On a Projection Estimator of the Regression Function Derivative - Archive ouverte HAL
Article Dans Une Revue Journal of Nonparametric Statistics Année : 2023

On a Projection Estimator of the Regression Function Derivative

Nicolas Marie

Résumé

In this paper, we study the estimation of the derivative of a regression function in a standard univariate regression model. The estimators are defined either by derivating nonparametric least-squares estimators of the regression function or by estimating the projection of the derivative. We prove two simple risk bounds allowing to compare our estimators. More elaborate bounds under a stability assumption are then provided. Bases and spaces on which we can illustrate our assumptions and first results are both of compact or non compact type, and we discuss the rates reached by our estimators. They turn out to be optimal in the compact case. Lastly, we propose a model selection procedure and prove the associated risk bound. To consider bases with a non compact support makes the problem difficult.
Fichier principal
Vignette du fichier
On_a_Projection_Estimator_of_the_Regression_Function_Derivative.pdf (1.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03270488 , version 1 (24-06-2021)
hal-03270488 , version 2 (10-06-2023)

Identifiants

Citer

Fabienne Comte, Nicolas Marie. On a Projection Estimator of the Regression Function Derivative. Journal of Nonparametric Statistics, 2023, 35 (4), pp.773-819. ⟨10.1080/10485252.2023.2209198⟩. ⟨hal-03270488v2⟩
169 Consultations
158 Téléchargements

Altmetric

Partager

More