PKSpell: Data-Driven Pitch Spelling and Key Signature Estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

PKSpell: Data-Driven Pitch Spelling and Key Signature Estimation

Résumé

We present PKSpell: a data-driven approach for the joint estimation of pitch spelling and key signatures from MIDI files. Both elements are fundamental for the production of a full-fledged musical score and facilitate many MIR tasks such as harmonic analysis, section identification, melodic similarity, and search in a digital music library. We design a deep recurrent neural network model that only requires information readily available in all kinds of MIDI files, including performances, or other symbolic encodings. We release a model trained on the ASAP dataset. Our system can be used with these pre-trained parameters and is easy to integrate into a MIR pipeline. We also propose a data augmentation procedure that helps retraining on small datasets. PKSpell achieves strong key signature estimation performance on a challenging dataset. Most importantly, this model establishes a new state-of-the-art performance on the MuseData pitch spelling dataset without retraining.
Fichier principal
Vignette du fichier
PKSpell.pdf (419.13 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03300102 , version 1 (26-07-2021)

Identifiants

  • HAL Id : hal-03300102 , version 1

Citer

Francesco Foscarin, Nicolas Audebert, Raphaël Fournier-S'Niehotta. PKSpell: Data-Driven Pitch Spelling and Key Signature Estimation. International Society for Music Information Retrieval Conference (ISMIR), Nov 2021, Online, India. ⟨hal-03300102⟩
250 Consultations
132 Téléchargements

Partager

More