3 ν̂s

independent uniform random variables on [0, 1]. Its mean value is

E{[Y]} =

∫
Cy

[y] P[Y](dy) =

∫
Cy

[y] dy = [y] .

11



For all β̂ in B̂, Aβ̂ = aβ̂([Y]) is a second-order real-valued random variable.

(iii) For all β in B, χ̃∆
β ([Y]) is a second-order positive-valued random variable, defined on

(Θ,T ,P) such that ∑
β∈B

χ̃∆
β ([Y]) = 1 a.s .

(iv) For given [y] in Cy, the dimensionless spectral measure µ̃νG(dκ; [y]) is a bounded positive
measure on R3, is such that µ̃νG(dκ; [y]) ' µνG(dκ), and we have

∀ [y] ∈ Cy , µ̃νG(R3; [y]) =
∑
β∈B

χ̃∆
β ([y]) = 1 .

4.5. Construction of the normalized Gaussian random field Gν(· ; [y]) given [y] in Cy

Let ν = (νs)3 be fixed. Let {Zβ,β ∈ B} and {Φβ,β ∈ B} be 2 ν independent random variables
defined on (Θ,T ,P), which are independent of [Y]. For β in B, Zβ =

√
−log(Ψβ) in which Ψβ

is uniform of [0, 1] and Φβ is uniform on [0, 2 π]. Let PZ(dz) and PΦ(dϕ) be the probability
measures on Rν of the Rν-valued random variables Z = {Zβ,β ∈ B} and Φ = {Φβ,β ∈ B}. The
unbounded support Cz of PZ(dz) is

Cz = {z = {zβ,β ∈ B}, zβ > 0} ⊂ Rν

and the compact support Cϕ of PΦ(dϕ) is

Cϕ = {ϕ = {ϕβ,β ∈ B}, ϕβ ∈ [0, 2 π]} ⊂ Rν .

We define the mapping x 7→ gν(x; [y], z,ϕ) from R3 into R be such that, for all {[y], z,ϕ} in
Cy × Cz × Cϕ,

gν(x; [y], z,ϕ) =∑
β∈B

√
2χ̃∆

β ([y]) zβ cos(ϕβ +

3∑
j=1

K jκβ j x j) . (22)

For all [y] in Cy, we define the real-valued random field {Gν(x; [y]), x ∈ R3} such that

Gν(x; [y]) = gν(x; [y],Z,Φ) . (23)

For all [y] in Cy, the real-valued random field {Gν(x; [y]), x ∈ R3} is Gaussian, homogeneous,
second-order, mean-square continuous [65, 64], and normalized,

E{Gν(x; [y])} = 0 , E{Gν(x; [y])2} = 1 , ∀x ∈ R3 .

Its dimensionless spectral measure µ̃νG(dκ; [y]), expressed with the dimensionless spectral vari-
able κ = (κ1, κ2, κ3) with κ j = k j/K j, is the spectral measure defined by Eq. (21).
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4.6. Correlation function of the normalized Gaussian random field Gν(· ; [y]) given [y]
Let [y] be fixed in Cy. Using Eqs. (23) with (22) and since E{Z2

β} = 1, E{cos(ϕβ +y)} = 0,
and E{cos(ϕβ+y) cos(ϕβ′ +y′)} = δββ′ cos(y −y′), it can be deduced that the correlation function
ζ 7→ r̃νG(ζ; [y]) = E{Gν(x + ζ; [y]) Gν(x; [y])} of random field {Gν(x; [y]), x ∈ R3} is written, for
all ζ = (ζ1, ζ2, ζ3) ∈ R3, as

r̃νG(ζ; [y]) =
∑
β∈B

χ̃∆
β ([y]) cos(

3∑
j=1

K jκβ jζ j) . (24)

For j ∈ {1, 2, 3}, the change of variable ζ j = ξ j/K j in the right-hand side of Eq. (24) yields the
dimensionless correlation function that is written, for all ξ = (ξ1, ξ2, ξ3), as

ρ̃νG(ξ; [y]) =
∑
β∈B

χ̃∆
β ([y]) cos(

3∑
j=1

κβ jξ j) . (25)

It can easily be seen that ρ̃νG(ξ; [y]) defined by Eq. (25) is associated with the the dimensionless
spectral measure µ̃νG(dκ; [y]) defined by Eq. (21).

4.7. Non-Gaussian random field [C(· ; [y])] parameterized by [y] and random field [C̃] with un-
certain spectral measure

The non-Gaussian random field C(·, [y]) given [y] in Cy is defined by Eqs. (8) to (9) in which
the 21 Gaussian random fields {Gmn(x; [y]), x ∈ R3}1≤m≤n≤6 are replaced by 21 independent copies
of the Gaussian real-valued random field {Gν(x; [y]), x ∈ R3} defined by Eq. (23), and denoted
by {Gν

mn(x; [y]), x ∈ R3}1≤m≤n≤6. For all [y] in Cy, x in R3, and for 1 ≤ m ≤ n ≤ 6, using Eq. (23)
yields

Gν
mn(x; [y]) = gν(x; [y],Zmn,Φmn) ,

in which {Zmn,Φmn}1≤m≤n≤6 are 21 independent copies of Rν-valued random variables Z and Φ
(see Section 4.5), and we have

E{Gν
mn(x; [y])} = 0 , E{Gν

mn(x; [y])2} = 1 .

It is assumed that ν is fixed as explained in Section 4.4.3. The random field {[C̃(x)] ∈ R3} with
uncertain spectral measure is defined by

[C̃(x)] = [C(x; [Y])] , ∀x ∈ R3 ,

in which [Y] is the M3,̂νs - valued random variable defined in Section 4.4.6-(ii).

4.8. Remark concerning the principle used for the construction of random field [C(· ; [y])] given
[y]

For given [y], we have seen in Sections 4.2 and 4.3 that random field [C(· ; [y])] depends on
hyperparameter δc and on 21 independent copies {Gmn(x; [y]), x ∈ R3}1≤m≤n≤6 of a unique nor-
malized Gaussian homogeneous mean-square continuous real-valued random field {G(x; [y]), x ∈
R3} for which its normalized spectral measure is mG(dk) = s(k) dk (parameterized by [y]). We
have also seen that function s was defined by three parameters K1, K2, K3 that control the com-
pact support of s (see Section 4.4.1) and by the dimensionless spectral density function κ 7→ χ(κ)
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(see Section 4.4.4). Finally, since random field [C(·; [y]) is a nonlinear transformation of 21 real-
valued random fields {Gmn(x; [y]), x ∈ R3}1≤m≤n≤6 (see Sections 4.3 and 4.4), it can be deduced
that the tensor-valued covariance function of random field [C(·; [y]) given [y] is controlled by
the scalar parameters δc, K1, K2, K3 and by the positive-valued function κ 7→ χ(κ) on [−1, 1]3.
For given [y], these parameters and this function can be estimated by solving a statistical inverse
problem for which experimental observations (targets) related to the stochastic BVP would be
given. For improving such an indirect representation of the tensor-valued covariance function
of random field [C(·; [y]) given [y], the number of parameters could be increased as follows.
Instead of constructing random fields {Gmn(x; [y]), x ∈ R3}1≤m≤n≤6 as 21 independent copies of
random field {G(x; [y]), x ∈ R3}, we could directly construct the 21 independent random fields
{Gmn(x; [y]), x ∈ R3}1≤m≤n≤6, each random field {Gmn(x; [y]), x ∈ R3} having its own compact
spectral density function k 7→ smn(k) defined by three parameters Kmn

1 , Kmn
2 , Kmn

3 that would
control its support and by the positive-valued function κ 7→ χmn(κ) on [−1, 1]3. In such a case,
all the presented developments for the uncertain spectral measure could directly be extended
without any difficulty. Given [y], the tensor-valued covariance function of random field [C(·; [y])
would be controlled by 64 parameters δc, {Kmn

1 , Kmn
2 ,Kmn

3 , 1 ≤ m ≤ n ≤ 6} and by 21 functions
{χmn, 1 ≤ m ≤ n ≤ 6}, which would considerably increase the potentiality of the constructed
representation.

5. Solution of the stochastic boundary value problem and random eigenvalues of the ran-
dom effective elasticity matrix

Strong stochastic solution of the weak formulation. We now consider the nonhomogeneous
Dirichlet stochastic Boundary Value Problem (BVP) defined by Eqs. (1) to (3), in which [y] is
modeled by the M3,̂νs -valued random variable [Y], and for which the probabilistic model of the
random field {[C̃(x)] = [C(x; [Y])], x ∈ R3} with uncertain spectral measure is the one defined
in Section 4. A finite element approximation of the weak formulation of this stochastic BVP is
constructed in order to perform the computational stochastic homogenization. On the other hand,
the Monte Carlo simulation method is used as stochastic solver. Consequently, we need not to
construct and to analyze a weak stochastic solution of the weak formulation of this stochastic
BVP, but we only need to construct and to analyze the strong stochastic solution of this weak
formulation of the stochastic BVP. In [62], it is mathematically proven that, for 1 ≤ ` ≤ r ≤ 3,
there is a unique strong stochastic solution solution {Ũ

`r
(x) = u`r(x; [Y]), x ∈ Ω} of the weak for-

mulation, which is a second-order random field, that is to say, such that E{‖Ũ
`r

(x)‖22} = γ2
u
< +∞

for all x in Ω, in which the constant γ2
u

is independent of x and whose expression is detailed in
[62].

Random eigenvalues of the random effective elasticity matrix. The random effective elasticity
matrix [C̃eff], which corresponds to the random apparent elasticity field C̃ for which its spectral
measure is uncertain, can then be written as [C̃eff] = [Ceff([Y])]. Let Λ̃1 ≥ Λ̃2 ≥ . . . ≥ Λ̃6 be
the ordered (a.s) random eigenvalues of [C̃eff]. Let Λ̃ = (Λ̃1, . . . , Λ̃6) be the R6-valued random
variable whose support of its probability measure P

Λ̃
(dλ̃) is (R+∗)6. The operator norm of [C̃eff]

is ‖ [C̃eff] ‖2 = Λ̃1. It is also mathematically proven in [62] that Λ̃ is a second-order R6-valued
random variable, that is to say, E{‖Λ̃‖22} < +∞.
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6. Data and models for performing the computational stochastic homogenization

6.1. Defining the uncertain spectral measure based on a separable spatial correlation structure
The computational stochastic homogenization analysis that we will perform is based on the

following separable spatial correlation structure of the spectral measure.

Spectral density function. For all k = (k1, k2, k3) in R3, the spectral density function is written
as s(k) =

∏3
j=1 s j(k j) in which, for j ∈ {1, 2, 3},

s j(k j) =
1
K j

(
1 −
|k j|

K j

)
1[−K j,K j](k j) .

Consequently, we have supp s j = [−K j,K j], s j(−k j) = s j(k j) (yielding s(−k) = s(k) and the
quadrant symmetry), and the normalization

∫
[−K j,K j]

s j(k j) dk j = 1.

Correlation function and spatial correlation length without spectral measure uncertainties. From
the spectrum separation, it can be deduced that, for all ζ = (ζ1, ζ2, ζ3) in R3, the correlation func-
tion is written as ρG(ζ) =

∏3
j=1 ρ j(ζ j) in which, for j ∈ {1, 2, 3},

ρ j(ζ j) =

∫
R

eι k jζ j s j(k j) dk j , ρ j(0) = 1 ,

Lc j =

∫ +∞

0
|ρ j(ζ j)| dζ j = π s j(0) = π/K j . (26)

Without spectral measure uncertainties, this equation shows that the spatial correlation lengths
are effectively driven by the support of the spectral measure.

Dimensionless spectral density function and spectral sampling. For all κ= (κ1, κ2, κ3) in R3, the
dimensionless spectral density function χ defined by Eq. (16) can be written as χ(κ)=

∏3
j=1 χ j(κ j)

such that, for j ∈ {1, 2, 3},
χ j(κ j) = (1 − |κ j|) 1[−1,1](κ j) ,

and therefore, we effectively have (see Section 4.4.4), supp χ j = [−1, 1], χ j(−κ j) = χ j(κ j), and∫
R χ j(κ j) dκ j = 1. For all β = (β1, β2, β3) ∈ B,

χ∆
β =

3∏
j=1

χ∆
jβ j

, χ∆
jβ j

= (2/νs) χ j(κβ j ) .

Definition of qβ̂([y]; δs) and construction of aβ([y]). For all β̂ = (̂β1, β̂2, β̂3) ∈ B̂ with β̂ j ∈

{1, . . . , ν̂s} and j ∈ {1, 2, 3}, qβ̂([y]; δs) is defined by

qβ̂([y]; δs) =

3∏
j=1

q ĵβ j
([y]; δ j) , ∀ [y] ∈ Cy ,

in which for j ∈ {1, 2, 3} and β̂ j ∈ {1, . . . , ν̂s},

q ĵβ j
([y]; δ j) = 1 +

√
12 δ j ([y] ĵβ j

− 1/2) ,
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with δ j > 0 the hyperparameter. We thus have

aβ̂([y]) =

3∏
j=1

a ĵβ j
([y]) , β̂ j ∈ {1, . . . , ν̂s} ,

in which

a ĵβ j
([y]) =

√
χ∆

ĵβ j
q ĵβ j

([y], δ j) , β̂ j ∈ {1, . . . , ν̂s} ,

a jβ j ([y]) = a j,(2 ν̂s+1−β j)([y]) , β j ∈ {̂νs + 1, . . . , 2 ν̂s} .

Random variable Aβ̂ and hyperparameter δs. For j ∈ {1, 2, 3} and β̂ j ∈ {1, . . . , ν̂s}, the mean
value and the second-order moment of random variable A ĵβ j

= a ĵβ j
([Y]) are

E{A ĵβ j
} =

√
χ∆

ĵβ j
, E{A2

ĵβ j
} = χ∆

ĵβ j
(1 + δ2

j ) .

Since the random variables {A ĵβ j
} j,̂β j

are independent, the mean value and the second-order mo-

ment of the random variable Aβ̂ = aβ̂([Y]) =
∏3

j=1 A ĵβ j
are

E{Aβ̂} =
√
χ∆

β̂
, E{A2

β̂
} = χ∆

β̂

3∏
j=1

(1 + δ2
j ) .

Defining the hyperparameter δs as

δ2
s = E{(Aβ̂ −

√
χ∆

β̂
)2}/χ∆

β̂
,

it can be seen that we have δ2
s = (

∏3
j=1(1 + δ2

j )) − 1 > 0, which is independent of β̂.

Discretized dimensionless spectral measure. Eq. (20) yields

χ̃∆
β ([y]) =

3∏
j=1

χ̃∆
jβ j

([y]) , ∀β = (β1, β2, β3) ∈ B , (27)

in which, for j ∈ {1, 2, 3} and β j ∈ {1, . . . , νs},

χ̃∆
jβ j

([y]) = a jβ j ([y])2 (
∑
β′∈B

aβ′ ([y])2)−1/3 . (28)

Random discretized dimensionless spectral density function and random correlation lengths of
Gν(· ; [y]). For j fixed in {1, 2, 3}, the random discretized dimensionless spectral density function
κ 7→ χ̃ j(κ; [Y]) from [−1, 1] into R+ can be written as

χ̃ j(κ; [Y])=
νs

2

νs∑
β j=1

χ̃∆
jβ j

([Y]) 1[κβ j−
1
νs
, κβ j +

1
νs

](κ), (29)

in which χ̃∆
jβ j

([Y]) is given by Eq. (28) and where κβ j is defined by Eq. (17). It can be seen that

we effectively have
∫
R χ̃ j(κ; [Y]) dκ = 1 a.s.
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Taking into account the change of variable ζ j = ξ j/K j for j ∈ {1, 2, 3} and Eq. (29), the
random spatial correlation length of random field Gν(· ; [y]) for coordinate j is written as

Lνc j([y]) =
π

K j

νs

2
χ̃∆

jβ j
([y]) with β j = νs/2 . (30)

The random spatial correlation length L̃νc j in presence of spectral measure uncertainties is thus
given by

L̃νc j = Lνc j([Y]) . (31)

6.2. Mean model at mesoscale of the microstructure

Domain Ω is the cube ]0, 1[3 and the mean model of the elastic material at mesoscale is
chosen in the isotropic class with mean Young modulus Y = 1010 and mean Poisson coefficient
ν = 0.15 (the International System of Units is used).

6.3. Random apparent elasticity field

The level of statistical fluctuations of the random apparent elasticity field is controlled by
hyperparameter δc defined by Eq. (7). For minimizing the number of computational cases, we
will only consider two cases. One that corresponds to relatively small statistical fluctuations of
the apparent elasticity field for which δc = 0.2 and another one for large statistical fluctuations
for which δc = 0.5.

6.4. Uncertain spectral measure

The uncertainties in the spectral measure are controlled by the parameters Lc1, Lc2, Lc3 (cor-
responding to the spatial correlations lengths when there are no uncertainties and controlling
the support of the spectral measure with and without uncertainties) and by the spectrum dis-
persions δ1, δ2, δ3 inducing a global spectrum dispersion δs such that δ2

s =
∏3

j=1(1 + δ2
j ) − 1.

For the computational stochastic homogenization analysis presented in this paper, it is assumed
that Lc1 = Lc2 = Lc3 = Lc with Lc ∈ {0.1, 0.2, 0.4, 0.6} and that δ1 = δ2 = δ3 = δ with
δ ∈ {0.0, 0.2, 0.5}, which yields δs = ((1 + δ2)3 − 1)1/2 ∈ {0.0, 0.35, 0.98}.

6.5. Finite element discretization

The weak formulation of the stochastic BVP is discretized by the finite element method. The
finite element mesh of domain Ω = [0, 1]3 is made up of nfem × nfem × nfem = n3

fem solid finite
elements (8-nodes solid), (nfem + 1)3 nodes, and 3 × (nfem + 1)3 degrees of freedom (dof). There
are 23 integrations points in each finite element, which yields 8 × n3

fem integrations points for the
spatial discretization of the M+

6 -valued random apparent elasticity field and consequently, yields
21 × 8 × n3

fem random terms. The optimal value of nfem is estimated by the convergence analysis
presented in Section 7.3.
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7. Estimation of the parameters by using a convergence analysis

7.1. Definition of the convergence-analysis function
Before performing the computational analysis of stochastic homogenization, we have to iden-

tify the optimal value of the parameters nfem, νs, and N that control the number n3
fem of finite

elements in the 3D-mesh, the spectral domain sampling, and the number of realizations used by
the Monte Carlo numerical method. For all random matrix [A] defined on (Θ,T ,P) with values
in MS

6 , we define the norm ‖ [A] ‖L2 of L2
P

(Θ,MS
6 ) such that its square is

‖ [A] ‖2L2 = E{‖ [A] ‖22} =

∫
Θ

‖ [A(θ)] ‖22 dP(θ) . (32)

We introduce the convergence-analysis function

(nfem, νs,N) 7→
‖ [C̃eff(nfem, νs,N)] ‖2L2

‖ [C] ‖22
, (33)

which corresponds to the square of the L2-norm of the M+
6 -valued random effective elasticity ma-

trix [C̃eff(nfem, νs,N)] normalized with respect to the square ‖ [C] ‖22 of the norm of matrix [C] =

E{[C(x, [y])]} ∈M+
6 that is independent of x and [y]. Let Λ̃1(nfem, νs,N) ≥ . . . ≥ Λ̃6(nfem, νs,N) >

0 be the ordered (a.s) random eigenvalues of [C̃eff(nfem, νs,N)] and let λ1 ≥ . . . ≥ λ6 > 0 be the
ordered eigenvalues of [C]. The convergence-analysis function defined by Eq. (33) can then be
rewritten as

(nfem, νs,N) 7→ E{Λ1(nfem, νs,N)2} , (34)

in which Λ1(nfem, νs,N) is the normalization of the largest (a.s) random eigenvalue Λ̃1(nfem, νs,N),

Λ1(nfem, νs,N) =
Λ̃1(nfem, νs,N)

λ1
> 0 a.s . (35)

The construction of (nfem, νs,N) 7→ E{Λ1(nfem, νs,N)2} on a grid of N3 is too numerically expen-
sive as soon as the three integers nfem, νs, and N simultaneously become large. We have therefore
restricted the convergence analysis by constructing partial mappings.

7.2. Convergence analysis with respect to the spectral domain sampling
For performing the convergence with respect to the spectral domain sampling defined by the

value of νs (the number of sampling points in the spectral domain is then ν = ν3
s), we want to

choose a value of Lc that allows for obtaining significant statistical fluctuations for the random
effective elasticity matrix [Ceff] (no scale separation) to check the mean-square convergence.
Consequently we have taken the value Lc = 0.4 that allows for choosing a moderate value nfem =

20 yielding 8 000 finite elements (8-nodes solid elements) and 64 000 integration points (this
choice corresponds to 16 integration points by spatial correlation length Lc j = Lc for each space
coordinate j, which yields a good numerical approximation). In addition, in order to take into
account the larger statistical fluctuations (worst case for convergence), we have taken δ = 0.5
and δc = 0.5. Figure 2 displays the graph of function νs 7→ E{Λ1(νs)2} = E{Λ1(nfem, νs,N)2} for
nfem = 20, N = 1 000, and for νs ∈ [2, 30] that is to say for ν ∈ [8, 27 000]. It can be seen that
νs = 18, yielding ν = 5 832, is a good compromise. For this value of νs, Eq. (15) holds (we even
have strict equality at 1).

18



0 10 20 30

0.85

0.9

0.95

1

Figure 2: Convergence with respect to the spectral domain sampling: graph of function νs 7→ E{Λ1(νs)2}.
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Figure 3: Convergence with respect to the mesh: graph of function nfem 7→ E{Λ1(nfem)2}.

7.3. Convergence analysis with respect to the mesh
The worst case for the convergence analysis with respect to the number n3

fem of finite elements
corresponds to the smallest considered value of Lc and to the largest value for δ and for δc,
yielding Lc = 0.1, δ = 0.5, and δc = 0.5. Figure 3 displays the graph of function nfem 7→

E{Λ1(nfem)2} = E{Λ1(nfem, νs,N)2} for νs = 18, N = 1 000, and for nfem ∈ [10, 60] that is to say
for n3

fem ∈ [1 000, 216 000]. It can be seen that nfem = 50 is a good value (yielding n3
fem =125 000

finite elements and 1 000 000 integration points).

7.4. Convergence analysis with respect to the number of realizations
The worst case for the convergence analysis with respect to the number N of realizations cor-

responds to the smallest considered value of Lc and to the largest value for δ and for δc, yielding
Lc = 0.1, δ = 0.5, and δc = 0.5. Figure 4 displays the graph of function N 7→ E{Λ1(N)2} =

E{Λ1(nfem, νs,N)2} for nfem = 50, νs = 18, and for N ∈ [1, 1 000]. It can be seen that N = 1 000 is
a satisfactory value.

7.5. Example of realizations of the random discretized dimensionless spectral measure
For the considered separable spatial correlation structure (see Section 6.1) and for coordinate

j fixed in {1, 2, 3}, the random discretized dimensionless spectral density function κ 7→ χ̃ j(κ; [Y])
from [−1, 1] into R+ is given by Eq. (29). By way of illustration, Figs. 5, 6, and 7 shows, for j = 1
and for νs = 18, a realization κ 7→ χ̃ j(κ; [y`]) for δ = 0 (no uncertainties and thus independent of
realization [y`] of [Y]), and for δ = 0.2 and 0.5 for a realization [y`] of [Y].
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Figure 4: Convergence with respect to the number of realizations: graph of function N 7→ E{Λ1(N)2}.
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Figure 5: For δ = 0.0 (no uncertainties), graph of κ 7→ χ̃1(κ; [y`]) (independent of realization [y`] of [Y].

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 6: For δ = 0.2, graph of realization κ 7→ χ̃ j(κ; [y`]) for a realization [y`] of [Y].
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Figure 7: For δ = 0.5, graph of realization κ 7→ χ̃ j(κ; [y`]) for a realization [y`] of [Y].
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Figure 8: For Lc = 0.1 and δ = 0.2, graph of pdf `c 7→ pL̃νc j
(`c) of random variable L̃νc j for j = 1 (thin black), j = 2 (med

blue), and j = 3 (thick red).

7.6. Probabilistic analysis of the random correlation lengths of random field Gν(., [Y])
For j ∈ {1, 2, 3}, we propose a probabilistic analysis of the random correlation length L̃νc j

defined by Eq. (31) with Eq. (30). It should be noted that random variable L̃νc j depends on δ
(controlling the level of uncertainties in the spectral measure) and on π/K j = Lc j (see Eq. (26))
for which we have chosen Lc j = Lc. Let mL̃νc j

= E{L̃νc j} be the mean value of L̃νc j and δL̃νc j
its

coefficient of variation, which are estimated using Nd = 1 000.
- Mean value mL̃νc j

does not really depends on δ (for δ = 0.0, 0.2, and 0.5) and we have
mL̃νc1

' mL̃νc2
' mL̃νc3

' mL̃νc (that was expected). For Lc = 0.1, 0.2, 0.4, and 0.6, the estimation of
mL̃νc is 0.096, 0.19, 0.38, and 0.57.

- Coefficient of variation δL̃νc j
does not depends on Lc (that can easily be seen) and we have

δL̃νc1
' δL̃νc2

' δL̃νc3
' δL̃νc (that was expected). For δ = 0.0, 0.2, and 0.5, the estimation of δL̃νc is

0.0, 0.37, and 0.82.
As an illustration, for Lc = 0.1 and δ = 0.2, Fig. 8 displays the graph of the probability

density function `c 7→ pL̃νc j
(`c) of random variable L̃νc j for j = 1, 2, 3. Note that these three

probability density functions would exactly be the same for N → +∞.
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Figure 9: For δc = 0.2, graph of Lc 7→ µeff(Lc) as a function of the level δ = 0.0 (thin black), 0.2 (med blue), and 0.5
(thick red) of spectral measure uncertainties.

8. Computational stochastic homogenization analysis

Taking into account the convergence analysis presented in Section 7, the computational
stochastic homogenization analysis is performed with nfem = 50, νs = 18, and N = 1 000.
The sensitivity of the probabilistic analysis of the RVE size with respect to the uncertainty level
of the spectral measure is performed by analyzing the normalized random variable Zeff defined
by

Zeff =
‖ [C̃eff] ‖2

E{‖ [C̃eff] ‖2}
=

Λ̃1

E{Λ̃1}
. (36)

Let µeff be defined by

µeff =
E{‖ [C̃eff] ‖2}
‖ [C] ‖2

=
E{Λ̃1}

λ1
. (37)

From Eqs. (35) to (37), it can be seen that Λ1 = µeffZeff. The normalized mean value µeff depends
on δc, Lc, and δ. For the two values δc = 0.2 and 0.5 that control the statistical fluctuations of the
random apparent elasticity field, Figs. 9 and 10 show the graph of function Lc 7→ µeff(Lc) (defined
by Eq. (37)) as a function of the values of δ = 0.0, 0.2, and 0.5 that define the level of spectral
measure uncertainties (there are no uncertainties for δ = 0.0). Let η 7→ P(η) be the function from
]0, 1] into [0, 1] defined by

P(η) = Proba{1 − η < Zeff ≤ 1 + η}

= FZeff (1 + η) − FZeff (1 − η) , (38)

in which FZeff is the cumulative distribution function of Zeff that is estimated with the Gaussian
kernel cumulative distribution estimation method [66] and with the N independent realizations
of Zeff.

8.1. Probabilistic analysis of the RVE size without uncertainties in the spectral measure

For δ = 0 (no uncertainties in the spectral measure) and for statistical fluctuations of the
random apparent elasticity field corresponding to the two values δc = 0.2 and 0.5, Figs. 11 and
12 show the graph of function η 7→ P(η) (defined by Eq. (38)) as a function of Lc = 0.1, 0.2, 0.4,
and 0.6.
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Figure 10: For δc = 0.5, graph of Lc 7→ µeff(Lc) as a function of the level δ = 0.0 (thin black), 0.2 (med blue), and 0.5
(thick red) of spectral measure uncertainties.
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Figure 11: For δc = 0.2 and for δ = 0 (no uncertainty), graph of η 7→ P(η) for Lc = 0.1 (thin black), 0.2 (med blue ), 0.4
(thick red), and 0.6 (thick black).
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Figure 12: For δc = 0.5 and for δ = 0 (no uncertainty), graph of η 7→ P(η) for Lc = 0.1 (thin black), 0.2 (med blue), 0.4
(thick red), and 0.6 (thick black).
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Figure 13: For Lc = 0.1 and δc = 0.2, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).
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Figure 14: For Lc = 0.1 and δc = 0.5, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).

8.2. Probabilistic analysis of the RVE size with uncertainties in the spectral measure

For the two values δc = 0.2 and 0.5 controlling the level of statistical fluctuations of the
random apparent elasticity field and for Lc = 0.1, 0.2, 0.4, 0.6, Figs. 13 to 20 show the graph of
function η 7→ P(η) (defined by Eq. (38)) as a function of the level δ = 0.0, 0.2, 0.5 of uncertainties
in the spectral measure (for δ = 0 there are no uncertainties).

8.3. Synthesis of the results and discussion

Analysis for the case Lc = 0.1. For Lc = 0.1, for δc = 0.2 (relatively small statistical fluctuations
of the apparent elasticity field) and δc = 0.5 (large statistical fluctuations), Table 1 gives the
value of the probability P(η) = Proba{1 − η < Zeff ≤ 1 + η} (see Eq. (38)) for η = 0.05, 0.02,
0.01, and for δ = 0 (no uncertainties), δ = 0.2 and 0.5 (uncertainties in the spectral measure).
The values given in Table 1 are extracted from Figs. 13 and 14. The value of the probability
for that the random variable Zeff belongs to interval ]0.95, 1.05] shows that we obtain a perfect
scale separation for δc = 0.2 (probability is 1) and an excellent one for δc = 0.5 (probability
larger than 0.966) for both the small and large uncertainties in the spectral measure. For large
uncertainties (δ = 0.5), it can also be seen that the value of the probability for that Zeff belongs
to ]0.98, 1.02] or ]0.99, 1.01] decreases and becomes too small for validating a scale separation.
Finally, we can also see (and this will also be true for the largest values of Lc) that the probability
increases with δ (contrary to what was expected). This is because as δ increases, the dispersion
of the random spatial correlation lengths increases favoring small values, which ”helps” the scale
separation (see Section 7.6 and in particular Fig. 8). In summary, the scale separation is achieved
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Figure 15: For Lc = 0.2 and δc = 0.2, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).
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Figure 16: For Lc = 0.2 and δc = 0.5, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).
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Figure 17: For Lc = 0.4 and δc = 0.2, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).
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Figure 18: For Lc = 0.4 and δc = 0.5, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).
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Figure 19: For Lc = 0.6 and δc = 0.2, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

Figure 20: For Lc = 0.6 and δc = 0.5, graph of η 7→ P(η) for δ = 0 (thin black), 0.2 (med blue), 0.5 (thick red).
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at 5 percent, for both small and large uncertainties in the spectral measure and the uncertainties
in the spectral measure favor the separation of scale.

Table 1: For Lc = 0.1 and for statistical fluctuations of the random apparent elasticity field corresponding to δc = 0.2 and
δc = 0.5, sensitivity of the probabilistic analysis of the RVE size with respect to the uncertainty level δ in the spectral
measure.
.

Proba{Zeff ∈ Proba{Zeff ∈ Proba{Zeff ∈

δc δ ]0.95, 1.05]} ]0.98, 1.02]} ]0.99, 1.01]}
0.2 0.0 1.0 0.985 0.750

0.2 1.0 0.976 0.778
0.5 1.0 0.973 0.849

0.5 0.0 0.984 0.630 0.341
0.2 0.975 0.669 0.383
0.5 0.966 0.759 0.500

Analysis for the case Lc ≥ 0.2. For δc = 0.2, 0.5 and for Lc = 0.2, 0.4, 0.6, Table 2 gives
the value of the probability Proba{Zeff ∈ ]0.95, 1.05]} (see Eq. (38)) for δ = 0 (no uncertainties),
δ = 0.2 and 0.5 (small and large uncertainties in the spectral measure). The values given in
Table 2 are extracted from Figs. 15 and 16 for Lc = 0.2, Figs. 17 and 18 for Lc = 0.4, and
Figs. 19 and 20 for Lc = 0.6.

For Lc = 0.2, the value of the probability for that the random variable belongs to interval
]0.95, 1.05]} shows an excellent scale separation for δc = 0.2 but there is no scale separation for
a large value of uncertainties (δc = 0.5). For Lc = 0.4 and Lc = 0.6 there is no scale separation in
all the cases (with no uncertainties (δ = 0) or with small or large uncertainties (δ = 0.2 or 0.5)).

In summary, for these cases, the results obtained are consistent with the knowledge that we
have concerning the probabilistic analysis of the RVE size [40]. For Lc = 0.2, the scale separa-
tion is achieved at 5 percent for small uncertainties but is not obtained for larger uncertainties.
For Lc = 0.4 and Lc = 0.6 the scale separation is never obtained for all values of δ (with no
uncertainties and with uncertainties). Finally, as previously observed for the case Lc = 0.1, the
uncertainties in the spectral measure favor the separation of scale. However, this phenomenon is
all the more important as Lc is small (smaller than 0.2) and tends to attenuate when Lc increases,
almost vanishing for Lc = 0.6.

CPU time for performing the presented analysis. The CPU time that has been required for
performing the computational stochastic homogenization analysis is 32 000 hours ' 24 (cases)
×44 000 (elapsed time) ×110 (cores) /3 600, in which the elapsed time is in seconds.

9. Conclusion

The uncertainties in the spectral density function of the random apparent elasticity field at
mesoscale have a significant influence on the statistics of the random effective elasticity tensor
at macroscale.

Although a more general probabilistic model of uncertainties in the spectral density function
has been presented, the computational stochastic homogenization has been carried out using a
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Table 2: For Lc = 0.2, 0.4, 0.6, and for statistical fluctuations of the random apparent elasticity field corresponding to
δc = 0.2 and δc = 0.5, sensitivity of the probabilistic analysis of the RVE size with respect to the uncertainty level δ in
the spectral measure.

Proba{Zeff ∈ Proba{Zeff ∈

]0.95, 1.05]} ]0.95, 1.05]}
Lc δ δc = 0.2 δc = 0.5
0.2 0.0 0.986 0.658

0.2 0.985 0.660
0.5 0.983 0.719

0.4 0.0 0.715 0.349
0.2 0.738 0.356
0.5 0.765 0.390

0.6 0.0 0.524 0.243
0.2 0.535 0.248
0.5 0.560 0.262

separable spatial correlation structure. In this model, the support of the spectral density function
is parameterized by a length Lc that appears as a deterministic spatial correlation length for each
space coordinate (when there are no uncertainties). The uncertainties in the spectral density
function are then taken into account by introducing a random shape of this function for which
its support is given. These random shape implies random spatial correlation lengths for the
random apparent elasticity field at mesoscale. Consequently, the proposed random field model
with uncertainties on the spectral measure is richer in terms of modeling of random media than
a simple parametric model of the spatial correlation lengths in the physical domain.

Let LΩ be the dimension of the side of Ω. The separation of scales is obtained when random
effective elasticity tensor at macroscale exhibits negligible statistical fluctuations. For Lc/LΩ =

0.1, the scale separation is achieved at 5 percent, for both small and large uncertainties in the
spectral density function of the apparent elasticity field; this means that domain Ω is then a RVE.
Such a separation is lost for Lc/LΩ ≥ 0.2 for all level of uncertainties (no uncertainties, small and
large uncertainties). However, for Lc/LΩ = 0.2 and for a small level of uncertainties (δ ≤ 0.2),
the scale separation is also achieved at 5 percent.

An unexpected results is that, for the ”uniform” probabilistic model that has been proposed
for the uncertainties in the spectral density function, these uncertainties favor the separation of
scale in the computational stochastic homogenization. This phenomenon is all the more impor-
tant as Lc/LΩ is small (smaller than 0.2) and tends to attenuate when Lc/LΩ increases, almost
vanishing for Lc/ΩL = 0.6.

We have presented this work within the framework of the following hypotheses: the mean
value of the random apparent elasticity tensor at the mesoscopic scale has been taken in the class
of isotropic media and the statistical fluctuations have been taken in the anisotropic class. The de-
veloped probabilistic modeling and the computational stochastic homogenization that have been
carried out can be extended to more general situations using more complex material symmetry
classes with mixture of symmetry classes for the statistical fluctuations of the apparent elasticity
field. In particular, such extensions would be useful for analyzing the stochastic homogenization
of thin layer that is homogenizable in the layer plane but not in the layer thickness and for which
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the three spatial correlation lengths and the level of uncertainties in the spectral density function
are different as a function of the three space coordinates.

Finally, the parametric study with respect to Lc, δc, and δ has been limited for the computa-
tional stochastic homogenization analysis because of the numerical costs that are relatively high.
We could extend it while keeping numerical costs bearable by using probabilistic learning on
manifolds or other machine learning approaches. However, in order to limit the length of the
presentation and in order not to mix the issues presented in this paper, we have preferred to
strictly limit the extent of the parametric study.
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