Article Dans Une Revue Bulletin des Sciences Mathématiques Année : 2021

Oscillatory integrals and fractal dimension

Résumé

We study geometrical representation of oscillatory integrals with an analytic phase function and a smooth amplitude with compact support. Geometrical properties of the curves defined by the oscillatory integral depend on the type of a critical point of the phase. We give explicit formulas for the box dimension and the Minkowski content of these curves. Methods include Newton diagrams and the resolution of singularities.

Dates et versions

hal-03301363 , version 1 (27-07-2021)

Identifiants

Citer

Jean-Philippe Rolin, Domagoj Vlah, Vesna Županović. Oscillatory integrals and fractal dimension. Bulletin des Sciences Mathématiques, 2021, 168, pp.102972. ⟨10.1016/j.bulsci.2021.102972⟩. ⟨hal-03301363⟩
23 Consultations
0 Téléchargements

Altmetric

Partager

More