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COMPUTING TOTALLY REAL HYPERPLANE SECTIONS AND
LINEAR SERIES ON ALGEBRAIC CURVES

HUU PHUOC LE, DIMITRI MANEVICH, AND DANIEL PLAUMANN

ABSTRACT. Given a real algebraic curve, embedded in projective space, we study
the computational problem of deciding whether there exists a hyperplane meeting
the curve in real points only. More generally, given any divisor on such a curve,
we may ask whether the corresponding linear series contains an effective divisor
with totally real support. This translates into a particular type of parametrized
real root counting problem that we wish to solve exactly. On the other hand, it is
known that for a given genus and number of real connected components, any linear
series of sufficiently large degree contains a totally real effective divisor. Using the
algorithms described in this paper, we solve a number of examples, which we can
compare to the best known bounds for the required degree.

INTRODUCTION

Given a real algebraic curve X of degree d embedded into some projective space,
we consider the computational problem of deciding whether there exists a real hyper-
plane meeting X in a prescribed number r of real points, counted with multiplicity.
Of particular interest is the case r = d, i.e., hyperplanes meeting X in real points
only. More generally, given any divisor D on X defined over R, and thus consisting
of real points and complex-conjugate pairs, we may ask whether the linear series |D)|
contains an effective divisor with totally real support. (The first question is the spe-
cial case when D is a hyperplane section of a suitably embedded curve.) A number

FIGURE 1. A real space curve of degree 6 with a totally real hyper-
plane section.

of general results have been obtained in this direction: The answer is known to be
positive for any divisor of sufficiently high degree (see [12] and [21]). However, the
precise degree required, relative to the genus of X, is the subject of several results

Key words and phrases. real algebraic curve, totally real hyperplane section, divisor, Hermite
matrix, parametrized root counting.
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and conjectures, some of which we will investigate from a computational point of
view. Explicit bounds are only known if the real locus X (R) has many connected
components (so-called M-curves or (M — 1)-curves), by results due to Huisman [§]
and Monnier [I6]. On the other hand, very little is known about curves whose num-
ber of connected components is not close to maximal. Of course, the computational
problem makes sense for any given curve and divisor, regardless of whether or not
there is a general result covering all curves and divisors of the given kind.

It comes down to “solving” polynomial systems whose coefficients depend on pa-
rameters. More precisely, we consider the coefficients of the equation defining the
hyperplane as parameters. One then associates a hyperplane to a point in the space
of parameters. The number of real points at the intersection of the considered hy-
perplane with the curve may vary depending on the parameters, while the number
of complex intersection points between the curve and the hyperplane is equal to the
degree d for generic values of the parameters. (If the points are counted with inter-
section multiplicities and the curve is not contained in a hyperplane, this complex
intersection number is equal to d for all values of the parameters.) Hence, from a
computational point of view, we are considering a polynomial system, depending
on parameters such that, when these parameters take generic values, the solution
set over the complex numbers is finite. When the input system generates a radical
ideal, the algorithm we use, which is detailed in [14], computes a partition of a
dense semi-algebraic subset of the space of parameters into open semi-algebraic sets
such that the number of real simple solutions (i.e., without multiplicities) to the
input system is invariant for any point chosen in one of these sets. To do this, we
compute a symmetric matrix called the parametric Hermite matriz, whose entries
are polynomials depending on the parameters and such that, after specialization,
its signature coincides with the number of real solutions to the specialized system.
This allows us to classify the possible number of real roots to the input system with
respect to the parameters.

Our main findings can be summarized as follows.

1. There exist canonical curves X in P? with one or two ovals which do not
allow simple totally real hyperplane sections (Example .

2. There exists a curve X in P? of genus two and degree five having one oval
which does not allow a simple totally real hyperplane section (Example .

3. There are infinitely many plane quartics X with many ovals possessing a
(complete) linear series of degree four which does not contain a totally real
divisor (Example [4.2)).

4. For every d > 3 and every number 1 < s < g+ 1 with g = W, there
exists a plane curve X of degree d, genus g and having s branches such that
the linear series of lines |L| is totally real (Theorem [4.3).

The paper is structured as follows. Section [I]is devoted to preliminaries; we recall
basic definitions and properties. Section [2| describes the algorithm we use to solve
parametric polynomial systems representing the hyperplane sections. In Section [3]
we apply our computational methods to (canonical) space curves. In Section , we
determine the real divisor bound for certain plane quartics.

Acknowledgements. We would like to thank Matilde Manzaroli for helpful discus-
sions concerning the proof of Theorem We would like to thank Mohab Safey El
Din for important discussions and remarks on the computations. Daniel Plaumann
was partially supported through DFG grant no. 426054364.
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1. PRELIMINARIES

By a real (algebraic) curve X, we mean an integral, smooth and projective variety
of dimension 1 defined over R such that the set X (R) of real points is non-empty
(and therefore Zariski-dense in X), unless any of these assumptions is explicitly
dropped. Note that a smooth curve is a curve without any singularities, real or
complex. In particular, the set X (R) is an analytic manifold and decomposes into a
finite number of connected components, which are called the (real) branches of X.
Each branch is diffeomorphic to a circle S'. By Harnack’s Inequality [6], we have
s < g+ 1, where s is the number of branches and g is the genus of X.

If X is embedded into the projective space P", a branch of X is an owal if its
homology class in H;(P"(R),Z/2) is trivial, and a pseudo-line otherwise. Equiva-
lently, ovals are those branches of X that meet every real hyperplane in P" in an
even number of real points (counted with multiplicities), while pseudo-lines meet
hyperplanes in an odd number of points. In particular, a pseudo-line has non-empty
intersection with any hyperplane.

We fix some notation and terminology concerning divisors on curves. As a gen-
eral reference (covering also curves defined over non-algebraically closed fields), we
suggest [I5, Ch. 7]. A divisor on X is a formal Z-linear combination of points

D =) nP (m e Ng,n; € Z,P; € X).

i=1

Assuming that the points Py, ..., P, are distinct and n; # 0 for all 7, the set
{Py,..., P} is called the support of the divisor, the numbers nq,...,n,, the mul-
tiplicities and Y ;" n; the degree. If all multiplicities in D are nonnegative, the
divisor D is called effective. If all multiplicites are equal to 1, the divisor is called
simple. The support of a divisor on a real curve may consist of real or complex
points. However, we will only consider divisors that are defined over R and hence
conjugation-invariant, i.e., for any point in the support, its complex-conjugate ap-
pears with equal multiplicity. In particular, the non-real part of a divisor is of even
degree.

For any non-zero real rational function f € R(X) on X, the divisor of zeros
and poles (counted with positive or negative mutiplicities, respectively) is denoted
div(f). Two divisors D and E are called linearly equivalent if E = D + div(f)
for some f € R(X)*. The principal divisors div(f) have degree 0, hence linear
equivalence preserves the degree. The complete linear series associated to D is the
set of effective divisors on X which are linearly equivalent to D and is denoted |D)|.
A complete linear series carries the structure of a projective space. Any projective
subspace of a complete linear series is called a linear series. If a point is contained
in the support of all divisors in a given linear series, it is a called a base point, and
the union of all such points is the base locus. A linear series is called base-point-free
if its base locus is empty.

For a real curve X embedded into projective space P™ with degree d, any hyper-
surface Z C P™ of degree e not containing X defines an effective intersection divisor
X - Z of degree de. The set of all intersections with hypersurfaces of a fixed degree
forms a linear series on X, which may or may not be complete. Clearly, such a linear
series is always base-point-free.

An effective divisor D is called totally real if its support consists of real points
only. For the sake of brevity, we call any linear series totally real if it contains a
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totally real (effective) divisor. After discussing the algorithms in Section , we will
examine the following problems.

Problem 1. Given a real curve X, determine the smallest natural number N(X) €
N* such that any divisor of degree at least N(X) is linearly equivalent to a totally
real divisor.

We call N(X) the real divisor bound of X. It was shown by Krasnov [12, Thm. 2.2]
and Scheiderer [21], Cor. 2.10] that the real divisor bound is always finite. Further-
more, upper and lower bounds for N(X) were found by Huisman [8] and Monnier
[16], which depend on the genus g of X only. For example, if X is an M-curve or
an (M — 1)-curve, then we have N(X) < 2g — 1. However, it seems difficult to find
upper bounds for curves with few branches.

An easy way to determine lower bounds for N(X) is to find a linear series with a
pair of complex-conjugate base points, i.e., a non-real point that is fixed throughout
the linear series. With that idea, Monnier [16, Cor. 6.2] proved the inequality
N(X) > g+ 1 for a curve X with any number of branches. It seems that no such
lower bound is known when considering only base-point-free linear series. At the
end of Section ] we will construct an example of such a linear series on a plane
quartic curve.

Problem 2. Given a real curve X embedded in projective space, decide whether the
linear series of hyperplanes contains a totally real hyperplane section.

Note that according to Bertini’s Theorem, the generic element of a linear series
on X is simple away from the base locus (see [5, Ch. 1, p. 137|). However, it may
happen that a linear series contains a totally real divisor, but no simple such divisor.
For example, the linear series of lines on the plane quartic X = V (z*+y*—2*) C P?
contains the totally real line section

X Vi(x—z)=4-]1:0:1],
but it is easy to see that there is no simple totally real line section.

Problem 3. Given a real curve X, determine the smallest natural number N'(X) €
N* such that any divisor of degree at least N'(X) is linearly equivalent to a simple
totally real divisor.

We call N'(X) the simple real divisor bound of X. It was first introduced in [T,
p. 29]. Obviously, we have N(X) < N’(X) and a first non-trivial result comparing
N(X) and N'(X) is obtained in [I, Prop. 2.1.2|, namely N'(X) < 2N(X). However,
it appears to be unknown if N(X) and N'(X) can ever actually be different.

One reason for the importance of the simple real divisor bound comes from the
possibility of transfering results from smooth to singular curves (see [I7, Thm. 4.3]).
Basically, our algorithm computes simple totally real hyperplane sections. When
we are mainly interested in the non-existence of totally real divisors within a linear
series, i.e., in lower bounds for N(X), we modify the algorithm in a way explained
in Section [2| to handle totally real hyperplane sections in general.

2. ALGORITHM FOR SOLVING PARAMETRIC SYSTEMS

We consider as input f = (f1,..., fs) in Q[y|[x] with y = (y1,...,y) and x =
(1,...,7,). We assume that there exists a non-empty Zariski-open subset € of C*
such that the number of complex solutions to f(n,x) is finite for every n € Q and
that f generates a radical ideal in Q(y)[x]|. Below, we describe the main ingredients
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which allow us to classify the real roots of the system f, i.e., to compute semi-
algebraic formulas defining a partition S; U---U S, of a dense semi-algebraic subset
of R? such that for a given 1 < ¢ < r and all n € S;, the number of real roots to
f(n, ) is invariant.

To do that, we rely on well-known properties of Hermite’s quadratic form to count
the real roots of zero-dimensional ideals; see [7]. Basically, given a zero-dimensional
ideal I C Q[z], Hermite’s quadratic form is defined on the finite dimensional Q-
vector space A = Q[x]/I by

AxA—=Q
(h, k) — trace(Zhx),

where %), denotes the endomorphism p — h - k- p of A.

The number of distinct real (resp. complex) roots of the algebraic set defined
by I equals the signature (resp. rank) of Hermite’s quadratic form; see e.g. 2]
Thm. 4.101]. Given a basis of Q[z]/I, such a quadratic form is represented by a
symmetric matrix of size § x o, where ¢ is the degree of I. Hence, the signature of
Hermite’s quadratic form can be computed once a matrix representation, which we
call Hermite’s matrix, of this quadratic form is known [2, Algo. 8.18].

In [14], we slightly extend the definition of Hermite’s quadratic form and Hermite’s
matrix to the context of parametric systems; we call them parametric Hermite qua-
dratic form and parametric Hermite matrix. This is easily done since the ideal of
Q(y)[x] generated by f, considering Q(y) as the base field, has dimension zero.

We also establish a specialization property for this parametric Hermite matrix:
we identify a polynomial w,, € Q(y) such that, when specializing the parameters
y in the Hermite matrix to a point n € R* where w..(n) # 0, we obtain a Hermite
matrix representing Hermite’s quadratic form in Q[z]/(f(n, x)).

Hence, such a parametric Hermite matrix allows us to count respectively the num-
ber of distinct real and complex roots at any parameters outside a strict algebraic
sets of R! by evaluating the signature and rank of its specialization.

Based on the aforementioned specialization property, we design an algorithm for
solving parametric systems as follows.

(a) We start by computing a parametric Hermite matrix J# associated to f C
Q[y][x]. Note that this requires computations over the quotient algebra
Q(y)[x]/{f) through the theory of Grobner bases.

From the matrix 57, we derive two polynomials: w,, encoding the non-
specialization locus of J# and w, which is basically the numerator of
det(). The product w., - w is denoted by w.

(b) Next, we compute a set of sample points {ay, ..., a,} in the connected com-
ponents of the semi-algebraic set of R! defined by ws, # 0 and w, # 0
where w 4 is derived from 7.

This is done through the so-called critical point method (see e.g. [2, Ch. 12]
and references therein) which are adapted to obtain practically fast algo-
rithms following [20].

By [14, Prop. 21|, for any n varying over the connected component con-
taining a sample point a;, the number of real solutions to f(n, x) is the same
as the number of real solutions to f(a;, x).

(c¢) For 1 < i < {, evaluate the signature of the specialized Hermite matrix
 (a;), which gives the number r; of real solutions to f(a;, x).
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In most of the cases, the algorithm above is sufficient to compute a hyperplane
that intersects the given curve at only real points if such a hyperplane exists. From a
computational point of view, Step () is usually the most expensive: the polynomial
w it takes as input may have large degree since it may be exponential in the number
of variables n (but polynomial in the maximum degree of the input polynomials).

Note also that the resulting classification holds only for the subset of the space
of parameters where w # 0. The vanishing locus of w contains points above which
either the matrix ¢ does not specialize well (ws = 0) or f has multiple roots

Theoretically, a complete root classification, i.e., the number of real solutions
of f for every n € R! can be obtained using a similar routine. This consists of
classifying the solutions of f over the vanishing locus of w. There are several
possible approaches, for instances, computing over the algebraic extension Q[y]/(w)
or calling the algorithm above on with w added to the input system. The first
approach usually leads to high arithmetic costs while the second induces Hermite
matrices of large size (depending on the degree of w). One can also try to compute
the sign conditions of the leading principal minors of J# while imposing a rank
deficiency on the matrix. This results in deciding the emptiness of a semi-algebraic
set whose defining atoms are minors of the Hermite matrix. To the best of our
knowledge, these methods can be computationally difficult in practice.

However, in the examples we consider in this paper, the polynomials w., cor-
respond to the hyperplanes which intersect the given curves at infinity and are
factorized into polynomials of small degree (at most 3). Thus, they can be treated
by calling the algorithm on the input f adding each factor of w,,. Looking closer,
these factors can be simplified before being sent to the above algorithm to accelerate
the computation. For examples, linear factors can be handled through substitutions
of variables or the quadratic factors which are sums of squares can be replaced
by linear equations. Further, these processes will be explained in detail for each
example.

On the contrary, handling the solutions of w », where the system f has multiple
roots, requires an expensive computation. Therefore, our algorithm is limited at the
moment to computing simple totally real hyperplane sections, i.e., the intersection
has only simple points.

In the particular case of one-parameter (see the examples in Section , we can
obtain easily the complete root classification by evaluating the signs of leading prin-
cipal minors of the matrix J# at real solutions of w using exact algorithms for real
root isolation [23], 1T].

We illustrate the algorithm above by the following example.

Example 2.1. We consider the parametric system
f=Aaf + 25—y, 23 + miwy — yoo + 11 + 7Y,

where (x1, 25) are variables and y is the parameter. Following [14, Algo. 2|, we obtain
the basis {1, s, z1, 23} for the quotient ring Q[y][z1, zs]/(f) and the symmetric
Hermite matrix associated to this basis

4 —y—1 y—1 2y? + by
| 202 + 5y —3y*—y+1 y3/2 —6y* — 3y +1/2
R * —2y% —y Ty )2+ 4y? —y —1/2

* * * —5yt/2 4+ 5y + 23922 +y — 1/2
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The non-specialization polynomial w,, in this example is identically 1. The deter-
minant of this Hermite matrix is

w = wy = 41y + 43y" — 59y° — 20415 — 60y* + 204> + 4y* — .

This polynomial has two real solutions: 0 and § =~ 1.714. So, the semi-algebraic set
defined by w # 0 has three connected components and the number of distinct real
solutions of f is invariant over each of those connected components. More precisely,

y<0: f has 0 real solution,
O<y<uy: f has 2 real solutions,
y<uy: f has 0 real solution.

Now we study the roots of f over two real roots of w.

We specialize y to 0 in the leading principal minors of 7 and obtain the sign
sequence (1,—1,—1,0). Thus, the system has three distinct complex solutions but
only one real solution when y = 0.

For y = ¢, we obtain the sign sequence (1, —1, 1, 0) for the leading principal minors
specialized at y = y. Therefore, the system has three distinct complex solutions but
no real solution. AN

Further, we will use this algorithm for solving parametric polynomial systems
arising in the computation of totally real hyperplane sections.

3. TOTALLY REAL HYPERPLANE SECTIONS

The possibilities of our computational approach can by shown by the following
examples. We point out that X is always assumed to be a real curve and g stands
for the genus of X. If X is a real rational or real elliptic curve, it is not hard to see
that N(X) = 1. Hence, we assume g > 2.

We first consider canonical curves: If X C P9! is a canonical curve having
s > g—1 branches, then the canonical linear series, which is equal to the hyperplane
linear series, is totally real. Since there are no canonical curves of genus g < 2, the
minimal examples are plane quartic curves. In this case, the question of whether a
plane quartic curve consisting of only one oval possesses a totally real line section
is related to the undulation invariant (see [19, Thm. 4.2]). We therefore look at
canonical curves in P2,

Example 3.1. In this example, we consider a finite sequence of canonical curves X},
in IP3; these curves arise as complete intersections of a cubic and a quadric. Their
genus is 4 and their degree is 6. In non-homogeneous coordinates, we fix the real
cubic polynomial f = (x +3)(z —y —3)(x +y —3) — 2.

1. We set g5 = 22+ y> + 22— 100, g4 = (z +3)*> + (y + 2)> + 22 — 60 and
g3 = 22 +y? + 22 — 50. Let X}, be the projective curve defined by the affine ideal
I, = (f, gx) for k = 3,4,5. The curve X}, has k ovals. Running the algorithm on I
for a couple of minutes, we find affine hyperplanes which intersect the curve X in
real points only, such as the following three hyperplanes:

Hs = x4 15307y — 80722 4 6472,
Hy = x — 14842y — 257862 — 61192,
Hs = x4+ 55704y — 26379z — 19751.

Each hyperplane Hj intersects X in 6 (distinct) real points.
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9 e

FIGURE 2. The curves X5, X4, and Xj5.

o

FIGURE 3. Intersecting curves and planes: X; N H; for i = 5,4, 3.

2. Setting g = 2% +1y*+22—10, let X, be the projective curve defined by the affine
ideal Iy = (f, go). This curve has 2 ovals. From the theoretical point of view and in
contrast to the first examples, it is a priori not clear whether this curve possesses
a totally real hyperplane section. Running the algorithm for about 40 minutes on
15, the result is that this curve does possess a totally real hyperplane section. More
precisely, the hyperplane

Hy =z + 43y/2000 + 131z/25 + 9,

intersects X5 in 6 (distinct) real points.

FIGURE 4. The curve X, and its intersection with the plane Hs.

3. Setting g, = (z +1)> 4+ (y + 1)? + 22 — 10, let X} be the projective curve
defined by the affine ideal I, = (f, g5). This curve has 2 ovals, too. We compute a
Hermite matrix of size 6 x 6 in three parameters, which gives a boundary polynomial
w of degree 18. These computations are done within seconds. The algorithm then
computes points per connected component of the semi-algebraic set defined by w, -
w_» # 0. This computation takes almost 2 hours. In contrast to the second example,
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FIGURE 5. The curve XJ.

this Hermite matrix does not attain signature 6 at any of those points. Besides, the
hyperplanes that correspond to the real solutions of w,, intersect X/ at non-real
points at infinity. Thus, these hyperplanes do not give any totally real hyperplane
section. So, X!} has no simple totally real hyperplane section. Consequently, we
have N'(X}) > 7.

4. For the next example, let us take the Clebsch cubic surface fy = 2% +y> + 2% +
l—(z+y+z+1)%and g; = (x+1)*+y? + 22 — 2. The projective curve X; defined
by the affine ideal I; = (fo, g1) has only 1 oval. The output of the algorithm is the
hyperplane

Hy = x — 4468y — 32932z — 10164

which intersects X in 6 (distinct) real points.

FIGURE 6. The curve X; and its intersection with the plane H;.

5. Finally, taking ¢) = (z+2)?+y?+2%—2, let X, be the projective curve defined
by the affine ideal I} = (f, g}). This curve has only 1 oval, too. Again, it is a priori
not clear whether this curve has a totally real hyperplane section.

FIGURE 7. The curve Xj.
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On this example, our algorithm behaves similarly as in the third example. We
compute a 6 X 6 Hermite matrix in three parameters which gives a boundary poly-
nomial w of degree 18. The computation of sample points of the semi-algebraic set
defined by w # 0 takes 2 hours and none of the computed sample points gives the
Hermite matrix a signature of 6. Moreover, the solutions of w., here are the same
as in the third example and do not correspond to a totally real hyperplane section.
Thus, there is no simple totally real hyperplane section in this case. Consequently,
we have N'(X7]) > 7. A

Of course, it takes much effort to show or disprove the existence of a canonical
curve X in P® with 1 or 2 ovals and N(X) < 6. The existence would imply that
the real divisor bound N(X) cannot depend on the main topological parameters of
a real curve (the genus, the number of connected components, and whether or not
the curve is of dividing type) only.

As already mentioned, it is a challenging problem to find upper bounds for N (X)
in the case of curves with few branches. However, assuming the following conjecture
by Huisman to be true, Monnier [16, Thm. 3.7] established new bounds for (M —2)-
curves depending on the genus only.

Conjecture 3.2 (Conjecture 3.4 in [9]). Let n > 3 be an odd integer and X C P"
be an unramified real curve. Then X is an M-curve and each branch of X is a
pseudo-line, i.e., it realizes the non-trivial homology class in Hy(P™"(R),7Z/2).

Recently, a family of counterexamples to Huisman’s conjecture has been con-
structed for n = 3 (see [13]). These counterexamples explicitly contradict the bound
found by Monnier in the case of ¢ = 2. For our next examples, we briefly recall
their construction. A non-degenerate (i.e., not lying on any real hyperplane) curve
X C P" is called unramified if, taken any real hyperplane H, we have

wt(H - X) <n-—1,
whereby the weight of the intersection divisor H - X is defined to be
wt(H - X)=deg(H - X —(H-X),.q),

i.e., the degree of the difference between the latter and the reduced divisor (which
contains each point of H N X with multiplicity exactly one). Given two univariate
strictly interlacing polynomials both of degree d € N*, we embed the graph of their
fraction into P? via the Segre map. We obtain an unramified rational curve C; of
degree d + 1. To obtain a curve of positive genus, we take a complex-conjugate
pair of lines Cy and consider the union Z = Cy U C,. Taking ¢ > 0 small enough,
it is possible to make a small perturbation Z, such that Z, becomes a real curve
(in particular, we mean smooth and irreducible) which is unramified. The degree
of Z. is d + 3 and the genus is 2(d — 1). Since these counterexamples depend on a
parameter € > 0, one may wonder whether it is possible to determine such an ¢ > 0
in practice. In the following example, we reconstruct two such curves and determine
different parameters ¢ > 0, for which there exists (and for which there does not
exist) a simple totally real hyperplane section.

Example 3.3. For the first example, we consider the same polynomials as in |13,
Ex. 3]. We obtain a curve of genus 4, and degree 6, which has 1 oval. In the second
example, we construct a hyperelliptic curve of genus 2 and degree 5, which has 1
pseudo-line.
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1. Let ¢ = xgx3 + 129 be the Segre quadric and consider the polynomials
h= 3:58 + 3x0x% — x%xg = 3x0x§ + x% + 4x(2)x3 — Tox123 + 4x%x3 — x%mg, . Swox?,) + x2x§ — :cg

and p = a3+ 2 + 23 — x3. Tt is shown in [13] that the curve X, =V, (¢, h + ep) does
not have a totally real hyperplane section for some small parameter ¢ > 0. On the
one hand, the algorithm shows that for e = 274, there is a totally real hyperplane
section. For example, we can take the hyperplane

H = —-902330031190717857x0+1152921504606846976x1
+32313922149292652122—590264337985175552x3.

On the other hand, for € = 27°, our algorithm computes a 6 x 6 Hermite matrix in
three parameters. The polynomial w., has two factors: one is linear in the param-
eters and the other is a univariate polynomial of degree 3 in one parameter. The
boundary polynomial w has degree 22. Computing points per connected component
of the semi-algebraic set defined by w # 0 takes about 4 hours and does not return
any point that gives the Hermite matrix a signature 6.

FIGURE 8. The curve X,-4; the intersections Xo-4 N H and X5-5 N H.

It remains to classify the solutions when the parameters are real solutions of w.,.
For the linear factor, we simply substitute one parameter by the others in the system
to solve and use the same algorithm (with one less parameter). Finally, we call our
algorithm over the algebraic extension by the univariate factor of wy, to classify the
solutions in this case. These computations do not return any totally real hyperplane
section. So, we conclude that X,-s does not have any simple totally real hyperplane
section. Thus, we have N'(Xy-5) > 7.

2. In general, if X is a hyperelliptic curve, then it is known that N(X) > 2g — 1.
If X has at least g branches, then equality holds (see [16, Cor. 6.4]). Starting with
homogeneous strictly interlacing polynomials P = y? — 2yz and Q = y? — 22 and
following [13, Cons. 1], we can construct a curve of genus 2, degree 5 with 1 pseudo-
line and prescribed intersection behaviour with any real hyperplane. To be precise,
the polynomials

q = ToT3 — T1ZT2,
_ .2 34 9,2 29 2 2
f = —xgz1 — 2] + 22522 — Tox3 + 2207123 + ToT2T3 — TOT3 + T123,
2 2 2 2 2 2
= 2x075 — x%’ — TuT3 — T1T3 + T5T3 + 2x0T3 — T2x3 + $§,
2 2
hi = :Ug + $:{’ + zoxy — T123,
2 2
hy = xdxo + 2323 + 23 — 23

define parametrized curves X, = V,(q, f + €hy,g + €hy) for ¢ > 0. For a small
parameter € > 0, the curve X, does not have a totally real hyperplane section. On
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the one hand, the algorithm shows that for ¢ € {271,274}, there is a totally real
hyperplane section.

On the other hand, for e = 278, our algorithm computes a 5 x 5 Hermite matrix
in three parameters with a boundary polynomial w of degree 15. Particularly, the
non-specialization polynomial w., is a product of three linear polynomials of the
parameters. Computing the sample points for the set defined by w # 0 takes 3
minutes and returns no point which gives a signature 5 to the Hermite matrix.

When the parameters are real solutions of w,,, which has only linear factors,
we substitute one parameter by the others in the parametric system. This gives
us new parametric systems depending on only two parameters. Using the same
algorithm, we classify the solutions of these new systems and obtain no totally real
hyperplane section when w,, = 0. So, we conclude that there is no simple totally
real hyperplane section for Xs-s. Thus, we have N'(X5-s) > 6. JAN

From the above examples, we also raise the question of determining the largest
value ¢y € R such that, for any € €]0, ¢, the curve X, has no totally real hyperplane
section. This computation can also be carried out by the algorithm we present in
Section [2] but € is now considered as a parameter. However, the boundary polynomial
depends on 4 indeterminates and has degree up to 35. So, the computation of sample
points becomes much more difficult.

It remains an open problem to find (or disprove the existence) of a curve X of
genus 2 with 1 branch satisfying N(X) < 5. Furthermore, it remains an unsolved
task to find curves with the same topological parameters, but different values for

N(X) or N'(X).
4. PLANE QUARTICS

Let X C P? be a plane quartic curve. If X has many branches, i.e., if s € {3,4},
we know that 4 < N(X) < 5. We would expect N(X) = 5, so we would like to
have a possibility to check if certain linear series of degree 4 do not contain a totally
real divisor. The general expectation is N(X) = 2g — 1 for curves of genus g having
many branches (see [8] p. 92]). If D is a divisor of degree 4 on X having odd degree
on at least one branch of X, then |D| can be shown to be totally real. Hence, we
are interested in divisors of degree 4 having even degree on every branch. For such a
divisor D, there are two possibilities. If D is special, then |D| is the canonical linear
series and must be totally real. If D is non-special, then |D| defines a morphism to
P! and in particular, D cannot be very ample. With the help of the algorithm, we
are able to check whether each fibre of X — P! contains a complex-conjugate pair.

If the plane quartic curve X has s € {1,2} ovals, we would like to consider very
ample divisors of high degree, which give an embedding into a high-dimensional
projective space. In this case, we need to check whether the hyperplane linear series
of the embedded curve is totally real. For the computations, one can use the divisor
package [22] in Macaulay2 [4].

Remark 4.1. Given a plane quartic curve X with only one oval, no upper bound
for N(X) is known. For two ovals, it is possible to conclude N(X) < 9 under the
assumption of an unsolved case of Conjecture [3.2] In particular, it is interesting to
check whether every divisor of degree 10 defines a totally real linear series. If not, a
new case of the conjecture is disproved. Since divisors of degree 9 on plane quartic
curves are very ample, one can use the aforementioned divisor package in Macaulay?2
to compute the embedding into a high-dimensional projective space. Then, one can
check the (non-)existence of a totally real hyperplane section of the image curve.
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If we take a plane quartic curve X (with s € {3,4} branches) and a special divisor
D of degree 4, then the linear series |D| defines a morphism ¢ : X — P!. Using the
algorithm, we can check whether there exists a real point [c : d] € P!(R) which has
a totally real fibre. If so, the linear series |D| is totally real. If there is no such a
point, then |D] is not totally real.

By dehomogenizing the projective point [c : d], our algorithm is reduced to solving
a polynomial system depending on one parameter. Thus, for these examples, we can
obtain a complete root classification of the system by the additional steps using root
isolating algorithms as mentioned at the end of Section

Example 4.2. We continue with plane quartic curves with many branches and con-
sider divisors of degree 4.

1. We can use the method described above to get a lower bound for N(X) on the
curve X = V(2% + y* — z%). The linear series of lines is an example for a linear
series which contains a totally real divisor, but does not contain a simple totally real
one. Hence, we have N'(X) > 5. We consider the divisor

D=[1:0:14+[0:1:4¢7+[0:1:1]

which defines a morphism

X =P, [piy:2]e ay+rz—yz— 2t a® — a2z
The algorithm shows that there is no totally real fibre. Even more, each fibre has
of at most 2 real points. Hence, we have N(X) > 5.

2. In this example, we construct an explicit plane quartic curve with three ovals
and a base-point-free linear series of degree four which is not totally real. Generally,
if X is a plane quartic curve and D is a special divisor of degree 4, then the morphism
to P! is given by conics. Since the intersection of a quartic and a conic consists of
eight points (counted with multiplicity), linear equivalence within |D| is given by
a fraction of two conics having four points in common. Conversely, fixing four
(real) points on X, we may consider the set of conics going trough these points.
The four residual points define a linear series of degree 4. Our goal is to find a
linear series which is not totally real. First, we construct a plane quartic curve X
with the desired topology. (There are several ways to achieve this; we use a linear
determinantal representation and exploit the relation between the Cayley octad, the
number of real bitangents, and the number of branches of X; see [18]). For example,
we can take the equation of X to be

f =9zt — 3023y + 16122y — 1162y° — 8y* + 46232 — 8022y z + 202zy%2
— 116132 + 592222 — 80xy2z? + 185y%22 — 6223 — 50yz® — 1122

Next, we take the circle ¢ = 22 + ( . f—0)2 — % and fix the four real intersection

points. The real vector space V' = Lin(Q1,Q2) of conics through these points is
generated by

Q1 = 0.3110052100757026422 — 0.4569339120067826zy
+ 0.7395296982938114y 4 0.0169204289782505 72
— 0.3797243325905672y 2 — 0.0557325311398130722,
Q2 = 0.730380336077987622 + 0.5870985535950933xy
4 0.17978406689755905y% — 0.021740473005624657x 2
+0.2618986086207364yz — 0.143087431184374952°.
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FIGURE 9. The plane quartic X and the circle c.

The computational problem is to check whether there is a conic in V' intersecting
X in only real points. As in the first example, we solve a polynomial system of one
parameter using the algorithm of Section [2}

We start by computing a Hermite matrix of size 8 x 8 and a boundary polynomial
w of degree 24 (degwy, = 4, degw_» = 20). Each fiber over the semi-algebraic set
defined by w # 0 contains 8 distinct complex points but at most 6 real points.

Next, we isolate the real solutions of w,» and evaluate the signs of the leading
principal minors of 7 at those solutions. These sign patterns allow us to count
the number of real and complex points at the real solutions of w . This handles
the case when the parameter takes values that satisfy w,s = 0. For the vanishing
locus of w,,, we call the algorithm over its associated algebraic extension. In both
of these cases, we do not find any totally real fiber.

So, our algorithm shows that there is no conic in V' intersecting X in real points
only. Hence, taking the four residual points of any intersection @) - X with Q) € V
(i.e., leaving the four fixed points out), we get a divisor of degree four which does
not define a totally real linear series. Furthermore, this linear series is base-point-
free. The plane quartic X is an explicit example where the bound N(X) = 5 is
determined.

3. Analogously, we can consider the plane quartic curve X defined by
f = (81z")/4 — (13523y) /4 + (19532%y?) /16 + (297xy>) /2 4 69y*
+ (9232) /2 + (572%yz) /2 + (431xy>2) /8 — (85y32) /6 — (1792%22) /4
+ (672y2%) /2 — (4685y%22) /48 — (16223)/3 — (1433y23)/36 + (91721)/36.
The curve X consists of four ovals. Summing up, the conics
Q1 = 0.47127272928773783x2 + 0.6598453341260914xy
- O.13447226903447518y2 + 0.4868883263821278x 2
— 0.24467908024400253y 2 + 0.16581695886185108 2>
Q2 = —0.0977454578695030622 + 0.4442913360602867xy
— 0.50560960526528323% — 0.253257409136010622
+ 0.6653828276536204y 2z — 0.1747464981409325222
define the real vector space through the four fixed real points.

In this example, our algorithm computes a Hermite matrix 57 of size 8 x 8 and a
boundary polynomial w of degree 20 (w., = 1, degw_» = 20). Again, the algorithm
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FI1GURE 10. The plane quartic X and conics going through four fixed
points.

shows that there is no conic in this vector space intersecting X in real points only.
Hence, we have N(X) = 5. A

By perturbing the equation of the quartics (and the circles, if necessary), we get
infinitely many plane quartics with many components where the real divisor bound
is determined.

Increasing the degree, we may ask whether a plane quintic curve X always pos-
sesses a totally real line section. If X has s > 3 branches, then there must be
exactly one pseudo-line and s — 1 ovals. Taking a line through two points on two
distinct ovals, we automatically get a totally real line section. Furthermore, we can
conclude that the canonical series is totally real. If X has s < 2 branches, then the
question whether a plane quintic curve possesses a totally real line section is related
to the so-called undulation invariant (see [19, Thm. 6.2]). Generally, it is possible
to construct plane curves with prescribed topological properties that have a totally
real line section.

Theorem 4.3. For every d > 3 and every number 1 < s < g+1 with g = M_lgﬂ,

there exists a plane curve X of degree d, genus g and having s branches such that
the linear series of lines |L| is totally real.

Proof. First, we use the method for constructing curves introduced by Harnack [6]
pp. 193-196|. For d = 3, the statement is obvious. Given any d > 4, he constructs
a smooth plane M-curve of degree d such that there is a line L intersecting a single
component of X in d distinct real points. In the process of constructing the M-
curve of degree d out of the previous one (of degree d — 1), we use the classical small
perturbation theorem (see [10, Thm. 3.5]), which is originally due to Brusotti [3].
Given the line L and the transversal intersection points with the M-curve of degree
d, we can thus choose the shape of the arcs when smoothing the nodal points. Hence,
we can obtain any number of connected components while keeping a line intersecting
the resulting curve of degree d + 1 in d + 1 distinct real points. 0

Corollary 4.4. For every d > 4 and every number 1 < s < g+1 with g = w

there exists a plane curve X of degree d, genus g and having s branches such that
the canonical series |K| is totally real.

One may ask whether it is possible to construct a plane curve X of degree d > 6
with prescribed topological behaviour such that the linear series of lines is not totally
real.
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Finally, we remark that our algorithm also works for singular curves. In the case
of a singular curve, we only allow the support of the divisors to be contained in the
regular locus (see [17] for details) , hence it is possible to look for (generic) simple
totally real hyperplane sections.
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