Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations

Résumé

We address the numerical solution of linear systems arising from the hybrid discretizations of second-order elliptic partial differential equations (PDEs). Such discretizations hinge on a hybrid set of degrees of freedom (DoFs), respectively defined in cells and faces, which naturally gives rise to a global hybrid system of linear equations. Assuming that the cell unknowns are only locally coupled, they can be efficiently eliminated from the system, leaving only face unknowns in the resulting Schur complement, also called statically condensed matrix. We propose in this work an algebraic multigrid (AMG) preconditioner specifically targeting condensed systems corresponding to lowest order discretizations (piecewise constant). Like traditional AMG methods, we retrieve geometric information on the coupling of the DoFs from algebraic data. However, as the condensed matrix only gives information on the faces, we use the uncondensed version to reconstruct the connectivity graph between elements and faces. An aggregation-based coarsening strategy mimicking a geometric coarsening or semi-coarsening can then be set up to build coarse levels. Numerical experiments are performed on diffusion problems discretized by the Hybrid High-Order (HHO) method at the lowest order. Our approach uses a K-cycle to precondition an outer flexible Krylov method. The results demonstrate similar performances, in most cases, compared to a standard AMG method, and a notable improvement on anisotropic problems with Cartesian meshes.
Fichier principal
Vignette du fichier
AMG_for_hybrid_methods.pdf (495.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03272468 , version 1 (28-06-2021)
hal-03272468 , version 2 (10-09-2022)

Identifiants

  • HAL Id : hal-03272468 , version 1

Citer

Daniele Antonio Di Pietro, Frank Hülsemann, Pierre Matalon, Paul Mycek, Ulrich Rüde. Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations. 2021. ⟨hal-03272468v1⟩
358 Consultations
293 Téléchargements

Partager

More