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Achieving energy permutation of modes in the Schrödinger

equation with moving Dirac potentials

Carlos Castro*and Alessandro Duca�

Abstract

In this work, we study the Schrödinger equation i∂tψ = −∆ψ + η(t)
∑J

j=1 δx=aj(t)ψ on

L2((0, 1),C) where η : [0, T ] −→ R+ and aj : [0, T ] −→ (0, 1), j = 1, ..., J . We show how

to permute the energy associated to different eigenmodes of the Schrödinger equation via

suitable choice of the functions η and aj . To the purpose, we mime the control processes

introduced in [17] for a very similar equation where the Dirac potential is replaced by a

smooth approximation supported in a neighborhood of x = a(t). We also propose a Galerkin

approximation that we prove to be convergent and illustrate the control process with some

numerical simulations.

1 Introduction

We consider the one-dimensional Schrödinger equation in the interval (0, 1) with a measure poten-

tial supported in a moving point,
i∂tψ = −∂2xxψ + η(t)δx=a(t)ψ, x ∈ (0, 1), t > 0,

ψ(t, 0) = ψ(t, 1) = 0,

ψ(0) = ψ0 ∈ L2((0, 1),C),

(1)

where η : [0, T ]→ R+ and a : [0, T ]→ (0, 1) are sufficiently smooth functions.

It is well-known that slow varying potentials produce adiabatic dynamics in which the energy

associated to the different modes is conserved in time. In our case, this corresponds to sufficiently

small variation of both η(t) and a(t). We show that we can choose these functions η(t) and a(t) in

such a way that this adiabatic regime is broken to produce a swift of the energy associated to two

different modes. This can be extended to obtain a prescribed permutation of an arbitrary finite

number of modes by adding several potentials supported at different moving points aj(t) ∈ (0, 1),

j = 1, ..., J . Therefore, if we further assume that η(0) = η(T ) = 0, then the terms η(t)δx=aj(t) can

be interpreted as controls to achieve energy permutations of the eigenmodes for the free Schrödinger

equation. We also propose a convergent numerical method to approximate the solutions of (1) in

order to simulate this control.

The control strategy we present here is not new and it has been adapted from the works [17, 30].

In [30], the author presents how to permute eigenmodes from a spectral point of view. He considers

the spectrum associated to (1) by assuming η and a as real numbers. He exhibits a smart path of

the parameters η and a such that, if we follow the variations of the eigenvalues of the Hamiltonian

associated to (1), then a permutation is performed.
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Later on, [17] addressed this same strategy from a dynamical point of view. The authors

consider the equation (1) by substituting the potential η(t)δx=a(t) with a smooth approximation:

i∂tψ = −∂2xxψ + V (x, t)ψ,

V (x, t) = η(t) ρη(t)(x− a(t)) with ρη = η ρ(η · ) .
(2)

Here, ρ ∈ C2(R,R+) is a non-negative function with support [−1, 1] such that
∫
R
ρ(s)ds = 1. The

work shows how to control the eigenmodes of the Schrödinger equation by suitable functions η and

a. Peculiarity of [17] is that the proposed paths for η and a are partially different from the ones

considered in [30] for which the dynamics of the equation (2) would not be well-posed in general.

Our aim is to obtain the result from [17] by considering directly the evolution of the singular

equation (1). Indeed, it is reasonable to imagine that the same control strategy holds, via the

dynamics of (1), with a motion of the parameters η and a which mimes the one considered in [17].

We address two main difficulties in this work. First, the well-posedness of the Schrödinger

equation with a Dirac potential supported at a moving point. Such kind of results was already

addressed in R by [19] for instance, but not on bounded intervals as we have here. In this case,

the quadratic form corresponding to the Hamiltonian in the Schrödinger equation (1):

at(ψ) = ‖∂xψ‖2L2 + |η(t)||ψ(a(t))|2

can not be C2 in time when ψ is only H1
0 . Such hypothesis is usually required in order to apply the

common well-posedness results for non-autonomous systems. Our strategy consists in introducing

a tricky transformation of the interval (0, 1) in itself which fixes the position of the delta. The

transformation modifies the equation (1) in a new equivalent dynamics which is well-posed under

suitable hypotheses.

Showing that the permutation of the energy associated to different eigenmodes, stated in [17,

Theorem 1.1], can be performed also via the dynamics of (1), with suitable parameters a and η, is

not a difficult issue. In fact, all the intermediate results leading to [17, Theorem 1.1] are still valid

for the equation (1) and then the same strategy can be adopted in our framework.

Let us give an example on how the permutation considered here works. Assume that (1) is a

free potential Schrödinger equation at time t = 0 (η(0) = 0). We consider an initial data for the

dynamics only given by the first two eigenmodes with different energies, i.e.

ψ0(x) = c01 sin(πx) + c02 sin(2πx), c01, c
0
2 ∈ C, |c01| 6= |c02|.

We seek for functions η(t) and a(t) defined in the time interval [0, T ], with T sufficiently large,

such that at time t = T the dynamics is again the one associated to the free potential Schrödinger

equation (η(T ) = 0) and,

ψ(x, T ) ∼ c1(T ) sin(πx) + c2(T ) sin(2πx),

with |c1(T )| = |c02| and |c2(T )| = |c01|. To the purpose, we divide the time interval in 5 subintervals

[Ti, Ti+1] with i = 0, 1, .., 4, T0 = 0 and T5 = T . In the first [T0, T1], we choose a(t) = ai constant,

with ai > 1/2 and η(t) an increasing function from η(0) = 0 to ηM >> 1. In this interval, we

introduce a transition between the free Schrödinger equation (i.e. without potential) to a new one

with a large Dirac potential supported at x = ai. This time interval [T0, T1] must be sufficiently

large and the dynamics sufficiently slow to guarantee an adiabatic regime. In the second subinterval

[T1, T2], we fix η(t) = η0 and move a(t), the support of the delta, adiabatically from a(T1) = ai to

a(T2) = aεi = 1/2 + ε with ε << 1. Until the time T2, the energy of the first two modes remains

the same as in the initial data. However, as ηM is large, the solution at time T2 is almost zero at

x = aεi and the first two eigenmodes are localized in (0, aεi ) and (aεi , 1) respectively, i.e.

ϕ1(T2, x) ∼

{
sin(πxaεi

), x ∈ (0, aεi ),

0, x ∈ (aεi , 1),
φ2(T2, x) ∼

{
0, x ∈ (0, aεi ),

sin(
π(x−aεi )
1−aεi

), x ∈ (aεi , 1).
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In [T2, T3], we maintain η(t) = ηM constant and consider a(t) as a linear function from aεi to

aεf = 1/2 − ε. This third subinterval must be sufficiently small to guarantee a continuous but

non-adiabatic transition. Here, the first two eigenmodes change in such a way that now they are

localized in (aεi , 1) and (0, aεi ) respectively, i.e.

φ1(T3, x) ∼

{
0, x ∈ (0, af ),

sin(
π(x−aεf )
1−aεf

), x ∈ (aεf , 1),
φ2(T3, x) ∼

{
sin(πxaεf

), x ∈ (0, aεf ),

0, x ∈ (aεf , 1).

Therefore, the energy associated to φ1(T2, x) is transmitted to φ2(T3, x) and the one associated to

φ2(T2, x) pass to φ1(T3, x). In the fourth interval [T3, T4], we come back to an adiabatic regime

where we change a(t) from aεf to af < 1. Finally, in the last interval [T4, T5], we maintain a(t) = af
and consider η(t) a decreasing function from ηM to 0. This requires again a large time interval

and sufficiently slow dynamics in order to guarantee an adiabatic process. Note that the whole

motion requires an adiabatic regime for slow variations of η(t) and a(t), and a continuity result for

the non-adabatic transition. As described in [17], this strategy can be adapted to any permutation

of energies in a finite number of modes by combining several potentials of the form η(t)δx=ai(t),

i = 1, ..., I for some trajectories ai(t).

The second difficulty we address in this work comes from the numerical approximation of the

system (1) containing a Dirac measure. We propose a Galerkin approximation in space with

an implicit midpoint scheme in time. This Galerkin approximation involves a projection on the

finite dimensional subspace generated by the first N eigenfunctions of the Laplace operator in

the interval (0, 1). As these are not eigenfunctions of the underlying operator, convergence is not

straightforward and it requires a careful analysis. This method give us a simple, and easy to

implement, scheme.

However, even if the scheme is convergent when applied to (1), the numerical simulation of

the control strategy is not simple as it considers large values of η(t) and long time simulations to

guarantee the adiabatic regime. Both quantities, maxt∈[0,T ] η(t) and the final time T , affect the

error estimate. Accurate approximation of the solutions under these conditions would require a

very large dimension of the finite dimensional system obtained by the Galerkin approximation and

a extremely small time step. To overcome this difficulty, we observe that the proposed numerical

scheme conserves the associated discrete energy and therefore it reproduces the adiabatic regime,

even for large time simulations. On the other hand, the time interval where the energy swift occurs

is not large and the convergence of the numerical scheme guarantees a correct simulation. Even

so, some parameters as ηM , ε or the lengths of the time intervals must be estimated numerically.

Some bibliography

The controllability via external fields of the Schrödinger equation has been widely studied in

literature and many works addressed the problem via bilinear control fields. In other words, they

considered the equation (1) in presence of a bilinear potential V (t, ·) = v(t)µ(x) with t ∈ [0, T ] ⊂
R+ instead of η(t)δx=a(t). Here, the real function v is the control and it plays the role of the

time-dependent intensity of an external field. The real function µ represents the action of the field.

The global approximate controllability of bilinear quantum systems has been proved with dif-

ferent techniques in the last decades. We refer to [22, 27] for Lyapunov techniques and [8, 11] for

Lie-Galerking methods. The result was achieved via adiabatic arguments in the works [9, 10].

The exact controllability of the bilinear Schrödinger equation is in general a more delicate

matter. Indeed, it is well known that the equation is not exactly controllable in L2((0, 1),C) when

v ∈ Lrloc(R+,R) with r > 1 and µ is sufficiently regular, even though it is well-posed. We refer to

the work [4] by Ball, Mardsen and Slemrod for further details on these two results.

The turning point for this kind of studies was the idea, introduced by Beauchard in [5], of

controlling the equation in suitable subspaces of L2((0, 1),C). Following this approach, different
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works addressed the controllability issue on bounded interval as [6, 13, 15, 23, 24]. The problem

was also studied on quantum graphs in [1, 2, 12, 14] and on the two dimensional disc in [25].

A peculiarity of the control proposed in our work and in [17] is the coupling between adiabatic

and non-adiabatic motions, which is very unusual for the common results of this type. In addition,

the existing techniques for the bilinear controls can not be directly applied for the Schrödinger

equation in presence of delta-potentials as in (1). From this perspective, we provide a new and

different way to permute eigenmodes of quantum systems via external control fields.

Another peculiarity of our techniques is the simplicity of the controls. Once the paths for

the delta-potentials are designed, it is enough to sufficiently slow down the adiabatic parts of the

dynamics and to accelerate the transitions in order to obtain the permutations. We refer to Section

5 for further details on how to proceed in some explicit examples.

Scheme of the work

In Section 2, we address the well-posedness of (1) stated in Theorem 2.1. In Section 3, we

show how to adapt the permutations of modes described in [17] to our setting. This is in fact

straightforward and we only underline the main ideas of the proof by presenting those auxiliary

results from [17] adapted to our context. In Section 4, we introduce the numerical approximation

and prove its convergence. In Section 5, we discuss some numerical simulations where we illustrate

the control strategy described above. Finally, in Section 5.3 we give some final comments and

difficulties to capture other theoretical results in the simulations.

2 Well-posedness

The aim of this section is to ensure the existence and the unicity of solutions of the the Schrödinger

equation (1). We restrict ourselves to the case of one single Dirac potential for simplicity but the

results hold also when considering a finite number of nonintersecting Dirac potentials.

To the purpose, we consider the following equivalent system in L2((0, 1),C)

i∂tψ = −∂2xxψ, x ∈ (0, a(t)) ∪ (a(t), 1), t > 0,

ψ(t, 0) = ψ(t, 1) = 0,

ψ(t, a(t)−) = ψ(t, a(t)+),

∂xψ(t, a(t)+)− ∂xψ(t, a(t)−) = η(t)ψ(t, a(t)),

ψ(0) = ψ0 ∈ L2((0, 1),C).

(3)

An abstract setting for the dynamics of (3) is given by the following equation in L2((0, 1),C)

i∂tψ = Atψ, At = −∂2xx,

D(At) =
{
ψ ∈ H2((0, a(t)) ∪ (a(t), 1)) ∩H1

0 (0, 1) : ∂xψ(a(t)+)− ∂xψ(a(t)−) = η(t)ψ(a(t))
}
.

Note that At is self-adjoint and positive definite. The main result of this section is the following.

Theorem 2.1. Let a ∈ C3([0, T ], (0, 1)) and η ∈ C2([0, T ],R+). Equation (3) generates a uni-

tary flow in L2(0, 1) and for any ψ0 ∈ D(A0), the corresponding solution of the equation (3) is

C0([0, T ];D(At))∩C1([0, T ];L2). Finally, for any ψ0 ∈ H1
0 , the equation (3) admits a solution in

C0([0, T ];H1
0 ) ∩ C1([0, T ];H−1).

Proof. Let us start by considering η > 0 as a constant function. We discuss how to generalize the

result in the final part of the proof.

1) Preliminairies. The proof is based on the following idea. Let It = [a(t) − ε, a(t) + ε] be a

family of intervals such that 0 < ε < 1/2 is so that It ⊂ (0, 1) for every t. We define a family smooth
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diffeomorphisms h(t, x) which is C3 in both the variables t and x, so that, for every t ∈ [0, T ],

h(t, (0, 1)) = (0, 1), h(t, 0) = 0, h(t, a(t)) = 1/2, h(t, 1) = 1,

h
(
t, (0, a(t)− ε)

)
=
(

0,
1

2
− ε
)
, h(t, It) =

[1

2
− ε, 1

2
+ ε
]

h
(
t, (a(t) + ε, 1)

)
=
(1

2
+ ε, 1

)
.

(4)

Our purpose is to apply the transformation h to the interval (0, 1) in order to fix the position of

the delta by translating the interval It in
[
1
2 − ε,

1
2 + ε

]
. A possible choice is to set, for x ∈ It,

h(t, x) = x− a(t) + 1/2.

We investigate how to define h outside It in order to guarantee (4). For x ∈ (0, a(t)), we take

h(t, x) =
a(t)− 1/2

(a(t)− ε)4
x4 − 4

a(t)− 1/2

(a(t)− ε)3
x3 + 6

a(t)− 1/2

(a(t)− ε)2
x2 − 4

a(t)− 1/2

a(t)− ε
x+ x.

This is an invertible polynomial in (0, a(t) − ε) such that the continuity of the first three order

derivatives in space and in time of h is guaranteed at the point x = a(t)− ε. In addition, we have

that h(t, 0) = 0 and h(t, a(t)− ε) = 1/2− ε. Similarly for x ∈ (a(t) + ε, 1), we can take

h(t, x) =
a(t)− 1/2

(1− a(t)− ε)4
(1− x)4 − 4

a(t)− 1/2

(1− a(t)− ε)3
(1− x)3 + 6

a(t)− 1/2

(1− a(t)− ε)2
(1− x)2

− 4
a(t)− 1/2

1− a(t)− ε
(1− x) + x.

Clearly, these are not the only possible definitions for the diffeomorphisms h and their expressions

are not relevant for the proof. However, we explicit them in order to convince the reader of the

existence of such a familiy of diffeomorphisms h verifying the relations (4).

2) Fixing the domain. As introduced before, our aim is to fix the position of the delta by using

the diffeomorphisms h. This transformation modifies the Schrödinger equation (3) as presented in

the work [16]. To provide the new formulation of the equation, we introduce the pullback operator

h∗(t) : ψ ∈ L2((0, 1),C) 7−→ ψ ◦ h = φ(h(t, ·)) ∈ L2((0, 1),C) (5)

and its inverse, the pushforward operator, defined by

h∗(t) : φ ∈ L2((0, 1),C) 7−→ ψ ◦ h−1 = φ(h−1(t, ·)) ∈ L2((0, 1),C) . (6)

By following the theory developed in [16], we denote

h](t) : ψ ∈ L2((0, 1),C) 7−→
√
|∂xh(t, ·)| (ψ ◦ h)(t) ∈ L2((0, 1),C). (7)

We also call h](t) its inverse

h](t) = (h](t))−1 : φ 7→ (φ/
√
|∂xh(t, ·)|) ◦ h−1 ∈ L2((0, 1),C). (8)

Notice that the relation ‖h](t)u‖L2 = ‖u‖L2 yields that h](t) and h](t) are isometries and they

preserve the Hamiltonian structure of the Schrödinger equation through the change of variables.

From now on, we omit the time dependence from h, h] and h] when it is not necessary.

We use the family of diffeomorphisms h in order to act a change of variable in (0, 1) and we

use h] in order to rewrite (3) in a equivalent equation in L2(0, 1) where the internal dynamical

boundary conditions are now placed in the point 1/2. In particular,

h](D(At)) = {φ ∈ H2((0, 1/2) ∪ (1/2, 1)) ∩H1
0 (0, 1) : ∂xψ(1/2+)− ∂xψ(1/2−) = ηψ(1/2)}.
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The jump conditions is only displaced at the point 1/2 and it does not change after the the

transformation h]. Indeed, h translates each It in (1/2− ε, 1/2 + ε) and fixes the position a(t) in

1/2, while ∂xh(t, ·) is constantly equal to 1 in a neighborhood of 1/2. If the equation obtained

after the transformation h] admits a unitary propagator Ut, then h]Uth
] is the unitary propagator

associated to the dynamics of (1).

3) Existence and unicity of solutions of the transformed dynamics. When ψ is solution

of (1) (at least from a formal sense), φ := h]ψ solves the following equation (see [identity (1.8); 2]

for further details):

i∂tφ(t) = h]H(t)h]φ(t), in (0, 1) with (9)

H(t) := −
[(
∂x + iMh

)
◦
(
∂x + iMh

)
+M2

h

]
, Mh(t, x) = −1

2
(h∗∂th)(t, x).

We denote by D(h]H(t)h]) the space h]D(At). We notice that studying 〈φ1, h]H(t)h]φ2〉L2 for

every φ1, φ2 ∈ h]D(At) is equivalent to study 〈ψ1, H(t)ψ2〉L2 for every ψ1, ψ2 ∈ D(At) and

〈ψ1, H(t)ψ2〉L2 =
〈
ψ1,−∂2xxψ2 +

i

2
∂x
(
h∗(∂th)ψ2) +

i

2
h∗(∂th)∂xψ2

〉
L2
.

Now, At = −∂2xx is self-adjoint in D(At) and the operator i
2∂x
(
h∗(∂th)·)+ i

2h∗(∂th)∂x is symmetric

in such space. As a consequence, h]H(t)h] is a family of self-adjoint operators in D(h]H(t)h]).

In order to ensure the well-posedness of the equation (9), we would like to apply [16, Theorem

A.1] which rephrases the theory from the work of Kisynsky [21]. For every ψ ∈ D(h]H(t)h]),

q(ψ) :=〈ψ, h]H(t)h]ψ〉L2 = 〈h]ψ,H(t)h]ψ〉L2 = ‖
(
∂x + iMh

)
(h]ψ)‖2L2 + |η||(h]ψ)(a(t))|2

− ‖Mh(h]ψ)‖2L2 = ‖h]
(
∂x + iMh

)
h]ψ‖2L2 + |η||ψ(1/2)|2 − ‖h]Mhh]ψ‖2L2 .

(10)

The Friedrichs extension of the quadratic form q(·) defined on C∞0 ((0, 1),C) is the quadratic form

q(·) defined in H1
0 ((0, 1),C) and D(|h]H(t)h]|

1
2 ) = H1

0 ((0, 1),C). The sesquilinear form Φt(φ, ψ) =〈
φ, h]H(t)h]ψ

〉
from H1

0 to H−1 has the same regularity of Mh (and then of ∂th), which is C2 in

time as soon as a is C3. Finally, there exist γ > 0 and κ ∈ R, depending only on h, such that

Φt(ψ,ψ) ≥ γ‖∂xψ‖2L2 − κ‖ψ‖L2 , ∀ψ ∈ D(h]H(t)h]).

The statement is ensured thanks to the results of Kisynsky [21] stated in [16, Theorem A.1].

4) Conclusion. When η is not just a constant functions, the well-posedness follows as above.

Indeed, if we define the sesquilinear form Φt(φ, ψ) corresponding to the equation (it is the same of

(10) with η depending on time), then we notice that it is C2 as soon as a is C3 and η is C2.

We are finally ready to ensure the well-posedness of the equation (1) in presence of more

moving deltas. To the purpose, we introduce the corresponding abstract setting given by the

following equation in L2((0, 1),C)

i∂tψ = Ãtψ, (11)

where the operator Ãt = −∂2xx is defined on the domain

D(Ãt) =
{
ψ ∈ H2

(
(0, a1(t)) ∪ (a1(t), a2(t)) ∪ ... ∪ (aJ−1(t), aJ(t)) ∪ (aJ(t), 1)

)
∩H1

0 (0, 1) :

∂xψ(aj(t)
+)− ∂xψ(aj(t)

−) = η(t)ψ(aj(t)), ∀j ≤ J
}
.

Corollary 1. Let η ∈ C2([0, T ],R+) and {aj}j≤J ⊂ C3([0, T ], (0, 1)) be a familiy of function which

never intersect. Equation (11) generates a unitary flow in L2(0, 1) and for any ψ0 ∈ D(Ã0), the

corresponding solution is C0([0, T ];D(Ãt))∩C1([0, T ];L2). Finally, for any ψ0 ∈ H1
0 , the solution

belong to C0([0, T ];H1
0 ) ∩ C1([0, T ];H−1).

Proof. Since the functions aj never intersect, there exists a smooth diffeomorphisms h from (0, 1)

to himself which fixes the positions of all the delta-potentials at the same time. The result is

proved by using techniques leading to Theorem 3.1 by considering this diffeomorphism h .
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3 Permutation of the eigenmodes

In this section, we prove the following result that states that we can permute a finite number

of eigenmodes of the Dirichlet Laplacian on (0, 1) by a quasi-adiabatic motion of several delta-

potentials in (1), i.e. a potential of the form η(t)
∑J
j=1 δx=aj(t), for some J ≥ 1.

Theorem 3.1. Consider M ∈ N∗ and let σ : {1, ...,M} → {1, ...,M} be a permutation affecting

the first M integers. There exist T > 0 (sufficiently large), ε, κ > 0 and

� η ∈ C∞([0, T ],R+) with ‖η′‖L∞([0,T ],R) ≤ κ and η(0) = η(T ) = 0,

� aj ∈ C∞([0, T ], (0, 1)) with ‖a′‖L∞([0,T ],R) ≤ κ, for j = 1, ...,M − 1,

such that the evolution defined by the linear Schrödinger equation (1), in presence of the potential

η(t)
∑J
j=1 δx=aj(t), realizes the quasi-adiabatic permutation σ. Namely, let Γts be the unitary prop-

agator generated in the time interval [s, t] ⊂ [0, T ] by such equation. For all k ≤ M , there exist

αk ∈ C with |αk| = 1 such that∥∥ ΓT0 sin(kπx) − αk sin(σ(k)πx)
∥∥
L2 ≤ ε .

Theorem 3.1 corresponds to [17, Proposition 6.1] when we consider the equation (1) instead

of [17, equation (SE)] with [17, potential (6.3)]. Its proof follows by applying the same method

leading to [17, Proposition 6.1] and it combines three main ideas:

(i) the adiabatic process when η(t) and a(t) change sufficiently slow;

(ii) a continuity result: for a sufficiently short time interval [t1, t2], a constant value for η(t) = ηM ,

and some suitable functions aj(t), j = 1, ...,M − 1, the spatial distribution of the energy of

the solutions remains almost the same in [t1, t2].

(iii) the strategy to choose η(t) and aj(t), j = 1, ...,M − 1, that performs the prescribed permu-

tation.

We refer to [17] for a detailed description of the process. Here, we state the key results related

with the first two previous ideas (reformulated in the context of equation (1)) and the strategy

that we follow in the numerical experiments below. Following [17], the completion of the proof

with these results is straightforward.

3.1 The adiabatic regime

We start with the adiabatic result. Let a ∈ C3((0, T ), (0, 1)) and η ∈ C2((0, T ),R+). It is easy

to check that for every t ∈ (0, T ) the spectrum of the operator H(t) + η(t)δx=a(t) is composed

by simple and isolated eigenvalues. We denote by λ(t) one of them, φ(t) is the corresponding

normalized eigenfunction and P (t) is associated to a spectral projector. Now, λ(t), φ(t) and P (t)

continuously depend on t. Following the classical adiabatic principle, we expect that a sufficiently

slow dynamics of (1) starting from a quantum state close to φ(0) stay close to φ(t) up to a phase

shift. The slowness of the dynamics is represented by a parameter ε > 0 which is considered

between the times t = 0 and t = T/ε. We rewrite (1) in the following Schrödinger equation
i∂tψε = −∂2xxψε + η(εt)δx=a(εt)ψε, x ∈ (0, 1), t ∈ (0, T/ε),

ψε(t, 0) = ψε(t, 1) = 0, t > 0,

ψε(0, x) = ψ0(x), x ∈ (0, 1),

(12)

Theorem 3.2. Consider the above framework. The following convergence is uniform in t ∈ (0, T )

〈P (t)ψε(t/ε)|ψε(t/ε)〉L2 −−−−−−→
ε−→0

〈P (0)ψ0|ψ0〉L2 .
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Proof. Due to Theorem 2.1, we know how to define solutions of (12) by rewriting the system in

the form of (3). Now, if we apply the family of diffeomorphisms h introduced in the proof of

Theorem 2.1, then we obtain a family of self-adjoint operators associated to a family of quadratic

forms smooth in time (as showed in the proof of the mentioned theorem). In this framework, the

results of Nenciu [26, Remarks; p. 16; (4)] are valid (see also Teufel [29, Theorem 4.15] or the works

[3, 18, 20]) and the adiabatic theorem is ensured such as in [16, Section 5].

3.2 Continuity result

In this subsection, we state the second main ingredient to prove Theorem 3.1, which corresponds

to [17, Lemma 4.1].

Lemma 3.1. Let ψ(t) be the solution of the Schrödinger equation (1) in a time interval [t1, t2] with

L2((0, 1),C) initial data and η > 0 constant. Take any function f ∈ C1([t1, t2], H2((0, 1),C) ∩
H1

0 ((0, 1),C)) such that f(t, x) vanishes in a(t) for every t ∈ [t1, t2]. Then, for all t ∈ [t1, t2],

‖ψ(t)− f(t)‖2L2 ≤ ‖ψ(t1)− f(t1)‖2L2 + C(t2 − t1), (13)

with C independent of the choice of functions η and a, and given by

C = 2 sup
t∈[t1,t2]

(
‖ψ(t1)‖L2‖∂2xxf(t)‖L2 + (‖f(t)‖L2 + ‖ψ(t1)‖L2)‖∂tf(t)‖L2

)
.

Proof. The proof follows as the one of [17, Lemma 4.1] .

3.3 The control strategy

As described in the introduction for the permutation of the first two modes, the general process

has several steps in different consecutive time intervals. The number of intervals will depend on the

complexity of the permutation. We refer to the numerical examples below for further examples.

In the first step, we increase adiabatically the M − 1 Diracs by growing the value of η from 0

to a large ηM = η(T1). According to Theorem 3.2, this is possible as long as we consider a slow

variation of η and therefore a very long time. The supports of the Diracs are fixed in this time

interval and we call them

0 = bs0 < bs1 < ... < bsM−1 < 1 = bsM .

We choose this values in such a way that the lengths of the subientervals Isj = [bsj , b
s
j+1], given by

lsj = bsj+1 − bsj , j = 0, ..., N − 1, are in decreasing order but all of them are larger than ls1/2, i.e.

0 > ls1 > ls2 > ... > lsM−1 > ls1/2.

After this time step [0, T1], the dynamics will be close to the one associated to a split domain or a

domain with M − 1 internal zero Dirichlet boundary conditions at x = bsj , j = 1, ...,M − 1. In this

limit problem, the eigenvalues λj(T1) are the union of the eigenvalues of each one of the interval

Ij and, by our choice, they are ordered in such a way that λj(T1) is the first eigenvalue of the

Dirichlet Laplace operator in Isj when j = 0, ...,M − 1.

So far the process has been adiabatic and the j−mode will be almost the first mode of the

interval Isj , extended by zero to x ∈ (0, 1), when j = 0, ...,M − 1. In particular, the energy

associated to the j-mode will be concentrated in Isj .

In the next time interval [T1, T2], we fix the function η(t) = ηM and move the support of

the Diracs from aj(T1) = bsj to aj(T2) = bfj in such a way that the length of the subintervals

Ifj = [bfj , b
f
j+1], given by lfj = bfj+1 − b

f
j , j = 0, ..., N − 1, are reordered according to the prescribed

permutation, i.e.

0 > lfσ(1) > lfσ(2) > ... > lfσ(M−1) > lfσ(1)/2.
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The movement must be adiabatic, and therefore |a′j | must be small, up to some times t1 < t2 <

... < tN where fast non-adiabatic transitions are required. The transitions occur at a time tr
when two different intervals Ij(tr) = [aj(tr), aj+1(tr)] and Ik(tr) = [ak(tr), ak+1(tr)] have the

same length lj(tr) = lk(tr). According to Lemma 3.1, the distribution of the energy between the

different subintervals is maintained before and after the transition time t = tr.

The process in [T1, T2] requires a detailed analysis of the trajectories aj(t) of the Diracs to

capture all the transitions. In practice, we move sequentially each one of the Diracs in different

time subintervals. In this way, transitions are easier to capture. The number of subintervals where

we have to change from adiabatic to transition depends on the complexity of the permutation.

In the final step [T2, T ], the supports of the Diracs are fixed again and we consider η(t) slowly

decreasing from η(T2) = ηM to η(T ) = 0. The adiabatic regime ensures that the permutation

introduced in the previous time interval is conserved.

4 Numerical approximation

In this section, we propose a numerical method to approximate the dynamics of the Schrödinger

equation (3) and in particular to simulate the permutation of the energy modes described above.

We divide the section in four more subsections where we introduce a Galerkin approximation in

the space variable, prove the convergence of the method, write an equivalent matrix formulation

and propose a second order time scheme for the approximation of the semidiscrete problem.

4.1 Galerkin approximation

We consider the operator At defined in Section 2 and its eigenpairs denoted by (λk(t), φk(x, t))

where {φk(x, t)}k∈N∗ is a Hilbert basis of L2(0, 1) for every t > 0. We call

{wk(x)}k∈N∗

another Hilbert basis of L2(0, 1) composed by some eigenfunctions of the Dirichlet Laplacian in

(0, 1) and {νk}k∈N∗ the associated eigenvalues. In our case,

wk(x) =
√

2 sin(kπx), νk = k2π2, k ≥ 1.

Consider XN ⊂ X the finite dimensional space generated by {wk}Nk=1 and the usual projection

PN : X → XN .

We define the finite dimensional approximation of (3) by

i∂tψN = PNAtψN , ψN (0) = PNψ0, ψN (t) ∈ XN . (14)

Now, PNAt is self-adjoint and the finite dimensional system (14) can be written in matrix form as

a system of ODE with continuous coefficients (see Section 4.3). Therefore, existence and unicity

of solutions holds, and the L2−norm is conserved, i.e.

‖ψN (t)‖L2 = ‖ψN (0)‖L2 , t > 0.

4.2 Convergence of the Galerkin approximation

The aim of this section is to prove that the Galerkin approximation converges to the solution of

the continuous problem (3). We have the following result.
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Theorem 4.1. Assume that a and η satisfy the hypotheses of Theorem 2.1 to guarantee the exis-

tence of a solution ψ ∈ C([0, T ];H1
0 ) of (3) with initial data ψ0 ∈ H1

0 . Let ψN be the solution of

the corresponding finite dimensional approximation (14). Then,

‖ψ(t)− ψN (t)‖L2 ≤
(

1 + 2T
ηM
π

) √ηM√
3
√
N
‖ψ(t)‖L∞((0,T );H1

0 )
, (15)

where ηM = maxt∈[0,T ] η(t).

Proof. We write the solution ψ as linear combination of eigenfunctions,

ψ(t, x) =

∞∑
k=1

ψ̂k(t)φk(t, x), ψ̂k(t) =

∫ 1

0

ψ(t, x)φk(t, x) dx. (16)

Note that

‖ψ(t)‖2D(|At|n) =

∞∑
k=1

λ2nk (t)|ψ̂k(t)|2, n = 0, 1/2, 1,

and in particular D(|At|1/2) = H1
0 (0, 1). Let us consider the following two estimates ensured by

Lemma 4.1 and Lemma 4.2 below:

‖ψ(t)− ψN (t)‖L2 ≤
(

1 + 2T
ηM
π

)
‖(I − PN )ψ‖L∞((0,T );H1

0 )
,

‖(I − PN )φk(t, ·)‖H1
0
≤
√

2

π

√
η(t)√
N

√
λk − ν1, ∀k ∈ N∗.

The proof follows by gathering these inequalities in the following computations

‖ψ(t)− ψN (t)‖L2 ≤
(

1 + 2T
ηM
π

)∥∥∥∥∥(I − PN )

∞∑
k=1

ψ̂k(t)φk(t, x)

∥∥∥∥∥
L∞((0,T );H1

0 )

≤
(

1 + 2T
ηM
π

)
max
t∈[0,T ]

∞∑
k=1

|ψ̂k(t)| ‖(I − PN )φk(t, ·)‖H1
0

≤
(

1 + 2T
ηM
π

)
max
t∈[0,T ]

( ∞∑
k=1

|ψ̂k(t)|2 λk(t)

)1/2 ( ∞∑
k=1

‖(I − PN )φk(t, ·)‖2
H1

0

λk(t)

)1/2

≤
(

1 + 2T
ηM
π

)
‖ψ(t)‖L∞((0,T );H1

0 )
max
t∈[0,T ]

( ∞∑
k=1

2η(t)(λk(t)− ν1)

π2Nλk(t)

)1/2

≤
(

1 + 2T
ηM
π

) √2ηM

π
√
N
‖ψ(t)‖L∞((0,T );H1

0 )

( ∞∑
k=1

1

k2π2

)1/2

.

Here, we have used the estimate λk(t) ≥ νk = k2π2, which is an easy consequence of the min-max

principle for the eigenvalues. This concludes the proof.

Lemma 4.1. Under the hypotheses of Theorem 4.1, the following estimate holds,

‖ψ(t)− ψN (t)‖L2 ≤ (1 + 2TηM/π) ‖(I − PN )ψ(t)‖L∞((0,T );H1
0 )
, t > 0. (17)

Proof. We apply the projection operator PN to the equation (3),

i∂tP
Nψ = PNAtψ = PNAtP

Nψ + PNAt(I − PN )ψ, PNψ(0) = PNψ0.
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Therefore, PNψ satisfies system (14) with an extra term. If we define ΓNs,t the flow associated to

the dynamics of the equation (14) then,

PNψ = ΓN0,tP
Nψ0 +

∫ t

0

ΓNs,tP
NAs(I − PN )ψ(s) ds = ψN (t) +

∫ t

0

ΓNs,tP
NAs(I − PN )ψ(s) ds.

Thus, we obtain

ψ(t)− ψN (t) = (I − PN )ψ(t) +

∫ t

0

ΓNs,tP
NAs(I − PN )ψ(s) ds.

Thanks to the Minkowski inequality and the fact that ΓNs,t is unitary in L2(0, 1), we have

‖ψ(t)− ψN (t)‖L2 ≤ ‖(I − PN )ψ(t)‖L2 +

∫ t

0

‖PNAs(I − PN )ψ(s)‖L2 ds. (18)

We now estimate the second term of the right hand side of the identity (18) by analyzing the

operator PNAt(I − PN ). For a given v ∈ H1
0 = D(|∆|1/2), we can write

v(x) =

∞∑
j=1

v̂kwk(x), v̂k =

∫ 1

0

v(x)wk(x) dx,

∞∑
k=1

|v̂k|2νk <∞.

Thus, (I − PN )v =
∑∞
j=N+1 v̂jwj and

At(I − PN )v(x) =

∞∑
j=N+1

νj v̂jwj(x) + η(t)δa(t)(x)

 ∞∑
j=N+1

v̂jwj(x)

 ,

which implies

PNAt(I−PN )v(x) = PN

η(t)δa(t)(x)

 ∞∑
j=N+1

v̂jwj(x)

 = η(t)

N∑
k=1

∞∑
j=N+1

v̂jwj(a(t))wk(a(t))wk(x).

The previous relation yields that

‖PNAt(I − PN )v‖2L2 = η2(t)

N∑
k=1

|wk(a(t))|2
∣∣∣∣∣∣
∞∑

j=N+1

v̂jwj(a(t))

∣∣∣∣∣∣
2

≤ η2(t)2N

 ∞∑
j=N+1

νj |v̂j |2
( ∞∑

l=N+1

|wl(a(t))|2

νl

)

≤ η2(t)2N‖(I − PN )v‖2H1
0

 ∞∑
j=N+1

2

νj


≤ 4

π2
η2(t)‖(I − PN )v‖2H1

0
N

∞∑
j=N+1

1

j2
≤ 4

π2
η2(t)‖(I − PN )v‖2H1

0
. (19)

In the last computations, we used that maxx∈[0,1] |wk(x)|2 ≤ 2 for all k ≥ 1 and the estimate

N

∞∑
j=N+1

1

j2
≤ N

∫ ∞
N

1

x2
dx = 1.

Finally, if we apply inequality (19) in (18), then we obtain (17). This concludes the proof.
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Lemma 4.2. Under the previous hypotheses on a and η, the following holds,

‖(I − PN )φk(t, ·)‖H1
0
≤
√

2

π

√
η(t)√
N

√
λk − ν1. (20)

Proof. We first compute the Fourier coefficients of the eigenfunction φk in the basis {wj}j∈N∗

ckj (t) =

∫ 1

0

φk(t, x)wj(x) dx = − 1

νj

∫ 1

0

φk(t, x)w′′j (x) dx

=
1

νj

(
−
∫ 1

0

φk(x, t)w′′j (x) dx+ η(t)φk(a(t), t)wj(a(t))

)
− 1

νj
η(t)φk(a(t), t)wj(a(t))

=
λk
νj

∫ 1

0

φk(x, t)wj(x) dx− 1

νj
η(t)φk(a(t), t)wj(a(t))

=
λk
νj
ckj −

1

νj
η(t)φk(a(t), t)wj(a(t)).

Therefore,

|ckj | ≤
η(t)

|νj − λk|
|φk(t, a(t))wj(a(t))| ≤

√
2

η(t)

|νj − λk|
|φk(t, a(t))|. (21)

On the other hand, from the L2−normalization of the eigenfunctions, we have

λk = (Atφk, φk) =

∫ 1

0

|φ′k(t, x)|2dx+ η(t)|φk(t, a(t))|2.

Therefore, by Poincare inequality

η(t)|φk(t, a(t))|2 ≤ λk − ν1.

Substituting in (21), we finally obtain

|ckj | ≤
√

2

√
η(t)

νj − λk

√
λk − ν1.

The relation (20) is obtained thanks to the last inequality since

‖(I − PN )φk‖2H1
0

=
∞∑

j=N+1

|ckj |2νj ≤ 2η(t)(λk − ν1)

∞∑
j=N+1

νj
(νj − λk)2

≤ 2η(t)(λk − ν1)

∞∑
j=N+1

1

(νj − 1)2
≤ 2η(t)(λk − ν1)

1

π2N
.

4.3 Matrix formulation of the Galerkin method

The aim of this subsection is to rewrite the finite dimensional system (14) in matrix form. Let

ψN ∈ C1([0, T ], XN ) be a solution of (14). We consider its decomposition

ψN (t, x) =

N∑
n=1

ψ̂n(t)
√

2 sin(nπx).

If we substitute this expression in (14) and project on the subspace generated by the eigenfunction√
2 sin(nπx) with n = 1, ..., N, then we obtain

iψ̂′n(t) = n2π2ψ̂n(t) + 2η(t)

N∑
k=1

ψ̂k(t) sin(kπa(t)) sin(nπa(t)), n = 1, ..., N.
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We write this relation in matrix form as follows

Ψ′ = (D + P )Ψ,

where P (t) = −2iη(t) s⊗ s for s = (sin(jπa(t)))Nj=1 and

Ψ =


ψ̂1

ψ̂2

...

ψ̂N

 , D = −iπ2


12 0 ... 0

0 22 ... 0

...

0 0 ... N2

 .

The initial condition is obtained by projecting the Fourier representation of ψ0(x) as follows

PNψ0(x) =

N∑
n=1

ψ̂0
n

√
2 sin(nπx).

Therefore

Ψ(0) = Ψ0 =


ψ̂0
1

ψ̂0
2

...

ψ̂0
N

 .

Finally, we obtain the first order system{
Ψ′ = (D + P (t))Ψ,

Ψ(0) = Ψ0.
(22)

4.4 Time discretization

To solve system (22), we propose a midpoint implicit method in time:

Ψk+1 −Ψk

∆t
=

(
D + P

( tk+1 + tk
2

)) Ψk+1 + Ψk

2
, k = 0, ...,K − 1, (23)

that is second order accurate and convergent as long as ‖P ′′(t)‖ is bounded in t ∈ [0, T ]. Another

advantage of this method, especially for long time simulations, is that it conserves the L2-norm

since D and P are purely imaginary matrixes as stated in the following result.

Lemma 4.3. Let K ∈ N∗, ∆t = T/K and tk = k ∆t with k = 0, ...,K be a uniform mesh of the

interval [0, T ]. Consider {Ψk}Kk=0 the discrete solution of (22) obtained with the implicit midpoint

method (23). The following identity is verified

‖ΨK‖2 = ‖Ψ0‖2. (24)

Proof. Multiplying the system (23) by (Ψk+1 + Ψk)/2 and taking the real part, we easily obtain

‖Ψk+1‖2 − ‖Ψk‖2 = 0.

The relation (24) is ensured by summing the previous equation in k = 0, ...,K − 1.

5 Numerical experiments

In this section, we give some implementation details and provide some numerical experiments

illustrating the performance of the numerical method to show the energy permutation described

in the introduction and ensured in Section 3.



14

We are interested in capturing permutation of energy between different modes with a very

particular type of controls involving delta measures located in some moving points. The whole

process can be divided in several time periods that change at some intermediate times.

Let us first comment the difficulty to estimate both analytical and discretization parameters

for such experiments. To fix ideas, we focus on the example given in the introduction where the

permutation between the first two modes is described in 5 consecutive time intervals with a single

Dirac potential. Concerning the analytical parameters, we have to choose suitable values for ηM
and T . On the one hand, ηM must be sufficiently large to mimic the dynamics with the split interval

(0, a(t)) ∪ (a(t), 1) as done in [17]. In our experiments, this is almost the case for ηM ∼ 2000. On

the other hand, we have to choose T large enough in order to guarantee adiabatic regimes both

when we include/remove the Diracs (time subintervals [0, T1] and [T4, T ]) and when we move their

supports (time subintervals [T1, T2] and [T3, T4]). However, common results on adiabatic dynamics

do not directly provide explicit estimates on how slow η(t) and a(t) should be to obtain such regime.

Of course, this affects the final time T which must be estimated from numerical experiments.

Concerning the discretization parameters, we have to choose N and the time step ∆t. According

to (15), error estimates depend on TN−1/2η
3/2
M , up to a constant. Taking into account N < 200

(to limit the computational cost) and ηM = 2000, we see that this error estimate is not very useful

even for T = 1.

Fortunately, things work much better in practice. If we consider the control process described

in the introduction, then we found that, for N = 200, ηM = 2000 and

η(t) =


ηM (1− cos(πt/T1))/2, t ∈ [0, T1],

ηM , t ∈ [T1, T2],

ηM (1− cos(π(t− T2)/(T − T2)))/2, t ∈ [T2, T ],

an adiabatic regime is obtained both in the interval [0, T1] and [T4, T ] as long as T1, T − T4 > 50,

with maximum relative error of 10−2 in the energy distribution.

Concerning the movement of a(t), we show in Figure 1 how a permutation of the energy is

performed for a linear transition when a′ ∼ 1, while the dynamics is adiabatic for a′ ∼ 10−4.

However, the behavior in the intermediate region may strongly depend on the initial distribution

of the energies. Thus, simulations taking into account velocities a′ in this intermediate region are

very challenging. Note also that the transition is not monotone and there is a value of a′ for which

the energy is transferred to one of the modes.

In the experiments below, we set the parameters as follows.

(i) Take N = 200, time step ∆t = 10−3, ηM ∼ 2000 and the time intervals where η increases

and decreases of length larger than 50.

(ii) When we need to move a(t) adiabatically, we consider a′ ∼ 10−4.

(iii) When a non-adiabatic regime is required, we set a′ = 1 in a time interval of length 10−2.

It is important to note that with this choice, we are able to simulate both the adiabatic regime

and the continuous non-adiabatic transition required in the control strategy. However, the phase

in the numerical approximation can be very different from the one in the real solution.

5.1 Experiment 1

In this experiment, we apply the control strategy introduced in Section 3.3 to permute the energy

of the first 3 Fourier modes. We follow the notation introduced there. We start with an initial

data of the form

ψ0(x) = ψ(x, 0) =

3∑
i=1

ci(0)φi(0, x), (25)
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ψ0(x) = 2φ1(x, 0) ψ0(x) = 2φ1(x, 0) + φ2(x, 0)

Figure 1: The figure represents the distribution of the energy of the first 3 modes after T = 0.01.

The control considered in the dynamics is V (x, t) = ηMδx=a(t) with ηM = 2000 and x = a(t) a

linear trajectory traversing x = 0.5, from the right to the left, with different slopes a′. As indicated,

the initial energy distribution (t = 0) is different in both simulations. We see that for a′ ∼ 1, there

is a permutation of the energy while this permutation is lost as the slope decreases. For a′ ∼ 10−4,

the dynamics can be considered as adiabatic. We also observe that the transition region is very

sensitive to the values of the energies we are permuting.

and we want obtain at time t = T

ψ(T, x) =

3∑
i=1

ci(T )φi(0, x), (26)

with

|c1(T )| = |c2(0)|, |c2(T )| = |c3(0)|, |c3(T )| = |c1(0)|.

Note that this corresponds with the permutation (σ(1), σ(2), σ(3)) = (2, 3, 1). We choose c1(0) = 1,

c2(0) = 1.5, c3(0) = 2. The strategy is then to introduce two Dirac potentials at suitable points

and combine the adiabatic regime with some fast nonadiabatic transitions. Time should be large

to ensure the adiabatic process, both when we increase the Dirac masses and when we move them.

We consider T = 200. The weight of the Dirac η(t) grows in t ∈ [0, T/4] from 0 to ηM and decreases

from ηM to 0 in t ∈ [3T/4, T ].

The two Diracs are introduced in the first time interval [0, T/4] adiabatically, and allow us to

localize the three modes in three consecutive subintervals Isj ⊂ (0, 1), j = 1, ..., 3, of decreasing

lengths i.e. ls1 > ls2 > ls3 > ls1/2. The left subinterval is the largest and the first mode is localized

here. The middle one contains the second mode and the right one the third mode (see Figure 2).

According to the prescribed permutation, we move the Diracs in such a way that the lengths of the

final subintervals satisfy lf2 > lf3 > lf1 > lf2/2, maintaining the structure of the solution. In order to

do that, we combine slow adiabatic movements with fast nonadiabatic transitions, whenever the

lengths of two subintervals become equal. Thus, at time t = 3T/4, we have a solution with the

same aspect as when t = T/4, but the intervals Ifj ⊂ (0, 1) have different lengths. In the final time

subinterval [3T/4, T ], we remove adiabatically the two Diracs.

In this particular example, we introduce the Diracs at the points bs1 = 0.36 and bs2 = 0.7 so that

ls1 = 0.36 > ls2 = 0.34 > ls3 = 0.3 > ls1/2 = 0.18. Now, we fix bs2 and move bs1 from 0.36 to bf1 = 0.31

with a transition at x = 0.35, where the lengths of the first two intervals coincide. Then, we fix

bf1 = 0.31 and move bs2 from 0.7 to bf2 = 0.68 with a transition at x = 0.69, where the first and

third intervals have the same length. After these movements, we have lf2 = 0.37 > lf3 = 0.32 >
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lf1 = 0.31 > lf2/2 = 0.185. In the intermediate region between the transitions, we move the Diracs

adiabatically. The trajectories a1(t), a2(t) are also given in Figure 2.

Trajectories of the Diracs Solution after including the Diracs.

Figure 2: Experiment I: The figure represents the trajectories a1(t) and a2(t), and the modulus of

the solution after including the Diracs. In the positions of the Diracs, the solution is almost zero

and the dynamics is similar to the one associated to a split domain. We observe how the different

modes are localized in the three subintervals between the Diracs.

In Figure 3, we show the behavior of the first 3 modes along the time (left plot) and the energy

associated to the first Fourier coefficients (right plot). We see how this energy is shifted at the two

jumps of the trajectories of a1(t) and a2(t).

Figure 3: Experiment I: The figure represents the time evolution of the first 3 eigenvalues (left

plot) and of the energy associated to the first Fourier coefficients (right plot).

In our experiment, we do not obtain exactly (26). The initial data is given by (25). The solution

at time T = 200 is given by

ψ(T, x) =

3∑
i=1

ci(T )wi(x) + w(x), (27)

where ‖w‖L2 = 1.1× 10−2 and∣∣|c3(T )|−|c1(0)|
∣∣ = 1.2×10−3,

∣∣|c2(T )|−|c3(0)|
∣∣ = 1.12×10−4,

∣∣|c1(T )|−|c2(0)|
∣∣ = 4.01×10−3.
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5.2 Experiment 2

In this experiment, we follow the control strategy to change the energy of the first 4 Fourier modes

according to the permutation (σ(1), σ(2), σ(3), σ(4)) = (2, 4, 3, 1). Thus, we start with an initial

data of the form

ψ0(x) = ψ(x, 0) =

4∑
i=1

ci(0)wi(x), (28)

and we want to obtain at time t = T

ψ(T, x) =

4∑
i=1

ci(T )wi(x), (29)

with

|c1(T )| = |c4(0)|, |c2(T )| = |c1(0)|, |c3(T )| = |c3(0)|, |c4(T )| = |c2(0)|.

We choose c1 = 0.5, c2 = 1, c3 = 1.5, c4 = 2 and T = 200.

As in the Experiment I, the three Diracs are introduced in the first time interval [0, T/4]

adiabatically to localize the four modes in consecutive subintervals of decreasing length lsj ⊂ (0, 1),

j = 1, ..., 4. The left subinterval ls1 is the largest and it contains the first mode, while the fourth

mode is localized in the right one ls4. Then, we move the Diracs changing the lengths of these

subintervals to obtain the prescribed permutation i.e. lf2 > lf4 > lf3 > lf1 > lf2/2, but maintaining

the structure of the solution.

In this example, we introduce the Diracs at the points bs1 = 0.27, bs2 = 0.53 and bs3 = 0.77

so that ls1 = 0.27 > ls2 = 0.26 > ls3 = 0.24 > ls4 = 0.23 > ls1/2 = 0.135. Afterwards, we

move the Diracs. Firstly, we fix bs2, b
s
3 and move bs1 from 0.27 to bf1 = 0.26 with a transition

at x = 0.265 in the time interval t ∈ [T/4, T/4 + T/8]. Secondly, we fix bf1 = 0.26, bs3 = 0.77

and move bs2 from 0.53 to b̃f2 = 0.5 with three transitions at x = 0.52, x = 0.515 and x = 0.51,

in the time interval t ∈ [T/4 + T/8, T/2]. Thirdly, we fix bf1 = 0.26, b̃f2 = 0.5 and move bs3
from 0.77 to bf3 = 0.73 with three transitions at x = 0.76, x = 0.75 and x = 0.74, in the time

interval t ∈ [T/2, T/2 + T/8]. Finally, we fix bf1 = 0.26, bf3 = 0.73 and move again b̃f2 from

0.5 to bf2 = 0.49 with a transition at x = 0.495 in the time interval t ∈ [T/2 + T/8, 3T/4].

Overall, we perform 8 energy transitions at different times. After these movements, we have

lf4 = 0.27 > lf1 = 0.26 > lf3 = 0.24 > lf2 = 0.23 > lf4/2 = 0.135. The trajectories a1(t), a2(t), a3(t)

are given in Figure 4.

Trajectories of the Diracs energy jumps of the Fourier modes

Figure 4: Experiment II: The figure represents the trajectories a1(t), a2(t) and a3, and the energy

jumps appearing during the dynamics
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In our experiment, we do not obtain exactly (29). The initial data is given by (28). The solution

at time T = 200 is given by

ψ(T, x) =

4∑
i=1

ci(T )wi(x) + w(x), (30)

where ‖w‖L2 = 5.76× 10−2 and∣∣|c1(T )| − |c4(0)|
∣∣ = 8.8× 10−3,

∣∣|c2(T )| − |c1(0)|
∣∣ = 1.95× 10−2,∣∣|c3(T )| − |c3(0)|

∣∣ = 9.80× 10−3,
∣∣|c4(T )| − |c2(0)|

∣∣ = 1.80× 10−2.

5.3 Comments

As described in [17], from any initial data, it is possible to achieve not only a permutation but

a complete redistribution between the energy modes with the type of controls described in this

paper. This is done in the two following steps:

(i) collapse of the energy associated to all the modes in the initial data to a single mode;

(ii) share of the energy associated to this single mode in order to obtain the desired final state.

This strategy is valid in our model but the numerical approximation introduce an important

difficulty since it requires to approximate an intermediate transition between the adiabatic and

non-adiabatic dynamics. This approximation is very unstable and strongly depends on the energies

we are considering, as we commented above in Figure 1. In addition, it is also very sensitive to

the discretization parameters N and the time step. This makes very difficult to design a priori the

path for the support of the Dirac achieving this intermediate transition.

For the permutation described in the previous experiments, the correct path combining the

adiabatic regime and the transitions can be designed a priori following a simple strategy, as we

have described. This provides a very explicit control which is easily approximated.
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