Bremsstrahlung emission and plasma characterization driven by moderately relativistic laser–plasma interactions
Résumé
Relativistic electrons generated by the interaction of petawatt-class short laser pulses with solid targets can be used to generate bright X-rays via bremsstrahlung. The efficiency of laser energy transfer into these electrons depends on multiple parameters including the focused intensity and pre-plasma level. This paper reports experimental results from the interaction of a high intensity petawatt-class glass laser pulses with solid targets at a maximum intensity of $10^{19}$ W/cm$^2$. In-situ measurements of specularly reflected light are used to provide an upper bound of laser absorption and to characterize focused laser intensity, the pre-plasma level and the generation mechanism of second harmonic light. The measured spectrum of electrons and bremsstrahlung radiation provide information about the efficiency of laser energy transfer.
Origine | Fichiers produits par l'(les) auteur(s) |
---|