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ALGEBRAIC MULTIGRID PRECONDITIONER FOR STATICALLY
CONDENSED SYSTEMS ARISING FROM LOWEST-ORDER

HYBRID DISCRETIZATIONS ∗

DANIELE A. DI PIETRO† , FRANK HÜLSEMANN‡ , PIERRE MATALON†§¶‖,

PAUL MYCEK¶, AND ULRICH RÜDE¶‖

Abstract. We address the numerical solution of linear systems arising from the hybrid dis-
cretizations of second-order elliptic partial differential equations (PDEs). Such discretizations hinge
on a hybrid set of degrees of freedom (DoFs), respectively defined in cells and faces, which naturally
gives rise to a global hybrid system of linear equations. Assuming that the cell unknowns are only
locally coupled, they can be efficiently eliminated from the system, leaving only face unknowns in
the resulting Schur complement, also called statically condensed matrix. We propose in this work
an algebraic multigrid (AMG) preconditioner specifically targeting condensed systems correspond-
ing to lowest order discretizations (piecewise constant). Like traditional AMG methods, we retrieve
geometric information on the coupling of the DoFs from algebraic data. However, as the condensed
matrix only gives information on the faces, we use the uncondensed version to reconstruct the con-
nectivity graph between elements and faces. An aggregation-based coarsening strategy mimicking a
geometric coarsening or semi-coarsening can then be set up to build coarse levels. Numerical experi-
ments are performed on diffusion problems discretized by the Hybrid High-Order (HHO) method at
the lowest order. Our approach uses a K-cycle to precondition an outer flexible Krylov method. The
results demonstrate similar performances, in most cases, compared to a standard AMG method, and
a notable improvement on anisotropic problems with Cartesian meshes.

Key words. Algebraic multigrid, hybrid methods, static condensation.
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1. Introduction. Hybrid discretizations have been part of the landscape of nu-
merical methods to solve Partial Differential Equations (PDEs) since the seventies. In
his 1978 book [7, p. 421], P. G. Ciarlet states the following definition: “we may define
(...) as a hybrid method any finite element method based on a formulation where one
unknown is a function, or some of its derivatives, on the set Ω, and the other unknown
is the trace of some of its derivatives of the same function, or the trace of the function
itself, along the boundaries of the set K” (Ω representing the domain of study and K
a mesh element). Although hybridization of finite element methods first appeared as
an implementation trick [40], it was later proven [1] that the new unknowns at faces,
introduced as Lagrange multipliers, held additional information on the exact solution,
which could be exploited to improve the accuracy of the numerical approximation. A
large number of finite element schemes have given rise to hybrid counterparts, starting
with the mixed formulations of Raviart-Thomas (RT) [30] and Brezzi-Douglas-Marini
(BDM) [5]. More recently, in the context of Discontinuous Galerkin (DG) methods,
hybridization was also used to overcome its main drawback, namely, the large num-
ber of unknowns resulting from the lack of continuity at element interfaces. Indeed,
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hybridization allows for the local elimination of cell-based unknowns from the global
system, leaving the face unknowns as the only remaining ones in the resulting Schur
complement, also called statically condensed or trace system. Examples of meth-
ods whose DoFs verify this structural property include, in particular, Hybridizable
Discontinuous Galerkin (HDG), Compatible Discrete Operators (CDO) [2], Hybrid
High-Order (HHO) methods [14, 13], Mimetic Finite Differences (MFD) [11], Mixed
and Hybrid Finite Volumes (MHFV) [17, 19, 18]. For a more extensive introduction
to hybrid methods and hybridization, we refer to the preface of [12] and the first pages
of [9].

Algebraic multigrid (AMG) solvers [20, 33] are very popular for the solution of
large linear systems arising from the discretization of elliptic equations on unstruc-
tured meshes. Unlike geometric multigrid methods, which require a hierarchy of
meshes of different granularity, algebraic algorithms classically do not need more in-
formation than the linear system to solve. Discarding all geometric information as
input parameter results in the most appreciated feature of these methods, that is,
their usability in a black-box fashion.

The availability of an easy-to-use, scalable linear solver is essential to help pop-
ularize novel discretization methods with the industrial actors, to whom it is crucial
to efficiently solve problems of large size. Adopting a new discretization in an indus-
trial context requires heavy preliminary testing, that can be facilitated if the software
for the appropriate solver is already available on the market or if its development
can easily be externalized. Being isolated from the mesh, which can be generated,
stored, and transferred in numerous ways, AMG solvers ally interoperability and per-
formance. Although novel hybrid methods like HHO have gained growing interest
in recent years, thus pushing the development of ad-hoc geometric multigrid algo-
rithms [8, 22, 39, 15] or other iterative methods [35, 23], we are not aware of any
AMG specifically targeting condensed systems arising from such discretizations at
this time.

Usual AMG solvers designed for low-order finite element or finite difference meth-
ods infer mesh information under the assumption that each row in the matrix corre-
sponds to a DoF located at a mesh node or element. Thus, the connectivity graph
of the mesh can be reconstructed algebraically, and coarsening strategies mimicking
geometric algorithms can then be performed in order to build the coarse levels. Al-
gebraic algorithms are commonly separated in two families according to how their
coarsening strategies can be geometrically interpreted. In the first one, one defines
the coarse unknowns as a subset of the fine ones. Geometrically, in an isotropic set-
ting, it consists in selecting fine nodes to keep on the coarse mesh, in such a way
that the domain is still uniformly covered while the number of nodes is significantly
reduced. This approach have given rise to the so-called Classical AMG (also referred
to as C/F AMG) [31, 32], of which BoomerAMG [21] can be mentioned as a popular
implementation. The other family regroups aggregation-based methods [6, 3, 27, 25].
In such methods, unknowns are now respectively assimilated to node-defined DoFs (or
DoFs within distinct elements), which can then be agglomerated to define a coarse
mesh. Among the well-known representatives of aggregation-based AMG software
packages, one can cite AGMG [28]. We refer to [34] for a numerical comparison of
both approaches applied on a specific application of the Navier–Stokes equations. In
the present work, we especially focus on aggregation-based methods. In our hybrid
setting at the lowest order, the unknowns of the system are actually linked to faces,
i.e. neither nodes nor elements. Consequently, at first glance it might seem pecu-
liar, from a geometrical point of view, to apply the above approaches in this context.
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Indeed, looking at the example stencil illustrated by Figure 1.1a, aggregation-based
coarsening might (and sometimes actually does) aggregate the red DoF with the blue
one located the further on its right. As their respective edges do not touch, it is diffi-
cult to perceive a geometrical sense in this aggregation. Nonetheless, numerical tests
with AGMG show that the approach still works well, which can be geometrically jus-
tified by forgetting about the DoFs being actually face-defined and considering them
as mere nodal values. See Figure 1.1b for an illustration of the algebraic stencil as
perceived by standard AMG methods. That being said, one can legitimately wonder
if a coarsening strategy making geometrical sense in light of the actual meaning of
the DoFs as face-defined values could not yield even better results.
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(a) Geometric, face-aware view of the
stencil
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(b) Algebraic view of the stencil (un-
aware of the faces), as perceived by a
standard AMG method

Fig. 1.1: Stencil given by the statically condensed matrix at the lowest order. Solid
points represent DoFs, which, in this context, are located at faces (edges here). The
stencil of the red DoF corresponds to the set of blue ones.

The idea at the origin of the present work is the algebraic reconstruction of the
mesh information based, not on the condensed matrix, but on the uncondensed one,
which contains the connectivity graph between elements and faces. Note that it im-
plies that this method requires more information than the sole system to solve. Parts
of the uncondensed matrix must indeed be brought to the algorithm as additional
information, which makes the method less “black-box”, but still purely algebraic.
Among similar approaches, one can cite AMGe [4]. Once the so-called algebraic mesh
is retrieved, especially the neighbouring information between elements, an element-
based aggregation method can be set up in order to mimic the behaviour of a geometric
coarsening or semi-coarsening strategy. Although the construction of the coarse levels
is mainly based on plain aggregation principles, the prolongation operator also uses
techniques borrowed from smoothed aggregation methods [36, 37, 29].

AMG methods directly used as solvers may lack efficiency [38, p. 663][24]. Using
them as preconditioners for a Krylov method is generally favored. Moreover, plain ag-
gregation methods also suffer from slower convergence than Classical AMG in V-cycle.
To handle these issues, we adopt the choices made by AGMG [27]. Namely, we use the
so-called K-cycle, which introduces Krylov acceleration into the multigrid recursive
cycle. Secondly, one such cycle is used to precondition an outer Krylov method. As
the K-cycle does not yield a constant preconditioner, the outer iteration is required
to be flexible. More generally, the technical choices made in this work are borrowed
from AGMG (pairwise aggregation, strong negative coupling criterion, K-cycle...) in
order to establish a proper comparison with a standard AMG solver that relies only



4 P. MATALON, D. A. DI PIETRO, F. HÜLSEMANN, P. MYCEK, U. RÜDE

on the condensed system.
The rest of this work is organized as follows. Section 2 lists the features we

assume for the underlying discretization to fit our method. Section 3 describes the
construction of our algebraic multigrid algorithm. In Section 4, we apply our method
to the lowest order HHO discretization of homogeneous and heterogeneous diffusion
problems in 2D and 3D. The outer solver is a Flexible Conjugate Gradient, pre-
conditioned with our algebraic multigrid in conjunction with the K-cycle: compared
to a standard aggregation-based AMG, we report equivalent performances in CPU
time, an enhanced robustness to anisotropy on Cartesian meshes, and a similar quasi-
optimal asymptotic behaviour. Finally, we discuss limitations and future work in the
concluding Section 5.

2. Assumptions. We consider a scalar elliptic PDE over a domain discretized
by a polytopal mesh. For simplicity, we suppose Dirichlet boundary conditions. We
assume that the PDE is discretized by a lowest-order hybrid discretization method
DoFs corresponding to one scalar value per cell and per face. Throughout this work,
the subscript T (resp. F ) will consistently refer to the cell-based (resp. face-based)
quantities. We also assume that the global uncondensed linear system arising from
the hybrid discretization at hand is symmetric positive definite, of the form

(2.1)

(
ATT ATF
A>TF AFF

)(
xT
xF

)
=

(
bT
bF

)
,

from which Dirichlet boundary unknowns have been eliminated, and where ATT rep-
resents the coupling among cell-DoFs, ATF between cell- and face-DoFs, and AFF
among face-DoFs. Assuming the discretization is such that the cell unknowns are
only locally coupled, ATT is diagonal, and thus inexpensive to invert. The statically
condensed system resulting from the local elimination of the cell unknowns is

(2.2) ÃxF = b̃, Ã := AFF −A>TFA−1TTATF , b̃ := bF −A>TFA−1TT bT .

As a Schur complement, Ã is also symmetric positive definite.

3. Algebraic multigrid. We propose to construct an algebraic multigrid method
to solve the condensed system (2.2) by using the coupling information given in the
uncondensed matrix (2.1). We base our multigrid algorithm on ingredients classically
used in aggregation-based AMG. AGMG [27] will serve as a reference for specific tech-
nical choices such as the pairwise aggregation, the strong negative coupling criterion,
the Krylov acceleration in the multigrid cycle. We also take inspiration from the good
results of the geometric multigrid algorithm [16] for the adaptation of the coarsening
strategy to the hybrid setting, as well as for the multigrid prolongation operator.

3.1. Construction of the algebraic mesh. It is straightforward to algebra-
ically reconstruct the geometric relationships using the connectivity graph given by
ATF . Rows of ATF correspond to elements, while columns correspond to faces.
Adopting the notation [1, n] := {1, . . . , n} for all n ∈ N∗+, we then define the set
of element indices T := [1, nT ] (resp. the set of face indices F := [1, nF ]) where nT
(resp. nF ) is the number of rows (resp. columns) of ATF . For each i ∈ T , the loca-
tions of the non-zero coefficients in the i-th row of ATF correspond to the associated
face indices, which we collect in the set Fi ⊂ F . Reciprocally, for all k ∈ F , we collect
in Tk ⊂ T the element indices that contain in their boundary the face of index k. In
ATF , two different rows having a non-zero entry in the same column correspond to
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neighbouring elements. Their interface is given by the faces algebraically defined by
the indices of such columns. Formally, for all (i, j) ∈ T 2, i and j are neighbours if
Fi ∩ Fj 6= ∅. Moreover, we define the function σi : Fi → T such that σi(k) =: σik is
the neighbour of the element of index i sharing the face of index k. Algorithm 3.1
summarizes the process.

Algorithm 3.1 BuildMesh

Input: ATF
Output: Mesh defined as the dataset M := (T, F, (Fi)i∈T , (Tk)k∈F , (σik)(i,k)∈T×F )

1: nT := rows(ATF ); T := [1, nT ]
2: nF := cols(ATF ); F := [1, nF ]
3: for i ∈ T do Fi := {k ∈ F | (ATF )ik 6= 0} end for
4: for k ∈ F do Tk := {i ∈ T | (ATF )ik 6= 0} end for
5: for i 6= j ∈ T do
6: if Fi ∩ Fj 6= ∅ then
7: ∀k ∈ Fi ∩ Fj , set σik := j and σjk := i
8: end if
9: end for

3.2. Mesh coarsening by element aggregation and face collapsing. Now
that we have built the algebraic mesh, that is, a list of elements, a list of faces, as
well as the links between them and subsequently the neighbouring relationships, we
are able to algebraically reproduce a geometric element-based aggregation strategy.
The framework of the present contribution does not restrict the aggregation method,
as long as the required information for choosing the aggregates can be retrieved from
the uncondensed system. That is why the way the elements are agglomerated will
remain abstract in the general algorithm. As such, Algorithm 3.2, which describes the
global process of element aggregation, refers to the abstract function BuildAggregate

(at step 6). BuildAggregate takes an element i ∈ T as an argument and returns a
list of elements (including i) chosen to form an aggregate. The simplest aggregation
method, corresponding to clustering i with all its unaggregated neighbours, would
be enough to put our algorithm to the test. However, it would only rely on the
element connectivity graph, i.e. on the location of the non-zero coefficients in the
block ATF , regardless of their values. In order to manage anisotropic problems and
give an example of how semi-coarsening can be performed in our hybrid setting, we
give in subsection 3.3 a hybrid counterpart of the node-defined pairwise aggregation
based on the strong negative coupling criterion, as it is formulated in the early version
of AGMG described by [27]. We denote by (GT,i)i∈[1,nT,c] the produced aggregates,
with nT,c defining the number of aggregates.

In a multigrid method that applies to trace systems, as the smoother operates
on the face unknowns, the efficient reduction of the low-frequency components of the
error relies on accessing coarse representations of the face-defined functions. This
implies that faces must be coarsened between levels (see [15, §4.4.3]), which is a
new constraint imposed to any suited coarsening strategy. Consequently, we combine
the element aggregation with an additional step of face aggregation, also called face
collapsing. In particular, we reproduce the technique devised in [16], which consists
in merging into single faces the interfaces between aggregates.

During the element aggregation process, the fine faces are split into two disjoint
subsets F̊ ∪ F̂ = F according to their situation w.r.t. the aggregates. F̊ regroups
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Algorithm 3.2 ElementAggregation

Input: Mesh, output of Algorithm 3.1
Output: Aggregation information GT , defined as the collection of data:

(GT,i)i∈[1,nT,c]: element aggregates
(gi)i∈[1,nT ]: association of the element i to the aggregate gi it belongs to

(F̊i)i∈[1,nT,c]: fine faces interior to the aggregates

(F̂i)i∈[1,nT,c]: fine faces at the boundary of the aggregates

1: Todo := T // remaining non-aggregated elements
2: n := 0 // aggregate index
3: while Todo 6= ∅ do
4: Select i ∈ Todo

5: n := n+ 1
6: GT,n := BuildAggregate(i, Todo) // see Algorithm 3.5 for a possible algo.
7: for j ∈ GT,n do // save for each fine element the aggregate it is in
8: gj := n
9: end for

10: F̊n := {k ∈
⋃

i∈GT,n

Fi | ∃i 6= j ∈ GT,n s.t. k ∈ Fi ∩ Fj} // interior faces

11: F̂n :=

( ⋃
i∈GT,n

Fi

)
\ F̊n // boundary faces

12: Todo := Todo \GT,n
13: end while
14: nT,c := n

the faces interior to an aggregate, i.e. the faces shared by two elements aggregated
together. Geometrically speaking, those faces are “removed” to give rise to the aggre-
gates. The remaining faces, which compose the aggregates’ boundaries, are collected
in F̂ . We also denote their local counterparts, with respect to each aggregate, by
(F̊i)i∈[1,nT,c] and (F̂i)i∈[1,nT,c]. See Figure 3.1a for a geometric illustration.

→ F̊

F̂

(a) Element aggregation

→

(b) Face collapsing

Fig. 3.1: Aggregation process with face collapsing. In (a), elements are aggregated,
yielding two aggregates. “Removed” edges, represented in dashed red lines, are col-
lected in F̊ , while the remaining ones are collected in F̂ . Then, in (b), the interface
between the two neighbouring aggregates, here made of two edges (in dashed red
lines), is collapsed into a single one (solid blue line). The other edges yield singleton
face aggregates.

Neighbouring relationships between element aggregates can be directly deduced
from F̂ . We can then collapse into one single face the interfaces between aggregates
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without altering the coarse adjacency graph. Note that each interface, whether it
is made of multiple faces or only one, gives rise to one face aggregate, so singleton
aggregates are produced. Figure 3.1b gives a geometric interpretation of the face
collapsing, and Algorithm 3.3 formalizes the process.

Algorithm 3.3 FaceCollapsing

Input: Fine mesh, output of Algorithm 3.1
Aggregation information, output of Algorithm 3.2

Output: Face collapsing information GF , defined as the collection of data:
(GF,k)k∈[1,nF,c]: face aggregates
(Hi)i∈[1,nT,c]: collapsed faces defining the new boundaries of the aggregates

1: Todo := F̂ // remaining non-collapsed faces
2: m := 0 // face aggregate index
3: while Todo 6= ∅ do
4: Select k ∈ Todo

5: m := m+ 1
6: Let G :=

⋃
i∈Tk

gi // element aggregates the face k is at the interface of

7: GF,m :=
⋂
n∈G F̂n // fine faces (including k) composing that interface

8: for n ∈ G do
9: Hn := Hn ∪{m} // in the coarse mesh, m is now a face of the aggregate n

10: end for
11: Todo := Todo \GF,m
12: end while
13: nF,c := m

Algorithm 3.4 MeshCoarsening

Input: M : mesh, output of Algorithm 3.1

1: GT := ElementAggregation(M) // Algorithm 3.2
2: GF := FaceCollapsing(M,GT ) // Algorithm 3.3
3: Tc := [1, nT,c] // coarse elements := aggregates
4: Fc := [1, nF,c] // coarse faces := collapsed faces

Now that aggregates have been made for elements and faces by the global Al-
gorithm 3.4, they can be numbered and become the coarse elements and faces, thus
defining a coarse mesh.

3.3. Pairwise aggregation by strong negative coupling. This strategy al-
lows to aggregate pairs of neighbouring elements in the direction of strong anisotropy,
and gives an implementation of the abstract method BuildAggregate at step 6 of
Algorithm 3.2. The choice of the neighbours for the constitution of the aggregates
follows an adaptation to hybrid unknowns of the usual rule of negative coupling em-
ployed in standard AMG. For each element, this rule allows to evaluate, for all of its
neighbours, a numerical criterion indicating their strength of connection. Only those
which have a strong enough connection and are not already aggregated are consid-
ered for aggregation. Among them, the strongest one is chosen, and leads to a pair
aggregate. However, if none of the strong neighbours are available, i.e. they have
all already been previously aggregated, then the element stays alone in a so-called
singleton aggregate.
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•i • j
Aij

(a) Coupling of nodes i and j in stan-
dard AMG.

(ATF )ik
i jk

(b) Coupling of elements i and j via their com-
mon face k in the hybrid setting.

Fig. 3.2: Coupling values in standard and hybrid settings.

Before introducing our hybrid criterion for the strong negative relationship, let
us recall the node-defined criterion used by standard AMG methods. As multiple
variations of this criterion exist, we follow the example of AGMG in the version
of [27]. Given the stiffness matrix A and an algebraic node i associated to the i-
th row of A, the coupling coefficient modelling the connection of j to i is provided
by the matrix entry Aij (see Figure 3.2a). We say that j is negatively coupled (or
connected) to i if Aij < 0, and the strength of connection is defined by the modulus of
that coefficient. The strongest connection then corresponds to ci := maxj|Aij<0 |Aij |.
Given a weak/strong connection threshold 0 < β ≤ 1 (typically set to 0.25), the set
of nodes strongly connected to i is {j | Aij < 0 and |Aij | ≥ β ci}.

In our case, in hybrid form, elements are coupled through ATF . Specifically,
given an element of index i ∈ T and its neighbour of index j, the coupling coefficient
is provided through their common face of index k by the matrix coefficient (ATF )ik;
see Figure 3.2b. We then introduce the following definition for the negative coupling
criterion: j is negatively coupled to i via k if (ATF )ik < 0. Now, for the purpose
of managing heterogeneous problems by preventing aggregation across large jumps
in the diffusion coefficient, we remark that this sole value is not enough to detect a
discontinuity between i and j. Indeed, (ATF )ik only bears information local to i. We
also notice that, in the heterogeneous isotropic diffusion case, the coefficient (ATF )ik
is scaled by the actual diffusion coefficient of the element of index i. We then introduce
the heterogeneity ratio between the elements of indices i and j connected by the face
of index k as

(3.1) ρij := max

(
(ATF )ik
(ATF )jk

,
(ATF )jk
(ATF )ik

)
> 1.

Meaning to penalize aggregation across jumps, instead of simply defining the coupling
strength by |(ATF )ik|, we define it as

cik := |(ATF )ik|/ρiσik
,

where we recall that σik refers to the element index j that shares the face index k
with i. According to this criterion, the remaining definitions are straightforward. The
strongest connection to i is given by

ci := max
k∈Fi,(ATF )ik<0

cik,

and the set of faces strongly connected to i by

(3.2) F i := {k ∈ Fi | (ATF )ik < 0 and cik ≥ β ci}.
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Finally, the strong neighbours of i may be retrieved in the set {σik, k ∈ F i}. The
corresponding implementation of the abstract function BuildAggregate is given by
Algorithm 3.5.

Algorithm 3.5 BuildAggregate

Input: i ∈ T : element to aggregate
T̃ ⊂ T : non-aggregated elements

Output: G: aggregate

1: // Collect faces strongly connected to i through which neighbours are still avail-
able

2: F̃i := {k ∈ F i | σik ∈ T̃} // cf. (3.2) for the definition of F i
3: if F̃i 6= ∅ then
4: k := arg max`∈F̃i

ci` // face with the strongest coupling
5: G := {i, σik} // aggregation of i and its neighbour relative to k
6: else
7: G := {i} // i forms a singleton aggregate
8: end if

Notice that the number of singleton aggregates can significantly vary depending
on the order following which the elements are aggregated. So, to minimize the number
of singleton aggregates, the elements are beforehand parsed and attributed a priority
value in order to favor those that have the fewest strong neighbours. Especially, we
follow the priority numbering algorithm described in [10] and process elements by
order of priority at step 4 of Algorithm 3.2.

3.4. Cell- and face-defined auxiliary prolongation operators. Given T :=
[1, nT ] (resp. F := [1, nF ]) the fine elements (resp. faces) indices in the algebraic mesh,
we denote by Tc := [1, nT,c] (resp. Fc := [1, nF,c]) the coarse elements (resp. faces)
constructed by the aggregation process of subsection 3.2 (Algorithm 3.4). We start
by defining an auxiliary cell-defined prolongation matrix QT (of size nT ×nT,c) in the
manner of plain aggregation:

(3.3a) ∀i ∈ T, ∀j ∈ Tc, (QT )ij :=

{
1 if i ∈ GT,j
0 otherwise.

This highly sparse prolongation operator (exactly 1 non-zero per row) transfers the
unknown values respectively assigned to the coarse elements onto the fine elements
they aggregate. Without smoothed aggregation techniques, all fine elements of the
same aggregate receive the same value. Regarding the faces, we define the auxiliary
prolongation matrix QF (of size nF × nF,c) such that for k ∈ F ,

(i) if k ∈ F̂ , i.e. k belongs to a face aggregate,

(3.3b) ∀` ∈ Fc, (QF )k` :=

{
1 if k ∈ GF,`
0 otherwise;

(ii) if k ∈ F̊ , let m be the coarse element embedding k (i.e. k ∈ F̊m)) and Hm its
set of (potentially) collapsed faces; then,

(3.3c) ∀` ∈ Fc, (QF )k` :=

{
1/ card(Hm) if ` ∈ Hm

0 otherwise.
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(a) Aggregated faces (∈ F̂ )
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(b) Interior/removed face (∈ F̊ )

Fig. 3.3: Operator QF . The fine red DoFs are set by the coarse black ones.

To summarize, an aggregated face takes the value of the corresponding coarse aggre-
gate (just like the elements), and a “removed” face, embedded in a coarse element,
takes the average value of that coarse element’s faces; see Figure 3.3.

3.5. Multilevel hierarchy. As the method described in subsection 3.2 does
not necessarily yield an aggressive enough coarsening [27], and also in order to build
more levels for the multigrid hierarchy, we want to repeat the coarsening process, thus
defining the so-called multiple coarsening. To do so, one has to define a coarse version
of the uncondensed matrix (2.1) to allow recursive execution.

Given the initial blocks ATT , ATF and AFF of the fine uncondensed matrix, we
use the auxiliary prolongation operators introduced in subsection 3.4 to define coarse
counterparts in a Galerkin fashion:

(3.4)

(
ATT,c ATF,c
A>TF,c AFF,c

)
:=

(
QT

QF

)>(
ATT ATF
A>TF AFF

)(
QT

QF

)
.

Note that in practice, only the blocks used in the algorithm must be assembled. In
this work, we only need ATF (for the coarsening strategy) and ATT (used in the
multigrid prolongation operator PF further described in subsection 3.6).

Algorithm 3.6 describes one step of coarsening. In addition to building the coarse
blocks (step 4), the coarsening process also constructs the operator PF that will be
used as prolongation operator in the multigrid algorithm (step 5). Indeed, although
QF could be employed for that purpose, we choose to explore another, more efficient
approach (the construction of the operator PF is described in subsection 3.6 below).
Furthermore, the coarse operator for the lower level of the multigrid algorithm is
defined as the Galerkin operator, constructed from PF and the condensed matrix Ã,
initialized at the finest level by the Schur complement (2.2) (step 6). Finally, to be
more consistent with this coarse operator, we recompute the coarse blocks following
formula (3.4) in which QF is replaced with PF , i.e.

(3.5)

(
ATT,c ATF,c
A>TF,c AFF,c

)
:=

(
QT

PF

)>(
ATT ATF
A>TF AFF

)(
QT

PF

)
.

Again, only the blocks actually needed, here ATF,c only, are recomputed; see step 7.
While Algorithm 3.6 performs one step of coarsening, Algorithm 3.7 handles the

recursion until a targeted coarsening factor is reached. The end of the multiple coars-
ening process defines one new multigrid level, and the two-level prolongation operator
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is defined by successively chaining the prolongation operators coming out of each
coarsening (step 7).

Algorithm 3.6 Coarsening

Input: ATT , ATF , Ã
Output: ATT,c, ATF,c, Ãc, PF

1: M := BuildMesh(ATF ) // Algorithm 3.1
2: [GT , GF ] := MeshCoarsening(M) // Algorithm 3.4
3: Compute QT and QF by (3.3)
4: ATT,c := Q>TATTQT ; ATF,c := Q>TATFQF // cf. (3.4)
5: Compute PF by (3.8)

6: Ãc := P>F ÃPF
7: ATF,c := Q>TATFPF // cf. (3.5)

Algorithm 3.7 MultipleCoarsening

Input: ATT , ATF , Ã, targetCF
Output: ATT,c, ATF,c, Ãc, PF

1: ATT,aux := ATT ; ATF,aux := ATF
2: Ãaux := Ã
3: PF := I
4: cf := 0 // coarsening factor
5: while cf < targetCF do
6: [ATT,c, ATF,c, Ãc, PF,aux] := Coarsening(ATT,aux, ATF,aux, Ãaux) // Algo-

rithm 3.6
7: PF := PFPF,aux
8: ATT,aux := ATT,c; ATF,aux := ATF,c
9: Ãaux := Ãc

10: cf := cols(ATF )/ cols(ATF,c)
11: end while

3.6. Multigrid prolongation operator. Although QF could also be used as
prolongation operator for the multigrid algorithm, we choose to explore another ap-
proach, which happens to give better results. Thus, we would like to emphasize that
QF is only employed to build the coarse blocks during the setup phase, while PF ,
described in this section, defines the prolongation operator used in the multigrid it-
erations. It is meant to be an algebraic counterpart of the geometric prolongation
operator defined in [15], which relies on the decondensation of the cell unknowns.

First, we introduce a preliminary prolongation operator denoted by P
(0)
F . For all

k ∈ F , its k-th row (P
(0)
F )k is defined as

(3.6) (P
(0)
F )k :=

{
(QF )k if k ∈ F̂
(Πf

cΘc)k if k ∈ F̊ .

In this definition, Θc ∈ RnT,c×nF,c locally computes the value on the coarse cells from
their respective coarse faces, while Πf

c ∈ RnF×nT,c transfers the value associated the
coarse cells to their respective interior fine faces. We define

(3.7) Θc := −A−1TT,cATF,c,
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which reverses the static condensation by solving for the cell unknowns local problems
on the coarse cells given values on the faces. Next, for any face k ∈ F ,

∀n ∈ Tc, (Πf
c )kn :=

{
1 if k ∈ F̊n
0 otherwise.

Figure 3.4 illustrates P
(0)
F .

•

•

•• ••

• •

••

(a) QF for F̂

•

•

•

•

• → ••

(b) Πf
c Θc for F̊

Fig. 3.4: Preliminary prolongation operator P
(0)
F . In these figures, we consider two

fine elements (dashed lines) aggregated into one (solid lines). The DoFs on the coarse
faces are represented by black dots, on the fine faces by red dots, on the coarse element
by a blue dot.

Second, we remark that the stencil, in P
(0)
F , of the DoFs associated to removed

fine faces (i.e. k ∈ F̊ ) is local to coarse elements. Given that the stencil in Ã is
also local to coarse elements for those unknowns, one sweep of Jacobi smoothing can
be applied to them without enlarging the prolongation stencil. This allows to boost
the convergence with virtually no additional computational cost. Note that a second
smoothing iteration would enlarge the stencil outside of coarse elements, which we do
not want. Setting the damping factor to ω := 2/3, the smoothing matrix is defined by

J := I − ωD̃−1Ã, where I is the identity matrix and D̃ the diagonal part of Ã. The
final multigrid prolongation operator P is then defined row-wise for all row k ∈ F as

(3.8) (PF )k :=

{
(QF )k if k ∈ F̂
(JP

(0)
F )k if k ∈ F̊ .

To conclude about the formulation of PF , we want to point out its mixed construction
with respect to aggregation-based methods: plain aggregation is used for F̂ , while F̊
benefits from smoothed prolongation.

3.7. Multigrid method. A hierarchy of L levels is built by multiple coarsening
following subsection 3.5, and numbered from 1 (the coarsest) to L (the finest). At
each level `, the prolongation operator is given by (3.8), which we simply denote by
P` instead of PF,`. The other multigrid ingredients are chosen as per the variational

framework: namely, the restriction is set to P>` , and the coarse operator Ã`−1 to
the Galerkin construction, initialized by the condensed matrix (2.2) as the finest

operator ÃL (i.e. Ã`−1 := P>` Ã`P`, ∀` = 2, . . . , L). The other parameters of the
method (smoothers, cycle, coarsening factor, weak/strong coupling threshold, coarse
grid solver) are left to the user’s discretion; our choices are detailed in subsection 4.1.
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3.8. Usage as a preconditioner. Prolongation operators arising from plain
aggregation are known to yield poor approximation properties of the coarse grid cor-
rection. However, it is known [24] that this loss of approximation, leading to bad
convergence of the V-cycle, can be compensated by the use of the K-cycle ([27, Al-
gorithm 3.2]), and by preconditioning a Krylov method. The detail of the K-cycle at
a generic level ` is recalled in Algorithm 3.8, and is applied, in our context, on the
hierarchy of condensed matrices (Ã`)`=1...L and prolongation operators (P`)`=2...L.

Algorithm 3.8 KCyclePrec`
Data: Hierarchies of matrices (Ak)k=1...` and prolongation operators (Pk)k=2...`

Input: Residual r
Output: The approximate solution e of the linear system A` e = r

1: if ` = 1 then
2: Direct solving: e := A−1` r
3: else
4: Relaxation using smoother M`: e := M−1` r
5: Residual computation: r := r −A` e
6: Restriction of the residual: r`−1 := P>` r
7: The residual equation is solved at level `− 1 by 1 or 2 iterations of a Krylov

method preconditioned by KCyclePrec`−1 with 0 initial guess:
e`−1 := InnerKrylov(A`−1, r`−1,KCyclePrec`−1, 0)

8: Coarse grid correction: e := e+ P` e`−1
9: Residual computation: r := r −A` e

10: Relaxation using smoother M`: e := M−1` r
11: end if

In this cycle, only the way the residual equation is solved on the coarse level
(step 7) differs from the standard V- and W-cycles. Instead of performing 1 (in
V-cycle) or 2 (in W-cycle) iterations of the same cycle at the lower level through a
direct recursion, the K-cycle performs 1 or 2 iterations of an inner Krylov method,
itself preconditioned by the current K-cycle algorithm at the lower level. Inspired
from [27], the number of iterations executed (1 or 2) is decided dynamically, according
to the effective reduction of the residual: if the residual norm is not reduced by a factor
of at least 4 after the first iteration, then a second one is performed.

The final solver is then built by using Algorithm 3.8 to precondition the same
Krylov method as for the (1 or 2) inner iterations performed within the the K-cycle.
Note that the variable number of Krylov iterations in the K-cycle makes the latter
a variable preconditioner, which implies that a flexible version of the Krylov method
has to be used. Flexible versions of Krylov methods are usually obtained by the use
of a truncature-restart strategy regarding the orthogonalization of the Krylov vectors.
Algorithm 3.9 presents such a Flexible Conjugate Gradient [26], the so-called FCG(1)
(also referred to as IPCG), obtained by orthogonalization of the research direction
against only one previous Krylov vector, without restart.
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Algorithm 3.9 Preconditioned Flexible Conjugate Gradient FCG(1)

Input: Matrix A, right-hand side b, preconditioner Prec, initial guess x0
Output: The approximate solution x of the linear system Ax = b

1: x := x0
2: r := b−Ax
3: for i = 1, 2, . . . do
4: w := Prec(r)
5: if i = 1 then d := w
6: else d := w − w>Adold

d>oldAdold
dold

7: end if
8: α := d>r/d>Ad
9: x := x+ αd

10: r := r − αAd
11: dold := d
12: end for

4. Numerical tests.

4.1. Experimental setup. Letting Ω be a bounded polytopal domain of Rd,
d ∈ {2, 3}, we consider the diffusion problem{

−∇ · (K∇u) = f in Ω,

u = 0 on ∂Ω,

where f ∈ L2(Ω) is a given source term and K : Ω → Rd×d is the diffusion tensor
field, which is assumed to be real, symmetric, uniformly elliptic. This problem is dis-
cretized by the HHO method [12] at the lowest order, which matches the structural
requirements of Section 2. The homogeneous Dirichlet boundary condition is han-
dled by elimination. The multigrid preconditioner given by Algorithm 3.8 performs
one sweep of Gauss–Seidel in lexicographic order as pre-smoothing and one sweep of
Gauss–Seidel in anti-lexicographic order as post-smoothing. We refer to this cycle as
the K(1,1)-cycle. As the arising system is symmetric positive definite, we choose the
Flexible Conjugate Gradient FCG(1) (cf. Algorithm 3.9) for the outer iteration as well
as for the inner iteration of the K-cycle, meaning that the FCG, as outer solver, is pre-
conditioned by the K(1,1)-cycle of our multigrid method. The preconditioner being
symmetric positive definite, convergence of the outer FCG is ensured. To build each
coarse level, multiple pairwise aggregations with the weak/strong coupling threshold
β = 0.25 are performed (subsection 3.3), enforcing a coarsening factor ≥ 3.8. Coarse
levels are built until the operator matrix has less than 1000 rows, where the system
is solved by a direct solver. Iterations stop when the backward error, defined by the
residual normalized by the right-hand-side, reaches a value lower than 10−8. In the
following results, note that the number of iterations refers to the outer solver, i.e.
FCG.

4.2. Methodology. The main goal of the following numerical experiments is to
establish a comparison between the solver developed in this work and the equivalent
one made in the way of standard AMG. The former uses the uncondensed matrix to
devise an element-based coarsening strategy, while the latter is directly working on
the condensed system by implementing an node-defined coarsening strategy. Conse-
quently, additionally to our novel algorithm, which we will refer to as Uncondensed
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AMG (U-AMG), we introduce the so-called Condensed AMG (C-AMG), which uses
the nodewise-equivalent coarsening strategy directly on the condensed system. The
pairwise aggregation is then performed according to the nodewise strong coupling
relationship described in the introductory paragraphs of subsection 3.3, and we note
that the multiple pairwise aggregation reduces in this case to the double pairwise ag-
gregation. The prolongation operator follows plain aggregation, i.e. is built similarly
to the operator QT in (3.3a). The rest of the method shall be parametrized identically
to U-AMG (same Krylov method, smoothers, cycle, etc.).

Comparing overall performances of two iterative methods is a difficult exercise.
The convergence rate or number of iterations, alone, is not sufficient to establish a fair
comparison, because the actual time to solution also depends on the iteration cost.
Combining both criteria is usually made in terms of computational work or CPU time.
The plain aggregation prolongation matrices, which contain only ones, is therefore
applied to vectors without any theoretical flop, although its practical application still
consumes non-negligible CPU time. As a consequence, we find the computational work
not to be a good indicator in that case. As our U-AMG and C-AMG implementations
both benefit from identical software components and optimizations, we adopt the CPU
time (in sequential execution) as overall performance criterion. Additionally, classical
data used to assess convergence and cost of multigrid methods shall also be given.
Especially, we respectively introduce the operator and grid complexity values as

Cop :=

L∑
`=1

nnz(Ã`)

nnz(ÃL)
, Cgd :=

L∑
`=1

rows(Ã`)

rows(ÃL)
.

These indicators give insight into the memory requirement and the computational
cost of multigrid solvers.

Given the chosen parameters, namely FCG Krylov method, Gauss-Seidel
smoothers, K(1,1)-cycle, etc., C-AMG corresponds almost exactly to the algorithm
implemented by AGMG in the version of [27]. One minor difference is that our al-
gorithm omits the special treatment of strongly diagonal-dominant rows, made to
manage Dirichlet boundary conditions enforced by penalization. Furthermore, the
current release of the software AGMG implements a quality control over the ag-
gregates described in [25], which may significantly improve its overall performance,
especially in anisotropic cases, where the “shape” of the coarse elements plays an
essential role in the convergence rate. Such a quality control preventing the formation
of “bad” aggregates is omitted in our C-AMG and U-AMG algorithms. Additionally,
differences in the implementation prevents a fair comparison, in terms of execution
time, with the fully optimized AGMG, for which better results can reasonably be
expected. The term implementation here refers to any factor, besides the algorithm
itself, that can influence the CPU time. Typically, it includes the software technolo-
gies employed (programming language, third-party libraries, compiling options, etc.)
as well as the efficiency of the coding itself. For those reasons, results obtained with
the current release of AGMG shall be included for information, more as a reference
to a state-of-the-art solver than as direct comparative data.

4.3. Numerical results.

4.3.1. Speed and robustness. Table 4.1 describes the test cases studied. Sim-
ple and complex geometries are used, discretized by Cartesian or unstructured simpli-
cial meshes. Tests with anisotropic and heterogeneous tensors are performed. They
all gather between 3 and 6 million face unknowns, ensuring at least 6 multigrid levels.
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Although all but the heterogeneous one are 3D problems, we point out that the results
are consistent in 2D. The test results are displayed in Table 4.2. They include the
following data: operator complexity (Cop); grid complexity (Cgd); number of multigrid
levels (L); number of iterations to reach the convergence criterion (it); asymptotic
convergence rate (%), defined as the geometric mean of the residual convergence ratios
for the last five iterations; solve CPU time in seconds, excluding setup (t). Figure 4.2
summarizes in a comparative chart the solve CPU times of the solvers. As explained
in subsection 4.2, this figure shall concentrate most of the comments in this section.

Test case Geometry Mesh Tensor Elements Unknowns

Cube-cart Cube Cartesian Isotropic,
homogeneous

2,097,152 6,242,304

Cube-tet Cube Unstruct.
tetrahedral

Isotropic,
homogeneous

1,224,179 2,418,910

Complex-tet Figure 4.1a Unstruct.
tetrahedral

Isotropic,
homogeneous

3,319,309 6,532,291

Heterog1e8 Square Unstruct.
triangular

Isotropic,
heterogeneous
according to
Figure 4.1b

2,431,032 3,644,496

Cube-cart-aniso100 Cube Cartesian Anisotropic in
the x direction,
coefficient 100

2,097,152 6,242,304

Cube-tet-aniso20 Cube Unstruct.
tetrahedral

Anisotropic in
the x direction,
coefficient 20

1,224,179 2,418,910

Table 4.1: Description of the test cases.

X
Y

Z(a) Geometry of test case Complex-tet: 3D
plate with cylindrical holes.

Ω2 Ω1

Ω1 Ω2

(b) Heterogeneity pattern of test case
Heterog1e8: for i = 1, 2, K|Ωi

:= κiI, with
κ1/κ2 = 108.

Fig. 4.1: Supplementary figures for test cases Complex-tet (a) and Heterog1e8 (b).

Let us first examine the dependency on the mesh. On a structured Cartesian mesh
(Cube-cart), we remark that U-AMG is significantly faster than C-AMG (−25%).
However, on the same geometry, this time with an unstructured tetrahedral mesh
(Cube-tet), we get equivalent solve time. Finally, on a tetrahedral mesh describing
a complex geometry (Complex-tet), the advantage of U-AMG fades out: U-AMG



AMG FOR HYBRID METHODS 17

Cube-c
ar

t

Cube-t
et

Com
plex

-te
t

Hete
ro

g1
e8

Cube-c
ar

t-a
niso

10
0

Cube-t
et-

an
iso

20
0

20

40

60

80
C

P
U

ti
m

e
(s

)
U-AMG
C-AMG
AGMG

Fig. 4.2: Solver comparison in CPU time.

becomes slightly slower than C-AMG (+6%). Next, on a heterogeneous problem with
large coefficient jump (Heterog1e8), we see that both methods perform equivalently.
Finally, tackling anisotropic problems, U-AMG is considerably faster than C-AMG
on a Cartesian mesh (Cube-cart-aniso100), whereas they show comparable perfor-
mance on an unstructured one (Cube-tet-aniso20). This set of tests demonstrates
that U-AMG is favored by Cartesian meshes. To justify this result, we begin by
recalling that the remaining unknowns of the condensed system are located on the
faces. Indeed, viewed as nodes located at the center of the faces, these DoFs are not
displayed, relative to each other, in a Cartesian way. See the node locations in Fig-
ure 4.3a: geometrically speaking, compared to the usual 2D Cartesian grid of element
width h, the nodes form a set of rows evenly spaced by h/2, and where every other
row has been shifted by h/2, giving the impression that the nodes are diagonally
aligned. A fortiori, the Cartesian structure is partially lost in the sense that only one
Cartesian direction is present in the stencil of each node (see red and blue stencils
in Figure 4.3a). The problem for C-AMG becomes visible on an anisotropic setting,
where the anisotropy follows —for instance— the x-axis. Although one wants the
aggregation process to produce horizontal aggregates, the shapes actually formed are
more diverse, and can even be vertical. Figure 4.3b illustrates the aggregates obtained
by the double pairwise aggregation in this case: while desired horizontal aggregates
are represented in red, one can also see vertical aggregates in blue, as well as “waves”
in green. Referring to the red stencil of Figure 4.3a, we notice that nodes located on
vertical grid lines have horizontal stencils, which allows them to be aggregated hor-
izontally and form red aggregates. Similarly, nodes located on horizontal grid lines
have inherently vertical stencils (in blue). Specifically, their stencils do not contain
any node to aggregate with in the horizontal direction in order to comply with the
anisotropy. Nodes on the same grid line are indeed not part of the stencil. Conse-
quently, due to the values of coefficients and the game of aggregation priorities, other
shapes are formed instead: vertical aggregates in blue or, better (because closer to
horizontal), waves in green. On the other hand, the reconstruction of the actual ele-
ments performed by U-AMG yields entities with fully Cartesian stencils, allowing the



18 P. MATALON, D. A. DI PIETRO, F. HÜLSEMANN, P. MYCEK, U. RÜDE

Cube-cart Cop Cgd L it % t

U-AMG 1.33 1.30 7 19 0.38 31.0
C-AMG 1.51 1.34 8 15 0.25 41.1
AGMG 2.03 1.64 9 24 19.7

Cube-tet Cop Cgd L it % t

U-AMG 1.78 1.22 6 31 0.51 23.4
C-AMG 1.51 1.34 7 27 0.49 24.1
AGMG 1.98 1.79 7 28 15.3

Complex-tet Cop Cgd L it % t

U-AMG 1.76 1.22 7 31 0.51 83.8
C-AMG 1.51 1.34 8 27 0.46 79.1
AGMG 1.96 1.78 7 27 46.6

Heterog1e8 Cop Cgd L it % t

U-AMG 1.55 1.27 7 27 0.42 26.1
C-AMG 1.42 1.34 7 23 0.38 28.5
AGMG 1.52 1.40 7 20 18.8

Cube-cart-aniso100 Cop Cgd L it % t

U-AMG 1.32 1.33 7 10 0.15 13.8
C-AMG 1.95 1.33 8 30 0.54 81.5
AGMG 1.70 1.51 7 23 19.3

Cube-tet-aniso20 Cop Cgd L it % t

U-AMG 1.82 1.23 6 77 0.80 62.5
C-AMG 1.60 1.43 8 75 0.78 62.3
AGMG 2.97 2.78 6 55 49.7

Table 4.2: Test results.

desired semi-coarsening; see Figure 4.3c. This explains why U-AMG performs so much
better than C-AMG on the Cube-cart-aniso100 test case. Note that this advantage
is not limited to anisotropy directions that follow one of the axes; this profitable be-
haviour is also observed for orthotropic diffusion, namely, when the elements line up
in the anisotropy direction. They can be rectangles in 2D and hexahedra in 3D, but
also, more loosely, polytopes having two opposite faces orthogonal to the direction of
anisotropy. However, if the mesh is fully unstructured, aggregating nodes probably
offers more, or at least equivalent flexibility to follow the direction of anisotropy than
aggregating elements. Hence the results obtained on the Cube-tet-aniso20 test case,
where U-AMG loses its superiority.

These remarks on the shapes of the aggregates allows us to interpret more closely
the results of AGMG. As stated in subsection 4.2, AGMG implements a complex
quality control preventing bad aggregates to be formed, which we have not carried
out in C-AMG. In particular, we think that aggregates such as the blue ones in
Figure 4.3b (namely, those orthogonal to the direction of anisotropy) do not occur
in AGMG thanks to that quality control, thus explaining the large performance gap
between C-AMG and AGMG on the Cube-cart-aniso100 test case. We can also
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(b) Node aggregation.
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(c) Element aggregation.

Fig. 4.3: (a) Location of the face DoFs on a Cartesian grid. (b) and (c): result of the
nodewise and elementwise double pairwise aggregations, according to an anisotropic
problem following the x-axis.
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Fig. 4.4: Asymptotic behaviour.

suppose that, when the problem is isotropic and the mesh unstructured, there are
not many bad aggregates to prevent. In that case, we can then admit that the
difference in CPU time between C-AMG and AGMG results from other aspects of
the implementation. Looking at the results of the test cases Cube-tet, Complex-tet
and Heterog1e8, we can attribute 35 to 50% of the CPU time consumed by C-AMG
to an implementation overhead. As U-AMG benefits from the same implementation,
this proportion gives a hint on how to compare U-AMG to AGMG. Specifically, we
remark that even in spite of this overhead, U-AMG still performs better than AGMG
on the test case Cube-cart-aniso100. This indicates that the new algorithm can
lead to an improved efficiency for such cases.

4.3.2. Asymptotic behaviour. Figure 4.4 presents, for the test case Cube-tet
and for each solver, the number of iterations required to achieve convergence according
to the number of unknowns in the system. We remark that U-AMG scales the same
way as C-AMG, and slightly better than AGMG. This means that the new algorithm
offers equivalent robustness to the meshsize as the existing method, and shares its
algorithmic quasi-optimality.

4.3.3. Convergence/cost trade-off. We remark from Table 4.2 that the num-
ber of iterations required by U-AMG to reach convergence is generally higher than for
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C-AMG. We would like to discuss in this section the link between convergence rate
and aggressiveness of coarsening.

The so-called multiple coarsening performed by U-AMG and C-AMG recursively
coarsens until a desired coarsening factor (relative to the number of unknowns, i.e.
the number of faces) is achieved. Note that for C-AMG, the number of required steps
of coarsening is always 2, whereras for U-AMG, it needs to be higher to build the
first levels, and decreases as the levels grow coarser. For actual values, refer to the
number of coarsening steps performed between each level, indicated in Table 4.3 for
the test case Cube-tet. The fact that unknowns are face unknowns, again, explains
this phenomenon. Indeed, one step of coarsening corresponds to aggregating elements
pairwise and collapsing faces between aggregates. Consequently, the efficient reduc-
tion of unknowns heavily relies on opportunities to collapse faces. Now, starting from
a simplicial mesh, i.e. polytopes with minimal number of faces, the possibilities of
collapsing faces is limited, and so is the size of the subsequent face aggregates. The
situation starts to improve as the levels grow coarser because the elements then have
a larger number of faces, which benefits the face collapsing process.

Level ` Coarsening
steps

Coarsening
factor

rows(Ã`) nnz(Ã`)

fine 6 - - 2,418,910 16,757,242
5 4 5.5 440,204 9,848,798
4 3 5.4 81,081 2,702,515
3 3 7.2 11,243 416,655
2 2 4.1 2725 97,405

coarse 1 2 4.3 626 19,258

Table 4.3: Details of the adaptive multiple coarsening strategy of U-AMG for the test
case Cube-tet.

The downside of enforcing a coarsening factor, thus triggering multiple steps of
coarsening, is that element aggregates can be large between two levels, which deterio-
rates the accuracy of the prolongation operator, and therefore that of the coarse grid
correction. On the other hand, by fixing the number of coarsening steps performed
between each levels, we expect a better accuracy, but costlier iterations. In order to
compare both strategies, Table 4.4 presents the coarsening details when a constant
number of two coarsening steps is performed. Besides the larger number of levels
built due to the less aggressive coarsening, we emphasize that between the highest
levels, where the coarsening factor is low, the sparsity of the operator is barely im-
proved, which implies similar smoothing costs at those levels. Finally, we compare
their respective multigrid results in Table 4.5. As expected, the fixed double coars-
ening strategy induces a better convergence rate than the multiple coarsening, with a
number of iterations that is now lower than both C-AMG and AGMG. However, the
operator and grid complexities have increased. While the grid complexity is still rea-
sonable, in the sense that it is equivalent to that of AGMG, the operator complexity is
significantly larger than with the adaptive multiple coarsening strategy, which reflects
the high cost of smoothing and memory storage. All in all, the solver converges in
more CPU time, hence our choice of the multiple coarsening method. Nonetheless,
the double coarsening is yet not to be discarded. Finding ways to sparsen the coarse
operators in order to optimize the trade-off between convergence rate and operator
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complexity is another research path.

Level ` Coarsening
steps

Coarsening
factor

rows(Ã`) nnz(Ã`)

fine 8 - - 2,418,910 16,757,242
7 2 2.2 1,101,412 15,003,704
6 2 2.5 444,030 10,002,480
5 2 3.0 148,892 4,530,558
4 2 3.5 43,078 1,515,066
3 2 3.8 11,357 416,155
2 2 4.0 2846 101,960

coarse 1 2 4.2 681 20,925

Table 4.4: Details of the fixed double coarsening strategy of U-AMG for the test case
Cube-tet.

Cube-tet Cop Cgd L it % t

U-AMG (multiple coarsening) 1.78 1.22 6 31 0.51 23.4
U-AMG (double coarsening) 2.88 1.72 8 25 0.46 25.5
C-AMG 1.51 1.34 7 27 0.49 24.1
AGMG 1.98 1.79 7 28 15.3

Table 4.5: Comparative solver results.

4.4. Alternative algorithms. In order to justify our algorithmic choices, we
present supplementary numerical results using alternative prolongation operators. In
particular, we want to compare the results of our method with those obtained us-
ing QF as prolongation operator (cf. subsection 3.6). Indeed, since QF is used to
build coarse levels in the setup phase, re-using it as the prolongation operator in the
multigrid iterations comes as a more straightforward solution than constructing a new
operator. Second, in order to evaluate the effect of the partial smoothing (cf. J in
(3.8)), we also consider the multigrid method without this enhancement. Namely, it

corresponds to using P
(0)
F (cf. (3.6)) as prolongation operator instead of PF , and to

introduce the operator Qsmooth
F as the counterpart of QF , enhanced with the same

partial smoothing. Let us first consider the results obtained on the Cube-tet test
case, given in the top half of Table 4.6. While plain QF provides a faster solver than

P
(0)
F , the addition of the partial smoothing makes the final PF and Qsmooth

F give equiv-
alent results. In particular, the addition of one Jacobi sweep significantly improves

the convergence rate of P
(0)
F , resulting in a non-negligible reduction of the CPU time,

whereas no notable improvement is observed with QF . Although the results given
by PF and Qsmooth

F on isotropic test cases do not present much difference, the better
robustness of PF manifests itself on the anisotropic test case Cube-cart-aniso100.
Indeed, with or without additional smoothing, the method based on PF gives signif-
icantly better results than that based on QF . This difference can be explained by
the simplicity of QF . Clearly, assigning the mere average value of the local boundary
faces to the DoFs on the local interior faces does not take the anisotropic coefficient
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into account. On the other hand, the decondensation of the cell unknowns performed
by PF through formula (3.7) successfully does so.

Cube-tet Cop Cgd L it % t

PF 1.78 1.22 6 31 0.51 23.4
Qsmooth
F 1.79 1.22 6 30 0.51 23.4

P
(0)
F 1.80 1.22 6 32 0.56 28.0
QF 1.80 1.22 6 31 0.51 24.1

Cube-cart-aniso100 Cop Cgd L it % t

PF 1.32 1.33 7 10 0.15 13.8
Qsmooth
F 1.32 1.32 7 15 0.36 22.1

P
(0)
F 1.32 1.32 7 19 0.47 28.8
QF 1.31 1.30 7 27 0.56 39.3

Table 4.6: Results with alternative prolongation operators.

5. Conclusion. The solver developed in this work proposes an alternative AMG
approach for the solution of linear systems arising from lowest-order hybrid discretiza-
tions. Although not entirely “black-box” (because it requires parts of the uncondensed
system), it remains purely algebraic. Compared to the equivalent aggregation-based
AMG constructed in the standard way (i.e. by viewing system unknowns as nodes),
it shows similar performance in most cases, while being more robust with respect to
orthotropic anisotropy. Consequently, it can offer substantial added value for solving
problems comprising both isotropic and anisotropic regions, like, e.g., Darcy flows.
The solver, in this case, allies the flexibility of AMG to handle unstructured meshes
on isotropic regions while exploiting the special element shapes on anisotropic ones.
The cost of this improvement is payed during the setup phase: (i) more memory stor-
age may be required because of the use of the uncondensed matrix; but the blocks
needed by the setup may be kept in storage anyway, because they are also needed to
recover the cell unknowns after solving the condensed system. (ii) As it requires to
reconstruct the elements unknowns, the coarsening strategy is less direct than other
AMG methods, which evidently implies a costlier setup.

Hybrid discretizations achieve their full potential in high order of approximation.
Yet, this solver only applies to the lowest order. Even for more classical, non-hybrid
discretizations, purely algebraic solvers for higher orders are still an open problem.
In aggregation-based methods, the difficulty lies in the transfer of high order com-
ponents from the coarse unknowns to the fine ones they aggregate. In this context,
the elementwise view of the aggregation process is certainly easier to work with and
geometrically interpret than a face aggregation.
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