Achieving energy permutation of modes in the Schrödinger equation with moving Dirac potentials - Archive ouverte HAL
Article Dans Une Revue Mathematical Control and Related Fields Année : 2024

Achieving energy permutation of modes in the Schrödinger equation with moving Dirac potentials

Résumé

In this work, we study the Schrödinger equation $i\partial_tψ = −\Delta\psi + \eta(t)\sum^J_{j=1}\delta_{x=a_j (t)}\psi$ on $L^2 ((0, 1), C)$ where $η : [0, T ]\rightarrow R^+$ and $a_j : [0, T ] \rightarrow (0, 1)$, $j = 1, ..., J$. We show how to permute the energy associated to different eigenmodes of the Schrödinger equation via suitable choice of the functions $η$ and $a_j$. To the purpose, we mime the control processes introduced in [17] for a very similar equation where the Dirac potential is replaced by a smooth approximation supported in a neighborhood of $x = a(t)$. We also propose a Galerkin approximation that we prove to be convergent and illustrate the control process with some numerical simulations.
Fichier principal
Vignette du fichier
projet.pdf (631.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03280399 , version 1 (07-07-2021)

Identifiants

Citer

Carlos Castro, Alessandro Duca. Achieving energy permutation of modes in the Schrödinger equation with moving Dirac potentials. Mathematical Control and Related Fields, 2024, 14 (1), pp.166-190. ⟨10.3934/mcrf.2022060⟩. ⟨hal-03280399⟩
90 Consultations
87 Téléchargements

Altmetric

Partager

More