Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension d ≥ 3 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension d ≥ 3

Résumé

For the Bargmann-Fock field on R d with d ≥ 3, we prove that the critical level c (d) of the percolation model formed by the excursion sets {f ≥ } is strictly positive. This implies that for every sufficiently close to 0 (in particular for the nodal hypersurfaces corresponding to the case = 0), {f = } contains an unbounded connected component that visits "most" of the ambient space. Our findings actually hold for a more general class of positively correlated smooth Gaussian fields with rapid decay of correlations. The results of this paper show that the behaviour of nodal hypersurfaces of these Gaussian fields in R d for d ≥ 3 is very different from the behaviour of nodal lines of their two-dimensional analogues. Contents
Fichier principal
Vignette du fichier
main_results.pdf (734.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03320867 , version 1 (17-08-2021)

Identifiants

Citer

Hugo Duminil-Copin, Alejandro Rivera, Pierre-François Rodriguez, Hugo Vanneuville. Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension d ≥ 3. 2021. ⟨hal-03320867⟩
59 Consultations
65 Téléchargements

Altmetric

Partager

More