Computing totally real hyperplane sections and linear series on algebraic curves - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Computing totally real hyperplane sections and linear series on algebraic curves

Résumé

Given a real algebraic curve, embedded in projective space, we study the computational problem of deciding whether there exists a hyperplane meeting the curve in real points only. More generally, given any divisor on such a curve, we may ask whether the corresponding linear series contains an effective divisor with totally real support. This translates into a particular type of parametrized real root counting problem that we wish to solve exactly. On the other hand, it is known that for a given genus and number of real connected components, any linear series of sufficiently large degree contains a totally real effective divisor. Using the algorithms described in this paper, we solve a number of examples, which we can compare to the best known bounds for the required degree.
Fichier principal
Vignette du fichier
hyperplanesections.pdf (18.92 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03283378 , version 1 (10-07-2021)
hal-03283378 , version 2 (25-11-2021)

Identifiants

  • HAL Id : hal-03283378 , version 1

Citer

Huu Phuoc Le, Dimitri Manevich, Daniel Plaumann. Computing totally real hyperplane sections and linear series on algebraic curves. 2021. ⟨hal-03283378v1⟩
127 Consultations
170 Téléchargements

Partager

More