Jeux bayésiens hypergraphiques - Archive ouverte HAL Access content directly
Conference Papers Year : 2021

Jeux bayésiens hypergraphiques

Abstract

This paper defines the framework of hypergraphical Bayesian games, which allows to concisely specify Bayesian games with local interactions. This framework generalizes both normal-form Bayesian games and hypergraphical games (including polymatrix games). Establishing a generalization of Howson and Rosenthal’s Theorem, we show that hypergraphical (resp. polymatrix) Bayesian games can be transformed, in polynomial time, into equivalent complete-information hypergraphical (resp. polymatrix) games. This result has several consequences. It involves that finding a mixed Nash equilibrium in a hyper-graphical or polymatrix Bayesian game is a PPAD-completeproblem while the existence of a pure Nash equilibrium defines an NP-complete problem. It also implies that computing a mixed Nash-equilibrium in a standard normal-form, Bayesian game is PPAD-complete.
Cet article définit le cadre des jeux bayésiens hypergraphiques, qui permet de représenter succinctement des jeux bayésiens à interactions locales. Ce cadre généralise à la fois les jeux bayésiens sous forme normale et les jeux hypergraphiques (y compris les jeux polymatriciels). Nous montrons que les jeux bayésiens hypergraphiques (et polymatriciels) peuvent être transformés, en temps polynomial, en jeux hypergraphiques équivalents à information complète, en généralisant le théorème de Howson et Rosenthal. Cette démonstration a plusieurs conséquences. Elle permet de montrer que le problème de recherche d'un équilibre de Nash mixte dans un jeu bayésien hypergraphique ou polymatriciel est PPAD-complet tandis que le problème de recherche de l'existence d'un équilibre de Nash pur est NP-complet. Elle montre également que le problème de recherche d'un équilibre de Nash mixte dans un jeu bayésien sous forme normale est aussi PPAD-complet
Fichier principal
Vignette du fichier
RJCIA_2021_paper_2.pdf (196.39 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03298713 , version 1 (23-07-2021)

Identifiers

  • HAL Id : hal-03298713 , version 1

Cite

Hélène Fargier, Paul Jourdan, Régis Sabbadin. Jeux bayésiens hypergraphiques. Rencontres des Jeunes Chercheurs en Intelligence Artificielle (RJCIA 2021) @ Plate-Forme Intelligence Artificielle (PFIA 2021), Jul 2021, Bordeaux, France. pp.38-45. ⟨hal-03298713⟩
129 View
236 Download

Share

Gmail Mastodon Facebook X LinkedIn More