First order inertial optimization algorithms with threshold effects associated with dry friction - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

First order inertial optimization algorithms with threshold effects associated with dry friction

Samir Adly
Hedy Attouch
Manh Hung Le
  • Fonction : Auteur
  • PersonId : 1433775
  • IdHAL : hung-le

Résumé

In a Hilbert space setting, we consider a new first order optimization algorithm which is obtained by temporal discretization of a damped inertial dynamic involving dry friction. The function f to be minimized is assumed to be differentiable (not necessarily convex). The dry friction potential function φ, which has a sharp minimum at the origin, enters the algorithm via its proximal mapping, which acts as a soft thresholding operator on the sum of the velocity and the gradient terms. After a finite number of steps, the structure of the algorithm changes, losing its inertial character to become the steepest descent method. The geometric damping driven by the Hessian of f makes it possible to control and attenuate the oscillations. The algorithm generates convergent sequences when f is convex, and in the nonconvex case when f satisfies the Kurdyka-Lojasiewicz property. As a remarkable property, the convergence results tolerate the presence of errors, under the sole assumption of their asymptotic convergence towards zero. The study is then extended to the case of a nonsmooth convex function f , in which case the algorithm involves the proximal operators of f and φ separately. Then, applications are given to the Lasso problem and nonsmooth d.c. programming.
Fichier principal
Vignette du fichier
AAH-July-12-2021-HAL (1).pdf (542.1 Ko) Télécharger le fichier

Dates et versions

hal-03284220 , version 1 (12-07-2021)

Identifiants

  • HAL Id : hal-03284220 , version 1

Citer

Samir Adly, Hedy Attouch, Manh Hung Le. First order inertial optimization algorithms with threshold effects associated with dry friction. 2021. ⟨hal-03284220⟩
200 Consultations
404 Téléchargements

Partager

More