
HAL Id: hal-03300102
https://hal.science/hal-03300102v1

Submitted on 26 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PKSpell: Data-Driven Pitch Spelling and Key Signature
Estimation

Francesco Foscarin, Nicolas Audebert, Raphaël Fournier-S’Niehotta

To cite this version:
Francesco Foscarin, Nicolas Audebert, Raphaël Fournier-S’Niehotta. PKSpell: Data-Driven Pitch
Spelling and Key Signature Estimation. International Society for Music Information Retrieval Con-
ference (ISMIR), Nov 2021, Online, India. �hal-03300102�

https://hal.science/hal-03300102v1
https://hal.archives-ouvertes.fr

PKSPELL: DATA-DRIVEN PITCH SPELLING AND
KEY SIGNATURE ESTIMATION

Francesco Foscarin
CNAM Paris

francesco.foscarin@cnam.fr

Nicolas Audebert
CNAM Paris

nicolas.audebert@cnam.fr

Raphaël Fournier S’niehotta
CNAM Paris

fournier@cnam.fr

ABSTRACT

We present PKSpell: a data-driven approach for the joint
estimation of pitch spelling and key signatures from MIDI
files. Both elements are fundamental for the production of
a full-fledged musical score and facilitate many MIR tasks
such as harmonic analysis, section identification, melodic
similarity, and search in a digital music library.

We design a deep recurrent neural network model that
only requires information readily available in all kinds of
MIDI files, including performances, or other symbolic en-
codings. We release a model trained on the ASAP dataset.
Our system can be used with these pre-trained parameters
and is easy to integrate into a MIR pipeline. We also pro-
pose a data augmentation procedure that helps re-training
on small datasets.

PKSpell achieves strong key signature estimation per-
formance on a challenging dataset. Most importantly, this
model establishes a new state-of-the-art performance on the
MuseData pitch spelling dataset without retraining.

1. INTRODUCTION

Music listening is a complex cognitive process that involves
the organization of sound events in time and frequency
structures. This process creates patterns of thought that
depend either on general principles of cognitive psychology
or on prior knowledge and common practices of the relevant
musical style system [1]. As far as tonal music is concerned,
pitches are related and arranged to create a complex system
of perceived stability and instability that gravitates around a
tonal center, usually identified by a scale or a chord [2]. In
this paper, we focus on two aspects of the tonal framework:
pitch spelling and key signature.

1.1 Pitch Spelling

In tonal music, the classification of pitches in 12 pitch-
classes, each one uniquely identifying a set of frequencies
that are n octaves apart, is enriched with some tonal infor-
mation and creates the higher-level representation of tonal-
pitch-classes. Each tonal-pitch-class consists of a diatonic

© F. Foscarin, N. Audebert, and R. Fournier S’niehotta. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: F. Foscarin, N. Audebert, and R. Fournier
S’niehotta, “PKSPELL: Data-Driven Pitch Spelling and Key Signature
Estimation”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

Figure 1. Pitch-classes and corresponding tonal-pitch-
classes.

name in [C,D,E, F,G,A,B] and an accidental among
double-flat ([), flat (Z), natural(^), sharp (\), double-sharp
(]). 1 For every pitch-class, there are multiple correspond-
ing tonal-pitch-classes, called enharmonic equivalents (see
Fig. 1). The task of choosing a single name between the
possible enharmonic equivalents is called pitch spelling.

1.2 Key Signature

Key signatures inform about the tonal center of the piece
and are commonly identified in music by a certain number
of sharps or flats (whose positions are fixed) or by a tonal-
pitch-class (see Fig. 2). Combined with pitch spelling,
they also improve readability, according to the principle of
notation parsimony [3], i.e., the minimization of the number
of symbols (accidentals) displayed in the score.

Tightly related to the key signature, the key also adds
information about the mode (major or minor). Keys are con-
sidered in literature either on a global scale (i.e., one global
key for one piece) or a local scale (i.e., multiple local keys
for one piece) resulting from modulations and tonicizations
(see [4] for a complete description of these concepts). A
formalization of the relation between local keys, global key,
and key signatures is missing in the literature and it is not
the goal of this paper to have a musicological discussion on
this topic. As a first approximation, the key signature can

1 More accidental types, like triple sharps could exist in theory, but they
are not used in common music notation.

Figure 2. Corresponding key signatures representation in a
musical score, tonal-pitch-class and number of accidentals.

be considered a global feature of the piece. It occasionally
changes if the tonal center shifts significantly from its previ-
ous position, although it does not move as much as the local
key. A possible motivation is that, since the key signature
is employed in music notation, the principle of parsimony
applies and it “smoothes” short key changes.

1.3 Pitch Spelling and Key Signature Estimation

Multiple reasons motivate systems that perform pitch
spelling and key signature estimation. Such information is
necessary for the creation of full-fledged musical scores,
e.g., as the last step of automatic music transcription or
music generation systems. Furthermore, those elements are
employed for other MIR tasks: key signature annotations
are useful for music search and section identification, and
pitch spelling facilitates harmonic analysis and melodic pat-
tern matching [3, 5]. However, they are not represented in
“low-level” formats, such as audio and MIDI files 2 , which
constitute most of the available digital musical encoding.

1.4 Related Works

Several authors have developed automatic systems that per-
form pitch spelling from MIDI data. Most of them consist
in algorithmic approaches based on musicological insights
only, without any learning. Some authors think the selec-
tion of the appropriate tonal-pitch-class is a function of
the local key [6, 7] or a combination of the local key and
voice-leading information [5,8], i.e., the temporal evolution
of notes within each voice. Others base pitch spelling on a
type of interval optimizations [9], on the principle of nota-
tional parsimony, or a combination of the two criteria [3].
Another formulation of the problem as a generative proba-
bilistic model is proposed by Teodoru et Raphael [10]. They
model voices with independent Markov chains conditioned
on a hidden state that contains the local key information.

For evaluation purposes, the early algorithmic ap-
proaches were compared by Meredith [7] on a dataset of
216 pieces by 8 baroque and classical composers. The
highest accuracy at the time was obtained by Meredith’s
ps13 algorithm, especially when small temporal variations
were introduced to simulate a MIDI file generated from a

2 Albeit key signatures can be encoded in a MIDI file as metadata, they
are often absent.

performance. Teodoru and Raphael [10] also tested their ap-
proach on the same dataset (without tempo deviation) with
high accuracy. More recent works [9, 11] did not increase
the total accuracy. In this paper, we compare our results
with Meredith’s ps13 algorithm and Teodoru and Raphael’s
approach with conditional independent voices (CIV).

While those approaches yield a very high accuracy
(≥ 99% of notes are correctly spelled), they are not de-
signed to be easily employed in larger MIR pipelines. ps13
has 3 different outputs, whose tonal pitch classes are trans-
posed by diminished seconds (e.g., one piece in C\, one
in DZ and one in B]) and does not indicate how to select
the “best” version. Both ps13 and CIV parameters are set
by hand 3 , thus making them difficult to generalize across
composers and datasets. Moreover, the code of CIV is not
publicly available. Finally, both approaches do not provide
key signatures, so they cannot be used alone to produce a
complete pitch encoding for a musical score. Other pitch
spelling systems are implemented in music notation soft-
ware (e.g., Finale, MuseScore) but no information about
their functioning mechanism and performance is available
and they require key signatures as input.

Little attention has been given in the literature to the key
signature estimation problem from MIDI files, in favor of
the related task of key estimation [12–15] (see Section 1.2).
A direct comparison of our results with other approaches is
therefore not possible, but we put our results into perspec-
tive by comparing them with the state-of-the-art approach
for global key estimation of López et al. [15].

1.5 Our approach

We propose the PKSpell system for jointly estimating pitch
spelling and key signature. It yields high accuracy, is easy
to integrate into a MIR pipeline, and works on any kind
of MIDI file (including MIDI generated from human per-
formance) or other symbolic encodings. Trained on the
ASAP dataset [16], PKSpell achieves strong key signature
estimation performance on the Albrecht dataset [14] and es-
tablishes a new state-of-the-art pitch spelling performance
on the MuseData dataset [7] without retraining. Implemen-
tation and pre-trained model are publicly available 4 .

We design a deep learning approach based on recurrent
neural networks (RNN) that can model correlations in input
sequences of variable lengths [17]. We use a dedicated
network structure inspired by musicological considerations
on the relation between local keys, pitch spelling, and key
signatures (details in Section 2.3). Our system models each
input note with a pair (pitch-class, duration) that does not
require high-level temporal information such as downbeat
and time signature or voice separation to be produced. With
the proposed dedicated preprocessing of the note durations
and data augmentation procedure (see Sections 2.1 and 2.2),
our approach can generalize to different tempos, time signa-
tures, and key signatures. This makes it possible to train our
model on a small-size dataset of musical scores. Moreover,

3 CIV could be trained, but the authors report that the results are worse
than with handset parameters.

4 See https://github.com/fosfrancesco/pkspell

by cross-validating on a separated dataset, we show that
with the pre-trained parameters, our system can correctly
handle a variety of different tonal pieces. Finally, our multi-
task approach to pitch spelling and key signature estimation
increases the performance on both tasks.

2. METHOD

The pitch spelling and key signature information are the
results of the relations between different notes. We employ
a recurrent neural network architecture, which can learn all
those relations for pieces of different lengths. This class of
models employs a big number of parameters to correctly
learn the input-output function. Our choice of input/output
representation helps to keep their number as low as possible,
and the data augmentation procedure we propose allows us
to learn them from a relatively small dataset.

2.1 Input and output formats

Multiple approaches have been proposed for the problem
of transforming a MIDI file into a sequential representa-
tion [18–20]. Since we target all kinds of MIDI inputs
(see [21] for a description of different MIDI formats), we
cannot assume to have information such as voice separation,
time signature, downbeat, and beat positions. We employ
a simple note-based representation that was proposed by
Lopez [15]: a piece is modeled as a sequence of notes
ℵ = {η1, η2, ..., ηN}, ordered according to the temporal
position of their onsets. If multiple notes have the same
onset position, we take the notes in low-to-high order. 5 For
each note η, we consider two features: pitch-class p[η] and
duration d[η]. The usage of note durations is common in
key estimation approaches (e.g., [1, 12]), and stems from
the musicological intuition that longer notes have a stronger
impact than shorter notes in defining the tonal context.

To group all possible note durations in a limited number
of classes, we run an (unsupervised) 1-dimensional k-means
algorithm for all note durations (see Fig. 3). We use the
dynamic programming algorithm presented by Gronlund
et al. [22] that has complexity O(kN + NlogN), for k
classes and a sequence of length N . We select k = 4. This
classification cannot be considered more than a rough indi-
cation of relative duration and it is not meant to precisely
identify beats, downbeats, and other metrical information.
Moreover, it will show its limits if there are tempo changes
or time signature changes inside the piece. Yet, we found
that it improved our model results at a small computational
cost and, compared to other possible approaches, e.g., quan-
tization to some discrete durations, it has the advantage of
generalizing to different tempos and time signatures.

The output is a sequence of tonal-pitch-classes τ [η]
(among the 35 in Fig. 1) and a sequence of key signatures
κ[η] (among the 15 in Fig. 2), one for each note η in input.
Computing a key signature for each note might seem exces-
sive, since we may expect the key signature to change only
a few times during a piece. However, this is necessary as

5 However, the ordering choice does not impact the results.

0.000

0.002

0.004

0.006

de
ns

ity

cluster
0
1
2
3

0 500 1000 1500 2000 2500
duration

0.001

0.002

de
ns

ity

Figure 3. One-dimensional clustering of note durations for
2 pieces expressed in milliseconds. Each vertical line repre-
sent a duration and dotted grey lines are cluster centroids.
The piece at top is faster than the piece at the bottom. To
facilitate the understanding, the kernel density estimation
of the note durations is also displayed.

we do not know in advance how many changes there are in
a piece, nor do we have precise metrical information.

2.2 Data augmentation

Studies in cognitive psychology [23] have proved that lis-
teners perceive as identical two pieces if all their notes
are transposed by the same interval. It is common to use
this property of music perception to augment a dataset by
transposition [18, 24]. For our goals, we must transpose
pitch-classes (input) and tonal-pitch-classes and key signa-
tures (output) to have a correct ground truth for training.

The possible transpositions of tonal-pitch-classes and
key signatures move through a spiral of fifths [12]. When
reported to the same octave, each transposition can be iden-
tified with a diatonic interval, notated with an interval num-
ber and type, e.g., augmented 4th, perfect 5th, minor 2nd.
For pitch-classes, instead, we are limited to 12 chromatic
intervals that can be simply identified by integers. In Fig. 4
we report the most common diatonic intervals (the ones
closer to the center of the spiral of fifths) associated with
their respective chromatic interval.

Since our goal is to learn an input-output mapping, we
cannot accept multiple sequences of tonal-pitch-classes that
correspond to the same sequence of pitch-class. That means
that we need to select only one diatonic interval for every
chromatic interval. To do so, we use a heuristic based on
the principle of parsimony, i.e., we choose the diatonic
transposition which generates the set of tonal pitch classes
with the lowest number of accidentals. For each piece
and each chromatic transposition, we transpose the tonal
pitch class by all corresponding diatonic intervals, then we
discard transpositions that contain non-accepted accidentals
(e.g., triple sharps). Finally, we select as the “valid” diatonic
transposition the one with the smallest count of accidentals,
where [and] count as 2, and \ and Z count as 1. This allows
us to produce up to 11 variants for each piece, although
the number is lower if all diatonic intervals for a certain

Figure 4. Chromatic intervals (orange), corresponding dia-
tonic intervals (black) and examples from the tonal-pitch-
classC. The abbreviation for diatonic types are “P”: perfect,
“M”: major, “m”:minor, “A”: augmented, “d”: diminished,
“AA”: doubly augmented.

chromatic interval generate a discarded transposition.

2.3 RNN Architecture

With our input and output choice, the pitch spelling and key
signature estimation problems for one piece can be seen as
a sequence of multi-task classification problems. Our goal
is to assign to each input (i.e., pitch-class p + duration d)
two labels: one among the available tonal-pitch-classes τ
and one among the key signatures κ. Formally, for a piece
C and each note η ∈ ℵC we seek to learn the function
F : x[η] → y[η], where x[η] = p[η], d[η] is our input and
y[η] = τ [η], κ[η] is our output.

We want the output for each note to be dependent on
the notes around it, and the length of our sequences (i.e.,
the number of notes in a piece) is not fixed. We select as
the core of our model a recurrent neural network (RNN),
that can store information about the “context” in its internal
state for variable-length sequences of inputs. Such a model
can be trained in a supervised fashion on an annotated
dataset that contains for each piece a sequence of pairs
{(x[η], y[η]),∀η ∈ ℵC}. We optimize the parameters θ
w.r.t. a classification loss function L:

θ∗ = argmin
θ

∑
C

∑
η∈ℵC

L(Fθ(x[η]), y[η])

We select L as the sum of two cross-entropy-loss func-
tions [25], one for the key signature and one for the tonal-
pitch-class. Since L is differentiable, the model parameters
can be optimized using Stochastic Gradient Descent (SGD).

We use a bidirectional RNN to tie the output at a certain
note to the past and future inputs. From a musicological
standpoint, “seeing the future” is useful e.g., to know where
a certain note will resolve. As shown in Fig. 5, the model
has two recurrent layers, each one coupled with a linear
layer. The first produces the tonal-pitch-classes and the
second produces the key signatures. This architecture is
based on the musicological hypothesis that pitch spelling
depends on the local key [6, 7] and the key signature is a
“smoothed” version of the local key. Assuming the first
layer encodes information about the local key, we aggregate
this information in the second recurrent layer to infer the
key signature.

Figure 5. Model architecture. For each pitch-class p and
duration d in input, a tonal-pitch-class τ and a key signature
κ are produced.

According to the principle of multi-task learning [26,27],
jointly producing two outputs allows the model to learn
shared representations, thus enabling a better generalization
on both our original tasks.

3. EXPERIMENTS AND RESULTS

We train our model on the pieces from the ASAP
dataset [16]. The dataset provides 222 compositions from
several composers over two centuries: Bach, Beethoven,
Chopin, Schubert, Haydn, Liszt, Schumann, Mozart, Rach-
maninoff, Ravel, Debussy, Scriabin, Glinka, Brahms,
Prokofiev, Balakirev. We remove two pieces because they
overlap with the dataset that we use for pitch spelling eval-
uation (see Section 3.2). All the information we need for
training can be easily extracted from digitally encoded mu-
sical scores, i.e., MusicXML scores for the ASAP dataset.
Such scores contain note durations, tonal-pitch-classes, and
key signatures. From tonal-pitch-classes it is straightfor-
ward to produce pitch-classes using the function in Fig. 1.
Duration and pitch-classes are then encoded as one-hot
vectors, concatenated to a single vector, and fed into our
model. Training on real MIDI performances could also
be performed as long as a note-wise score to performance
alignment is available. Unfortunately, ASAP does not pro-
vide this alignment, and other datasets that provide such
information are considerably smaller.

To evaluate the benchmarked approaches, we use the
accuracy, i.e., the percentage of correctly inferred symbols.
We also use the error rate (1 − accuracy) to improve the
readability of some results.

3.1 Hyperparameter search

Our model has five major hyperparameters to consider: type
of optimizer, learning rate, batch size, type of recurrent cell,
and number of parameters (number of layers and hidden
state dimension for each RNN). To find the best combina-
tion, we perform a grid search by training our model on
85% of ASAP (187 pieces, 2033 after data augmentation)
and validating on the remaining 15% (33 pieces).

Optimizer. We compare various optimizers from the
deep learning literature, including gradient descent algo-
rithms with adaptive learning rates or momentum. We find
no significant difference in accuracy; though Adam [28] is
easier to tune and converges faster than traditional SGD.

Learning rate. All networks are trained for 40 epochs,
i.e., 40 passes over the whole augmented training set. We
find that a starting learning rate of 0.01, divided by 10 after
20 epochs, allows for fast and robust convergence.

Batch size. We feed mini-batches of sequences in paral-
lel to our model. For batches larger than 32, changing the
batch size has no impact on performance. Larger batches
tend to increase convergence speed but with a higher GPU
memory consumption; thus we settle for a batch size of 32.

Recurrent cell. We compare LSTM [29] and GRU [30]
cells. While the accuracy is similar with the two cells, we
find that GRU cells are faster and use less memory.

Number of parameters. There are two ways to increase
the number of parameters in the RNN: widen it by increas-
ing the hidden dimension, or deepen it by stacking more
layers. More parameters generally entail better performance
on the train set but not necessarily on the test set due to
overfitting. Dropout [31] is required to alleviate overfitting
for a depth greater than 1 or a hidden dimension higher than
≈ 200. For each of the two RNN in our final model, we set
depth 1 and hidden dimension 300 (150 in each direction).

3.2 Main results

We evaluate the pitch spelling and key signature estimation
results separately.

For pitch spelling, we compare with ps13 and CIV on
the MuseData dataset proposed by Meredith [7]. It consists
of 216 pieces (195 972 notes) from 8 classical composers
(see Table 1) and is also available in a “noisy” version,
where some noise is artificially introduced in the onset and
offset positions to roughly simulate human performances.
There are no pieces in common with our training dataset.
It is worth noting that both ps13 and CIV tune their pa-
rameters on the test data; this can induce overfitting and
thus an optimistic estimate of the system’s performance.
We may notice, for example, that the pieces used to train
CIV (all Beethoven’s, one-third of Haydn’s, and one-third
of Mozart’s), correspond to the pieces in which CIV has
the highest performance compared to our system. More-
over, both ps13 and our system are evaluated on the “noisy”
dataset, while CIV is evaluated on the quantized dataset. We
report our evaluation results in Table 1. PKSpell establishes
new state-of-the-art performances on the pitch spelling task.
It does 256 errors, around 25% less than CIV (343) and 75%
less than ps13 (1064). The learned model has an excellent

generalization, going close to zero error if the pieces have a
unique strong tonal center (e.g., Corelli, Handel, Telemann,
Vivaldi). More difficult are instances when multiple modula-
tions happen during a short time span (e.g., Bach chorales),
and especially around abrupt key signature changes (e.g.,
Beethoven). The error count for Haydn is particularly high
because of the piece Symphony No. 100 in G major, where,
at measure 166 there is a sudden change from DZ major to
C\, to make the music easier to read with fewer accidentals.
This kind of enharmonic key change is rare in music and our
system fails to detect it. 6 It is worth noticing that, while
our model allows a pitch-class to be classified in a non-
correspondent tonal-pitch-class (e.g., 2→G\), this kind of
error is completely absent in our results. Our model learns
very easily to perform the mapping of Fig. 1, especially
when using the augmented dataset.

While a direct evaluation of the key signature estimation
is not possible due to the lack of other approaches targeting
this task, we put into perspective our results by evaluating
our system on the Albrecht dataset [14] and comparing it
with the state-of-the-art results for the global key signature
estimation of López et al. [15]. Our task can be considered
easier because we do not need to separate major keys from
minor keys; however, while we are considering all enhar-
monic key signatures (e.g., DZ with five flats is considered
equivalent to C\ with seven sharps), López is flattening all
enharmonic versions of a key to the same class. After re-
moving the pieces in common with ASAP, we are left with
932 pieces. We correctly classify 97% of the global key
signatures. For comparison, López et al. correctly classify
94% of the keys. Of the 29 misspelled pieces, eight are
mapped to enharmonically equivalent key signatures, in
particular, there is confusion between the C\ and DZ and
between F\ and GZ. The remaining 21 wrong estimations
are off by one accidental, i.e., the predicted key signature is
the relative 4th or 5th of the true key signature.

3.3 Ablation Studies

We perform several ablation studies to understand how our
design choices impact the model performance. For each
experiment, we remove one element from PKSpell and see
how this affects the model performance. If the element is
useful, we expect a reduction in the accuracy (see Fig. 6).

Single RNN. As previously introduced, PKSpell uses
two recurrent layers, one for pitch spelling and another
for key signature estimation. To evaluate this idea, we
build a model that has a single recurrent layer for both
tasks. A detailed analysis shows that one-layer-PKSpell
slightly outperforms the two-layer model when the tonal
center is very stable. However, the two-layer model majorly
improves the results for more pieces with modulations and
key changes. On the ensemble of considered composers,
the usage of two separate RNN layers boosts the accuracy,
especially for key signature estimation (+3%).

Separate learning. Multi-task learning can help lever-
age domain-specific information contained in related but

6 ps13 manually transposes half of this piece before evaluation. There
is no indication of its treatment by CIV.

Bach Beethoven Corelli Handel Haydn Mozart Telemann Vivaldi Total

ps13 [7]
0.17%
(42)

1.41%
(345)

0.04%
(11)

0.26%
(68)

0.94%
(220)

0.23%
(282)

0.34%
(82)

0.39%
(114)

0.59%
(1064)

CIV [10]
0.10%
(25)

0.10%
(25)*

0.08%
(20)

0.02%
(6)

0.45%
(110)*

0.33%
(79)*

0.05%
(13)

0.27%
(65)

0.18%
(343)

PKSpell
0.08%

(19)
0.23%
(56)

0.02%
(5)

0.02%
(5)

0.49%
(121)

0.14%
(35)

0.02%
(4)

0.04%
(11)

0.13%
(256)

Table 1. Error rate and the number of errors (between parentheses) for different composers in Meredith’s Musedata pitch
spelling dataset [7]. For ps13 and CIV, we took these values from the respective papers. The symbol * marks the results for
the composers used to set the parameters for CIV. The best result for each composer is highlighted in bold.

Figure 6. Accuracies for the ablation tests. Results are
reported on the validation set of ASAP (33 pieces).

different tasks. This is the case in our system, as the accu-
racy for both PS and KS estimation improves when trained
jointly compared to two distinct RNNs used separately.

No data augmentation. In theory, more data should
improve the generalization of the model, provided that the
augmented samples are representative of future observa-
tions. In our case, data augmentation provides a significant
accuracy boost, especially for key signature estimation.

No durations. We use the duration of notes as an input
feature for our model. While this is common in key estima-
tion systems, multiple approaches to pitch spelling in the
literature do not use this information [3, 7]. We find that
durations improve our results, especially for KS estimation.

Unidirectional RNN. The RNN layers we consider can
process a sequence either in one direction (usually left-to-
right, LTR) or in a bidirectional manner, both LTR and RTL.
We expect the bidirectional processing to perform better
since the model also “sees” future notes. In our ablation
experiment, both PS and KS accuracies increase by more
than 1 point by using both directions (we keep the same
number of parameters by dividing the hidden dimension by
2 when we use the bidirectional model). Note, however,
that the unidirectional LTR model still works reasonably
well and could be used for a real-time version of our system.

4. CONCLUSIONS AND PERSPECTIVES

We introduce PKSpell, a novel system for joint pitch
spelling and key signature estimation that reaches new state-
of-the-art performances on pitch spelling, is easy to inte-
grate into a MIR pipeline, and works on any MIDI file,
including human performances. To reach this goal, we per-
form multi-task learning with an RNN model inspired by
musicological insights. We propose a data augmentation
procedure and a preprocessing of note durations to general-
ize to different transpositions, tempos, and time signatures.
We consider a minimal set of inputs (pitch-classes and note
durations) that do not require high-level information such
as time signature, voice separation, and downbeat position.
The pre-trained model we provide can be used “as-is” and
offers good performance for classical music of different
centuries. Thanks to the ablation study, we directly observe
the impact of the design choices of our system.

Possible future work concerns the evaluation of PKSpell
on different styles of tonal music e.g., pop, folk, and jazz.
We expect it to perform well on pop and folk due to their
low harmonic complexity. Jazz can be more challenging
because of the extensive use of chord extensions and alter-
ations. It is also interesting to study how non-strictly-tonal
music in the ASAP dataset (e.g., Debussy) impacts the train-
ing of our model. While concepts such as key signature
and pitch spelling are less significant for non-tonal music,
they are still used to write musical scores. Since PKSpell
is not based on strong tonal principles, we expect it to be
able to learn those rules as long as some coherent rules exist
for pitch spelling and a large enough dataset is provided.
A more in-depth analysis can be performed on the treat-
ment of rhythmical information, by considering different
ways to group duration values and by varying the number
of groups. Other improvements may be done on the model
architecture: the state of the art for sequence-to-sequence
problems has shifted toward recurrent attentional models
and transformers. However, the length of the sequences we
are considering (more than 15 000 notes for certain pieces)
poses a considerable challenge for full attentional mecha-
nisms, whose memory requirements are quadratic with the
input sequence length. Models that scale linearly have been
recently proposed [32, 33] and could be a solution for this
problem. Finally, it would be interesting to employ our
model to perform local and global key estimation.

5. ACKNOWLEDGMENTS

We thank David Meredith for releasing the MuseData cor-
pus and ps13 Lisp implementation. Additional thanks go to
Tim Bradshaw for help running ps13 on current systems.

6. REFERENCES

[1] C. L. Krumhansl, Cognitive foundations of musical
pitch. Oxford University Press, 1990.

[2] R. Van Egmond and D. Butler, “Diatonic connotations
of pitch-class sets,” Music Perception, vol. 15, no. 1, pp.
1–29, 1997.

[3] E. Cambouropoulos, “Pitch spelling: A computational
model,” Music Perception, vol. 20, no. 4, pp. 411–429,
2003.

[4] N. N. López, L. Feisthauer, F. Levé, and I. Fujinaga,
“On local keys, modulations, and tonicizations,” in Digi-
tal Libraries for Musicology (DLfM), 2020.

[5] D. Temperley, The cognition of basic musical structures.
MIT Press, 2001.

[6] E. Chew and Y.-C. Chen, “Real-time pitch spelling
using the spiral array,” Computer Music Journal, vol. 29,
no. 2, pp. 61–76, 2005.

[7] D. Meredith, “The ps13 pitch spelling algorithm,” Jour-
nal of New Music Research, vol. 35, no. 2, pp. 121–159,
2006.

[8] H. C. Longuet-Higgins and M. Steedman, “On inter-
preting Bach,” Machine intelligence, vol. 6, 1971.

[9] B. Wetherfield, “The minimum cut pitch spelling algo-
rithm,” in International Conference of Technologies for
Music Notation and Representation (TENOR). Ham-
burg University for Music and Theater, 2020, pp. 149–
157.

[10] G. Teodoru and C. Raphael, “Pitch Spelling with Con-
ditionally Independent Voices.” in International Society
for Music Information Retrieval Conference (ISMIR),
2007, pp. 201–206.

[11] A. K. Honingh, “Compactness in the Euler-lattice: A
parsimonious pitch spelling model,” Musicae Scientiae,
vol. 13, no. 1, pp. 117–138, 2009.

[12] E. Chew, “The spiral array: An algorithm for determin-
ing key boundaries,” in International Conference on
Music and Artificial Intelligence. Springer, 2002, pp.
18–31.

[13] D. Temperley and E. W. Marvin, “Pitch-class distribu-
tion and the identification of key,” Music Perception,
vol. 25, no. 3, pp. 193–212, 2008.

[14] J. Albrecht and D. Shanahan, “The use of large corpora
to train a new type of key-finding algorithm: An im-
proved treatment of the minor mode,” Music Perception:

An Interdisciplinary Journal, vol. 31, no. 1, pp. 59–67,
2013.

[15] N. N. López, C. Arthur, and I. Fujinaga, “Key-finding
based on a hidden Markov model and key profiles,” in
Digital Libraries for Musicology (DLfM), 2019, pp. 33–
37.

[16] F. Foscarin, A. Mcleod, P. Rigaux, F. Jacquemard, and
M. Sakai, “ASAP: a dataset of aligned scores and perfor-
mances for piano transcription,” in International Society
for Music Information Retrieval Conference (ISMIR),
2020.

[17] A. Sherstinsky, “Fundamentals of recurrent neural net-
work (RNN) and long short-term memory (LSTM) net-
work,” Physica D: Nonlinear Phenomena, vol. 404, pp.
132–306, 2020.

[18] G. Micchi, M. Gotham, and M. Giraud, “Not all roads
lead to Rome: Pitch representation and model archi-
tecture for automatic harmonic analysis,” Transactions
of the International Society for Music Information Re-
trieval (TISMIR), vol. 3, no. 1, pp. 42–54, 2020.

[19] S. Oore, I. Simon, S. Dieleman, D. Eck, and K. Si-
monyan, “This time with feeling: Learning expressive
musical performance,” Neural Computing and Applica-
tions, vol. 32, no. 4, pp. 955–967, 2020.

[20] J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M.
Kakade, “Coupled recurrent models for polyphonic mu-
sic composition,” in International Society for Music
Information Retrieval Conference (ISMIR), 2018.

[21] D. Back, “Standard MIDI-file format specifica-
tions,” 1999, accessed May 5, 2021. [Online].
Available: http://www.music.mcgill.ca/~ich/classes/
mumt306/StandardMIDIfileformat.html

[22] A. Grønlund, K. G. Larsen, A. Mathiasen, J. S. Nielsen,
S. Schneider, and M. Song, “Fast exact k-means, k-
medians and Bregman divergence clustering in 1d,”
arXiv preprint arXiv:1701.07204, 2017.

[23] W. J. Dowling, “Scale and contour: Two components
of a theory of memory for melodies.” Psychological
review, vol. 85, no. 4, p. 341, 1978.

[24] T.-P. Chen and L. Su, “Harmony transformer: Incorpo-
rating chord segmentation into harmony recognition,”
neural networks, vol. 12, p. 15, 2019.

[25] K. P. Murphy, Machine learning: a probabilistic per-
spective. MIT Press, 2012.

[26] R. Collobert and J. Weston, “A unified architecture for
natural language processing: Deep neural networks with
multitask learning,” in International conference on Ma-
chine learning, 2008, pp. 160–167.

[27] L. Deng, G. Hinton, and B. Kingsbury, “New types of
deep neural network learning for speech recognition
and related applications: An overview,” in IEEE inter-
national conference on acoustics, speech and signal
processing, 2013, pp. 8599–8603.

[28] D. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Comput., vol. 9, no. 8, p. 1735–1780,
Nov. 1997.

[30] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning
phrase representations using RNN encoder–decoder
for statistical machine translation,” in Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, Oct. 2014, pp. 1724–1734.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: A simple way to pre-
vent neural networks from overfitting,” Journal of Ma-
chine Learning Research, vol. 15, no. 56, pp. 1929–
1958, 2014.

[32] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie,
C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q. Wang,
L. Yang et al., “Big bird: Transformers for longer se-
quences,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[33] Y. Xiong, Z. Zeng, R. Chakraborty, M. Tan, G. Fung,
Y. Li, and V. Singh, “Nyströmformer: A Nyström-based
algorithm for approximating self-attention,” 2021.

