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Abstract. Relativistic electrons generated by the interaction of petawatt-class short

laser pulses with solid targets can be used to generate bright X-rays via bremsstrahlung.

The efficiency of laser energy transfer into these electrons depends on multiple

parameters including the focused intensity and pre-plasma level. This paper reports

experimental results from the interaction of a high intensity petawatt-class glass

laser pulses with solid targets at a maximum intensity of 1019 W/cm2. In-situ
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measurements of specularly reflected light are used to provide an upper bound of laser

absorption and to characterize focused laser intensity, the pre-plasma level and the

generation mechanism of second harmonic light. The measured spectrum of electrons

and bremsstrahlung radiation provide information about the efficiency of laser energy

transfer.

Submitted to: New J. Phys.

1. Introduction

High intensity laser pulse interaction with solid targets has many potential applications

including fast ignition [1], ion acceleration [2] and X-ray generation [3–9]. One of

the most fundamental aspects governing these interactions is laser absorption into

relativistic electrons. The experiment presented in this paper aims to characterize laser

absorption and bremsstrahlung generation on a petawatt-class Nd:glass laser system.

When a laser pulse interacts with a solid target at oblique incidence, a significant

fraction of light is reflected in the specular direction from the proximity of the critical

density surface i.e., the location where the plasma frequency is equal to the laser

frequency. Simultaneously, harmonics of the fundamental laser frequency are generated

by either (a) mode conversion from the resonant electric field at the critical density

[10], or (b) by coherent wakefield emission [11], or (c) by reflection from relativistically

oscillating critical density surface [12, 13]. Due to the different mechanisms of laser

absorption and harmonic generation, monitoring the spectrum and intensity of scattered

light provides important information about the focused intensity and the laser contrast

[14–16]. In particular, the curvature of the critical density surface can be inferred

from the spatial distribution of the reflected light at the fundamental frequency and

comparing the measurements with hydrodynamic simulations of pre-plasma formation

and laser absorption.

At the front surface of the target, a significant fraction of the incident laser light is

absorbed and strong electromagnetic fields accelerate electrons to relativistic energies.

These electrons traverse the target, and subsequently the most energetic electrons escape

the rear surface while the remaining are trapped by the sheath potential and re-circulate

[17]. The escaped electrons can be directly measured by a magnetic spectrometer while

the electrons which are slowed down by collisions within the target are diagnosed by

measuring hard X-rays generated by bremsstrahlung [5, 18]. The multi-MeV hard X-rays

generated in such interactions have been investigated by using photo-nuclear activation

[6–8, 19–23]. X-ray measurements in the energy range of hundreds of keV to a few

MeV are also important as they provide a diagnostic of the fundamental laser-plasma

interaction physics, in addition to developing laser based sources for flash radiography

applications [3–5, 24–27]. Experiments focused on investigating X-rays in this energy

range have revealed the effect of pre-plasma [4] for electron acceleration and concluded
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Figure 1. (a) Schematic of the experiment showing the main laser pulse, the imaging

system for the scattering screen, the direction of X-ray pin-hole imaging, electron

spectrometer and the scintillator stack. The line of sight of the scintillator stack was

18◦ above the horizontal plane (i.e. the plane of the incoming laser beam). (b) Power

contrast of the laser beam as measured by a single-shot cross-correlator.

that electron re-circulation does not effect the yield of X-rays [25]. The measurements

of X-rays in the range of 100 keV - 1 MeV, described in this paper confirm that targets

with high atomic number (tantalum in this case) and having a thickness of about 2 mm

are optimal for maximizing the X-ray flux of photons with energy ∼ 1 MeV. Dedicated

Monte Carlo simulations performed for the relevant experimental parameters reproduce

the dependence of measured X-ray flux on the target thickness.

The paper is organized as follows. The experimental set-up and diagnostics are

described in section 2. A description of the experimental results and the related modeling

is presented in section 3. A brief summary is presented in section 4.

2. Experimental Set-up and Diagnostics

The experimental layout at the SG-II upgrade facility [28] is shown in figure 1a.

The main laser pulse was generated by a hybrid optical parametric Chirped Pulse

Amplification (CPA) and Nd:glass amplifier. The beam energy was (300± 25) J with a

pulse duration of ≈ 1 ps at a wavelength of 1053 nm. The p-polarized beam was focused

with a f/2.5 off-axis parabola (OAP) onto a focal spot of ≈ 45 µm diameter containing

about 80% of the incident energy, thus reaching a peak focused intensity of 1019 W/cm2

[28]. The laser intensity contrast was measured using a single-shot cross-correlator with

a fiber array and a photo multiplier tube [29] and is shown in figure 1b. The amplified

spontaneous emission (ASE) contrast was ∼ 2 × 10−8 and extended till 850 ps before
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the main pulse which is half the duration of uncompressed chirped pulse of the laser.

The pulse has a contrast pedestal in the range of 10−5 to 10−6 for less than 60 ps before

the main pulse.

The focused beam was incident on tantalum (Ta) targets at an angle of 22◦ in the

equatorial plane. The thickness of the target was varied in the range from 100 µm

to 4 mm. To increase the hot electron population, the front surface of some tantalum

targets were coated with 10 µm plastic (parylene) or with glass microspheres of diameter

4− 5 µm.

A number of diagnostics were used to measure fast electrons, X-rays and the

specular reflection of the beam. The accelerated electrons escaping the target were

characterised with a magnetic electron spectrometer. It was placed at a distance of

20 cm from the target at an angle of 28◦ from the laser axis. The 1 mm entrance

aperture of the spectrometer subtended a solid angle of 20 µsr. A magnetic field of

0.28 T dispersed the electrons to enable energy resolved detection in the range of 1− 35

MeV. The spectrometer used absolutely calibrated BAS-SR imaging plates as a detector

[30, 31] to provide absolute flux of fast electrons from the interaction.

The specular reflection from the target was detected by a scattering screen made of

Zenith polymer and having an area of 30 cm × 30 cm. The scattering screen covered a

solid angle equivalent to f/1.67 on the target, which is greater than the f-number of the

focusing parabola f/2.5. The scattering screen was imaged using two cameras to monitor

the light incident on it at the first and second harmonic of the laser pulse. A band pass

interference filter centered at 520 nm and with a bandwidth of 40 nm (full width at

half maximum) was used with the camera monitoring the second harmonic and a long

pass filter with a cut-on wavelength of 1 µm was used with the camera monitoring the

first harmonic. The system was absolutely calibrated using low power continuous wave

lasers (at the first and second harmonic) incident on the scattering screen and being

imaged by the cameras.

Hard X-rays from 100 keV to 1 MeV were measured using a stack of LYSO

(Lu1.8Y.2SiO5:Ce) scintillators [32, 33]. Unlike traditional filter stack spectrometers

which use passive readouts of image plate [34], this diagnostic provides prompt data from

an imaging camera. As shown in figure 1a, the hard X-rays generated by bremsstrahlung

were measured at 18◦ above the equatorial plane along the laser axis. The stack of

scintillators shown in figure 2a was placed outside the vacuum chamber at a distance of

1.4 m from the target. The X-rays passed through a glass viewport of thickness 1 cm, and

a subsequent permanent magnet of field strength 0.2 T and with a 2 cm gap between the

poles. The magnet dispersed secondary electrons, preventing them from being incident

on the scintillators. Downstream of the magnet, a lead collimator of length 10 cm,

with an aperture of 8 × 12 mm2 was placed to collimate the X-ray beam prior to the

scintillators. The aperture subtended a solid angle of 49 µsr to the source. An example

of the data collected from the experiment is shown in figure 2b. The scintillator stack

included ten LYSO crystals and five tungsten filters, each of thickness 2 mm and cross

section 1.1 cm × 3 cm, as can be seen in figure 2a. The response of the stack to mono
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Figure 2. (a) A stack of scintillators and tungsten attenuators placed in a plastic

housing and behind a lead collimator. (b) Example of raw data in arbitrary units from

imaging the stack of scintillators during a laser shot. (c) Simulated energy deposited

in various scintillators in the stack (numbered 1− 10) as a function of incident photon

energy.
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Figure 3. X-ray emission in the range of 0.5 − 2.5 keV measured by a pin hole

camera from the front surface of the target while shooting a 2 mm thick Ta target.

energetic X-rays was simulated using the Monte Carlo code GEANT4 [35–37], and the

corresponding transfer matrix for energy deposited in each scintillator is shown in figure

2c. The stack of scintillators and the camera were covered by black aluminum foil to

prevent signal contamination from stray light or laser light. Calibration for the relative

efficiency of the individual scintillators in the stack was performed by exposing the stack

to a 22Na radioactive source. The response of the individual scintillators varied within

20%.

The interaction of the beam with the target was imaged using a grazing incidence

X-ray pinhole camera [38]. The camera imaged the front surface of the target and was
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Figure 4. Intensity distribution of the reflected light on the scattering screen at

second (top row) and first harmonic (bottom row) of the laser frequency. Each column

represents the data collected from a different shot. The target used in each shot is

indicated between the rows - 3 mm thick Ta with 10 µm thick parylene coating, 3 mm

thick Ta with 4− 5 µm diameter glass microspheres on the front surface, 3 mm thick

Ta, and 1 mm thick Ta (from left to right). The total energy incident on the scattering

screen is indicated at the bottom of each image. The dashed white circle in each image

represents the angular aperture of the incident off axis parabola if the target at focus

would be an ideal mirror. The white circle appears askew in the images because the

shape is compensated for the viewing angle of the cameras.

installed in the direction shown in figure 1a. It imaged soft X-rays in the range of

0.5 − 2.5 keV from the target with a magnification of 4.3. The data is shown in figure

3, and the full width at half max of the signal is ∼ 55 µm which is comparable to the

focal spot of the laser.

3. Experimental Results

3.1. Specular reflection and harmonic generation

In order to correlate bremsstrahlung generation with laser coupling at the target front

surface, we measured reflected energy in the specular direction. As seen in figure 4,

the reflection at the fundamental harmonic was affected by the choice of target. For

uncoated Ta targets, or for Ta targets covered with 4 − 5 µm glass microspheres, the

reflection at the fundamental harmonic was diffuse and always shifted to the right, while

for plastic coated Ta targets, the reflection was centered along the specular reflection

direction. The amount of energy reflected at the fundamental harmonic for plastic

coated targets was of the order of 50 J, which corresponds to about ∼ 17% of laser

energy. For other targets, the amount of energy at the fundamental harmonic incident

on the scattering screen was of the order of 30 J. However as can be seen from figure

4, most of the reflected radiation missed the scattering screen. We estimate that the

total amount of reflected laser light could exceed 70 J, which corresponds to a fraction

of ∼ 20 − 25% of the incident laser energy. This is consistent with measurements on
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Figure 5. (a) Geometry of the scattering screen monitoring the specular reflection.

(b) The fraction of reflected energy on plane of the scattering screen at first (circles)

and second harmonic (squares) of the laser frequency. The reflected energy of both

frequencies are normalized with laser energy and represented by colorbar in the figure.

similar laser system by Gray et al [39], where about 50% of laser energy was scattered

in the first harmonic.

In order to quantify the deviation of the reflected light at fundamental and second

harmonics from the specular direction, we define angles θ and φ as shown in figure 5a.

The center of the screen is the specular reflection direction and corresponds to θ = 0.

The angle φ defines the deviation of the maximum of the scattered radiation with respect

to the horizontal plane of laser incidence. Results from the entire experimental campaign

are summarized in figure 5b, which shows fraction of reflected energy on the scattering

screen at first (circles) and second harmonic (squares) of the laser frequency. The results

indicate that reflected light at first harmonic shifts towards the axis of incoming laser

beam while the light generated at second harmonic is centered on the scattering screen.

The deviation from the specular direction at fundamental harmonic is θ ∼ 11◦. The

circular markers in figure 5b were derived from the maximum of the part of reflected

energy which was incident on the scattering screen. However, as seen in most cases, the

maximum was clearly beyond the scattering screen which corresponds to a deviation

from specular direction of greater than 17◦. The only two shots for which the reflection

of fundamental harmonic was centered on the scattering screen correspond to targets

coated with 10 µm parylene.

The fundamental harmonic laser light is reflected from the location where the

electron density is equal to nc cos2 α, where α is the angle the light ray makes with

the local density gradient and nc = meε◦
(
2πc
eλ

)2
, is the plasma critical density. me is the

mass of an electron, ε◦ is the permittivity of free space, c is the speed of light in vacuum,

e is the electronic charge and λ is the wavelength of the fundamental harmonic. The

consistent bias in the direction of reflection of the fundamental harmonic and not in the

second harmonic leads to the following conclusions:
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Figure 6. Schematic of reflection of incident rays from a curved critical density

surface at the focus of a laser beam. The solid red arrows indicate the incident rays

of light and the dotted red lines indicate the reflected light from the curved critical

density surface. The reflected rays are veered to the right because of the curvature of

critical density surface.

(i) The critical density surface (which is very close to the location where incoming rays

are reflected) for the shots with uncoated Ta targets was curved outwards because

of plasma expansion initiated by the laser pre-pulse while it was relatively flat for

the case of targets coated with plastic. The curved critical density surface for the

uncoated target must have expanded at least by a distance h = r/ tanαi, where r is

radius of the focal spot and αi is the angle of incidence. This can be explained by a

simplified schematic shown in figure 6. For the reflected rays (red dotted rays) to be

reflected to the right of specular reflection direction, the rays should be incident on

critical density surface in the right half of the focal spot. Thus for our experimental

parameters of αi = 22◦, and focal spot radius of 22.5 µm, the expected height of

the critical density surface should be 56 µm.

(ii) The relativistically oscillating mirror mechanism is not the likely model applicable

for our experiment, because had the second harmonic been generated from

relativistic oscillation of the critical density surface, the second harmonic light

would have been reflected to the right, similar to the fundamental. Also, as shown

below, the density scale lengths expected in the experiment are much larger than

the laser wavelength. Thus, neither relativistically oscillating mirror nor coherent

wake field emission can be responsible for generating the second harmonic. Instead,

for our experiment it is likely that the second harmonic is generated by the mode

conversion of the resonant electric field at the critical density surface [10]. Such a

mode conversion mechanism is applicable to longer plasma density scale lengths.

Thus our experiment is different from similar experiments performed with high

contrast Ti:Sa lasers where the plasma density profile was very steep and a diffuse
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Figure 7. Simulated electron plasma density for laser pre-pulse incident on Ta

targets. The electron density was calculated by assuming that the Ta ions are

completely ionized. Colorbar on the right represents the electron density as a fraction

of the critical density nc. Solid lines represent the rays at fundamental harmonic

launched from the top right corner at an angle of incidence of 22◦. The color of the

solid rays (left colorbar) represents that angle of deviation of the reflected outgoing

ray, where 0◦ corresponds to direction of specular reflection from a mirror. The dashed

lines represent the propagation of the rays at the second harmonic which are launched

from the critical density surface. The white lines propagate outwards, while the black

rays propagate towards the target before being reflected near the plasma with electron

density ∼ 4nc. Distance units in µm.

emission at the second harmonic was attributed to relativistic oscillations of the

critical density surface and originating from the brightest intensities at the center

of laser focus [40].

Two dimensional hydrodynamic simulations with cylindrical symmetry were

performed using the FLASH code [41] to estimate the effect of pre-pulse on the expansion

of target material and formation of the critical density surface. The code uses arbitrary

mesh refinement of a finite volume Eulerian grid and includes ray tracing model of laser

energy deposition. The code also includes electron and radiation energy transport and

uses separate equations for electron, ion and radiation temperatures. The equations

of state and opacities of tantalum, carbon and hydrogen were calculated from the

QEOS model [42]. Simulations were performed in the two-dimensional axi-symmetric

geometry. The laser power corresponding to the ASE and the pedestal shown in figure

1b was focused on a 50 µm diameter spot. For the simulations, the incident ASE power

level was extended to 850 ps before the main pulse. Laser energy was absorbed via

inverse bremsstrahlung, and so the code was only able to simulate ablation and plasma

expansion up to the time t2 at 10 ps before the main pulse (see figure 1b), where the

focused intensity was less than 1015 W/cm2. The last 10 ps before the main pulse cannot

be simulated with a hydrodynamic code, but this has negligible effect on the plasma

density profile as the velocity of expanding plasma is of the order of 0.1 µm/ps.

Simulations were performed for tantalum (plastic coated tantalum) targets, and
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predicted a corona electron temperature of ∼ 85 eV (∼ 100 eV) during the ASE,

consistent with the laser ablation model [43]. During the ASE (before time t1 in figure

1b), the critical density surface expands to a distance of ∼ 7 µm (∼ 3 µm) from the

target surface. Thus, the critical density surface is planar and agrees with the observed

specular reflection from the plastic coated targets. However, it cannot explain the

observed shift in the reflection of fundamental harmonic from uncoated targets. Even

the two orders of magnitude increase in intensity during the pedestal (between the times

t1 and t2) was insufficient to significantly alter the critical density surface as the duration

of pedestal is only ∼ 50 ps.

The possible explanation of the experimentally observed shift in fundamental

harmonic invokes photo-ionization of the Ta plasma by the main laser pulse. While

carbon ions (Z= 6) are fully stripped in the pre-plasma, charge of tantalum ions (Z=73)

is ∼ 14. Therefore, the main pulse of relativistic intensity may increase the electron

density in the corona almost instantaneously by a factor of 5. To estimate the effect

photo-ionization might have on the critical density surface, we use the ion density profile

from the hydrodynamic simulation for Ta target and multiply it with an expected

maximum ion charge of 73 to get the electron density profile. This can be expected

as the ionization energy of Ta72+ is ≈ 70 keV. The resulting increase in electron density

moves the surface of reflection to 22 µm, as can be seen in figure 7. The effect of such

a density profile on the reflection of incoming rays and the direction of propagation

of second harmonic is also shown in figure 7. For imitating the propagation of light

within the Rayleigh length near the focus, individual rays at fundamental harmonic

were launched from the top right corner at an angle of 22◦ within a diameter of 45 µm,

corresponding to the focal spot in the experiment. As seen in figure 7, most of the

rays are reflected away from the specular direction towards the incoming laser axis

(i.e., corresponding to a negative angle of deviation) as observed in the experiment.

Generation of the second harmonic is described according to the theoretical model by

Erokhin et al [10]. As shown in figure 7 with dashed lines, these rays propagate such

that they preserve the transverse component of the momentum of the incoming rays

at fundamental frequency. The second harmonic rays are less refracted compared to

the fundamental frequency and show a more diffuse pattern similar to the experimental

observation. The plasma density profile and the ray propagation as shown in figure 7

provide only a qualitative illustration that photo ionization of tantalum can provide a

significantly curved critical density surface which can explain the measured deviation

of the reflected light in the experiment. A consistent calculation of the density profile

by including photo-ionization of tantalum and the corresponding light propagation and

generation of second harmonic is beyond the scope of the paper.

The energy measured at the second harmonic depends on the target material. The

reflected energy in the range of 0.2 − 0.3 J was measured at the second harmonic for

uncoated Ta targets, while the emission from plastic coated targets was about 30% lower.

A higher emission at the second harmonic for targets having high atomic number was

also reported by Raffestin et al [44]. The measured conversion efficiency of . 0.1% to the
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Figure 8. Experimental measurements of escaped electrons energy distribution from

a single shot for Ta target of thickness of 0.1 mm (red line) and 2 mm (blue line). The

dotted lines represent the corresponding noise level in the spectra.

second harmonic was significantly less than the conversion efficiency of ∼ 10% reported

for Ti:Sa lasers with similar focused intensity [16]. The conversion efficiency of laser

energy reported here into second harmonic is a lower bound because some radiation falls

beyond the scattering screen. The measured conversion efficiency provides an estimation

for the electron density profile near the critical density. According to the theoretical

model [10], the conversion efficiency Q2ω depends on three parameters: the angle of

incidence αi, the ratio of the density scale length to the laser wavelength ρ = 2πLn/λ,

and on the dimensionless laser amplitude a0 = eE0/meωc, as follows

Q2ω ∼ a20ρ
2 sin2 αiQ

2
res, (1)

where Qres ∼ ρ2/3 sin2 αie
−4ρ sin3 αi/3 is the efficiency of resonance absorption of the

laser near the critical density. The function Qres for our experimental parameters

strongly depends on plasma density scale length, it decreases from ∼ 10−2 to ∼ 10−5

for ρ increasing from 100 to 200. Similarly, assuming a0 ∼ 2 − 3 for the main pulse,

the efficiency of second harmonic emission decreases from 0.1 to 10−5. The measured

efficiency of 10−3 is within this range. We thus conclude that the plasma density scale

length in the experiment is in the range of 20− 30 µm.

3.2. Characterization of energetic electrons

The energy spectrum of escaped electrons was measured directly by a magnetic

spectrometer installed at a distance of 20 cm from the Ta target (see figure 1a). Figure 8

shows the measured electron spectrum for 100 µm and 2 mm thick targets. The electron

temperature estimated from the slope of the distribution is (2 ± 0.2) and (2.7 ± 0.3)

MeV respectively. The total energy of escaping electrons can be estimated assuming

the solid angle of emission of 0.4 sr, as it was measured in other similar experiments

[45]. Then, for the 100 µm thick target, a total number of electrons with energy greater

than 1 MeV escaping the target is of the order of 1011, which corresponds to a charge
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Figure 9. (a) Average brightness across the data from scintillator stack. The ten

peaks correspond to the ten scintillators, with the peak on the left corresponding to

low energy photons. (b) Expected photon spectra from the experiment generated by

Monte Carlo simulations. (c) Comparison of the predicted response of the scintillator

stack to the measurement.

of about 20 nC. The total energy carried by these electrons is ∼ 0.05 J, indicating a

conversion efficiency from laser energy to escaped electrons of the order of 10−4.

The electron temperature measured from laser interaction with a 100 µm thick

target is a factor of two higher than the ponderomotive scaling [46], assuming the

dimensionless laser field amplitude a0 = 2 − 3, but similar to measurements on other

high energy Nd:glass laser systems [47–49] and also predicted by simulations [50]. This

is explained by contribution of the direct laser acceleration and stochastic heating in a

plasma extended to 10 laser wavelengths or more [49].

The number of electrons detected from 2 mm thick targets is reduced by a factor

of about 50 and the maximum cutoff energy of electrons is decreased by about 6 MeV.

This is consistent with the expected energy lost by fast electrons while traversing 2

mm thick tantalum targets [51]. The lower energy electrons are scattered more within

the target compared to the high energy electrons. Thus, a higher fraction of high

energy electrons are able to escape the thick target and reach the electron spectrometer

compared to the low energy ones. This results in an apparent increase in hot electron

temperature measured by the spectrometer for thick targets, but it is only an artifact of

electron scattering in thicker targets and not a result of higher electron temperatures at

the laser focus. The electron spectrometer data thus shows that electron temperature

about 2 MeV and energies up to 20 MeV were generated in the laser plasma interaction.

3.3. Hard X-ray characterization

X-ray measurements from targets of two different thicknesses are shown in figure 9a. The

spectrum from the 100 µm thick Ta target is dominated by low energy photons of energy

100 − 200 keV, as evident from the significantly lower signal in the second scintillator

compared to the first. These photons are generated by a low energy, non-relativistic

component of electrons in plasma. Their bremsstrahlung emissivity depends inversely
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on the electron energy [52] and the target thickness is comparable to their stopping range

[51]. The emissivity of relativistic electrons is much smaller and the corresponding high

energy photons deposit their energy in all the scintillators in the stack (see also figure

2c), but the energy resolution as defined by the first few layers is insufficient to deduce

their energy distribution. The higher intensity of the data collected from 2 mm thick

targets and the relatively gradual decay along the scintillators (see figure 9a) implies

that the photon spectrum from the 2 mm thick Ta target is dominated by harder photons

and also has a higher flux.

These observations are supported with dedicated Monte Carlo simulations for

expected photon spectra shown in figure 9b. The simulations were performed with the

FLUKA code [53–55] and used the electron spectra shown in figure 8 as an input. The

electrons were injected along the direction of laser propagation and had an opening cone

angle of ±15◦ [25, 26]. The temperature of the photon distribution for energies greater

than 1 MeV was Tγ ∼ 0.7 MeV, i.e., of the same order as the electron temperature for

both the targets [56]. However, the low energy photons with energy less than ∼ 150

keV are significantly attenuated within the target [57].

The difference in the characteristic bremsstrahlung spectra from the different kinds

of targets make them useful for contrasting applications. Thin targets are used for

generating X-rays to probe high energy density physics experiments where X-rays with

energies of few tens of keV are required [26]. Thick targets providing photons with

energy of several MeV are used for applications related to photo-nuclear activation and

for measuring cross section for transmutation of waste products [20]. From the measured

brightness of the scintillators, we expect a target thickness of 2 − 3 mm to be optimal

for bremsstrahlung production for photons with energy of few MeV [24].

The spectra from the Monte Carlo simulations shown in figure 9b were convolved

with the response matrix of the scintillator stack shown in figure 2c to predict the

response of the diagnostic. Only one normalization constant was adjusted to minimize

the Chi-squared residue for fitting the spectra from both targets. A good agreement

with the experimental measurement can be seen in figure 9c. This further confirms that

the hot electrons with a mean energy of 2 MeV is the dominant component of laser

accelerated electrons.

4. Conclusion

In summary, this paper presents results from an experiment in which a short pulse from

a Nd:glass laser was focused on Ta target of thickness ranging from 100 µm to 4 mm

at an intensity of 1019 W/cm2. Measurements of the optical emission in the specular

reflection direction provide information about a pre-plasma density profile which extends

to several tens of µm because of the photo-ionization of expanding tantalum plasma. The

amount of energy specularly reflected in the fundamental harmonic is as high as 25%.

Efficiency of the laser energy conversion into second harmonic confirms the estimated

pre-plasma scale length of 20− 30 µm.
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The hot electrons are characterized by measuring the energy spectrum for 100 µm

and 2 mm thick Ta targets. The measured electron temperature of 2 MeV and

dependence of the bremsstrahlung photon yield on the target thickness are in close

agreement with results from Monte Carlo simulations. These results are important for

development of new efficient photon sources and for designing hot electron diagnostic

methods in relativistic laser plasma interactions. Previous experiments reported up to a

two-fold enhancement in X-rays from targets coated with plastic [4]. However, we only

measured about a 25% increase, which is within the uncertainty limit due to shot-to-shot

fluctuation.
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