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ON A PROJECTION ESTIMATOR OF THE REGRESSION FUNCTION
DERIVATIVE

FABIENNE COMTE* AND NICOLAS MARIE†

Abstract. In this paper, we study the estimation of the derivative of a regression function in a standard
univariate regression model. The estimators are defined either by derivating nonparametric least-squares
estimators of the regression function or by estimating the projection of the derivative. We prove two
simple risk bounds allowing to compare our estimators. More elaborate bounds under a stability as-
sumption are then provided. Bases and spaces on which we can illustrate our assumptions and first
results are both of compact or non compact type, and we discuss the rates reached by our estimators.
They turn out to be optimal in the compact case. Lastly, we propose a model selection procedure and
prove the associated risk bound. To consider bases with a non compact support makes the problem
difficult.

AMS 2020 classification: 62G05 - 62G08.
Keywords: Adaptive procedure - Derivative estimation - Non compact support - Nonparametric

regression - Optimal rates - Projection method

1. Introduction

In this paper, we consider the random design regression model

(1) Yi = b(Xi) + εi ; i ∈ {1, . . . , n}, n > 1,

where b(.) is the unknown continuously differentiable regression function, X1, . . . , Xn are independent
and identically distributed (i.i.d.) random variables with density f with respect to Lebesgue’s measure,
and the errors ε1, . . . , εn are i.i.d, unobserved, centered with variance σ2, and independent of the Xi’s.
The observations are (Xi, Yi)16i6n, and we assume that b is regular enough to admit a derivative. We are
interested in nonparametric estimation of the derivative b′ of b, on a compact or a non-compact support.

1.1. Motivation and bibliographical elements. The question of nonparametric estimation of deriva-
tives is not new and is studied in different contexts, such as density estimation or white noise model (see
Efromovich [19]), and not only in regression. Indeed, there can be a lot of reasons for estimating not
only a function but also its derivative, which may be of intrinsic interest as measure of slope for instance.
Recently, Bercu et al. [4] studied this question in the concrete application setting of sea shores water qual-
ity. Precisely, they propose an estimator defined as the derivative of the well-known Nadaraya-Watson
estimator. Dai et al. [16] also mention applications to the modeling of human growth data (Ramsay and
Silverman [32]) or to Raman spectra of bulk materials (Charnigo et al. [6]).

Derivatives of a rate optimal estimate of the regression function are proved to be rate optimal estimates
of the corresponding derivatives, see Stone [35, 36], who establishes optimal rates for local polynomial
weighted estimators on a compact set. See also a discussion on the topic in Rice and Rosenblatt [33], for
a fixed design model.
Nonparametric estimation of the regression function derivative has been studied following different meth-
ods, relying on kernels, local polynomial regression, regression by smoothing splines, or difference quo-
tients. We emphasize that the strategy for fixed design context, where Xi are replaced by xi = i/n, relies
on dedicated methods. Indeed, differences Yi − Yi−1 bring information on b′, which is not the case for
random design on non compact support. Kernel estimation of the regression function and its derivative
is for instance studied by Gasser and Müller [22], in the fixed design case. In local polynomial regression,
the derivative can be estimated by the coefficient of the derivative of the local polynomial regression fitted
at given point x, as summarized in Tsybakov [38], Chapter 1, see also Huang and Chan [25]. Stone [36]
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showed that derivative estimation with splines can achieve the optimal L2-rate of convergence (proved
in Stone [35]) under mild assumptions. Further asymptotic properties are obtained by Zhou and Wolfe
[40], mainly in the fixed design setting on compact support: they rely on splines estimators, arguing that
they avoid boundary problems of kernel estimators. Note that extensions to functional regressors have
been conducted (see Hall et al. [24]).
The smoothing parameter selection problem remained unanswered in the first papers. For kernel strate-
gies, the bandwidth choice for the derivative estimator (based on a factor rule) is discussed in Fan and
Gijbels [21], but not studied from theoretical point of view. Liu and Brabanter [29] propose a methodol-
ogy which generalizes the difference quotient based estimator of the first order derivative to the random
design setting, when X follows a uniform distribution on [0, 1]. They also discuss bandwidth selection in
their setting. Lastly, we mention that an adaptive method in wavelet bases is studied in Chesneau [7],
but it involves an estimate of f . As a consequence, the rate of estimation depends on the regularity of
this function, which we want to avoid.

1.2. Contributions of the paper. In the present work, we consider a projection method and propose
an estimator as a finite development in an orthonormal L2 basis with m coefficients. We start from
the least-square estimator studied by Baraud for the fixed design model in [2] and the random design
model in [3]. These works consider compactly supported bases and assume that the density of the Xi is
lower bounded on the interval of estimation. The lower bound on the density is involved in the upper
bound on the risk. These results have been extended to non compactly supported bases by Comte and
Genon-Catalot [11]; then, the assumption that the density is lower bounded can not be done, and the
problem has to be handled differently. In some sense, regression function estimation in this setting has
some characteristics of inverse problems.

Here, we show that two strategies can be considered to deduce from the least square estimator of b,
an estimator of b′(.), and these strategies do not coincide in general. We prove non asymptotic bounds
on the integrated L2−risk of the estimators, for both strategies. The fact that our results are non as-
ymptotic and global (and not pointwise), make them different from the literature mentioned previously.
To our knowledge, these are the first results allowing for non compactly supported bases in the defini-
tion of the estimators. In the case of a trigonometric basis and compact support estimation, we recover
the optimal rates given in Stone [35] under weak assumptions. We also obtain specific rates in the non
compact Hermite basis setting. Therefore, our results contain previous ones, and extensions. Last but
not least, we propose a model selection strategy relying on a Goldenshluger and Lepski [23] method and
prove a risk bound for the final estimator: this result holds for sub-gaussian (bounded or gaussian) errors
and implies that the estimator automatically reaches the optimal rate on regularity spaces, without re-
quiring the knowledge of the regularity index of b. We discuss our assumptions, which remain rather weak.

The plan of the paper is the following. We define our notation and estimators in Section 2. In Sec-
tion 3, we present our assumptions and prove two simple risk bounds allowing to compare our estimators.
More elaborate bounds under a stability assumption (see Cohen et al. [8, 9]) are also provided. Bases
and spaces on which we can illustrate our assumptions and first results are described in Section 4. They
are of compact (trigonometric basis) or non compact (HErmite basis) type, and we discuss the rates
reached by our estimators. They are the optimal ones in the compact case. Section 5 is dedicated to
the adaptive procedure: we prove a risk bound and deduce corollaries about adaptive rates. The possi-
bility of non compact support makes the problem difficult, and even if the estimator seems to follow a
standard Goldenshluger and Lepski [23] scheme, the proofs are delicate, due to an additional bias term.
A numerical study shows that the collection of estimators contains relevant proposals and that the data
driven estimator works in a satisfactory way, especially compared to the derivative of a Nadaraya-Watson
estimator.

2. Definition of the estimators

Let B = (ϕj)j∈N\{0} be a Hilbert basis of L2(I, dx) with I j R an interval. For the sake of readability,
for every j ∈ N\{0}, the function x ∈ R 7→ ϕj(x)1I(x) is also denoted by ϕj . The following mean squares
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estimator of bI = b1I , which is studied in Baraud [3] and in Comte and Genon-Catalot [11], is defined by

b̂m(x) :=

m∑
j=1

[θ̂1
m]jϕj(x) ; x ∈ I,

where m ∈ N\{0},
θ̂1
m = θ̂1

m(X,Y) :=
1

n
Ψ̂−1
m Φ̂∗mY,

M∗ denotes the transpose of M , Y := (Y1, . . . , Yn)∗, X := (X1, . . . , Xn)∗, Φ̂m := (ϕj(Xi))16i6n,16j6m

and
Ψ̂m :=

1

n
Φ̂∗mΦ̂m = (〈ϕj , ϕk〉n)16j,k6m

with

〈ϕ,ψ〉n :=
1

n

n∑
i=1

ϕ(Xi)ψ(Xi)

for every ϕ,ψ : R → R. The map (ϕ,ψ) 7→ 〈ϕ,ψ〉n is the empirical scalar product, and the associated
norm is denoted by ‖.‖n in the sequel. The theoretical analogue on L2(R, f(x)dx) is

(ϕ,ψ) 7−→ 〈ϕ,ψ〉f :=

∫
I

ϕ(z)ψ(z)f(z)dz,

and the associated norm is denoted by ‖.‖f . Notice that E(〈ϕ,ψ〉n) = 〈ϕ,ψ〉f . The reader can refer
to Baraud [2, 3], Cohen et al. [8, 9], and Comte and Genon-Catalot [11] for risk bounds on b̂m and an
adaptive estimator.

Strategy 1. On the one hand, a natural estimator of b′I is

(2) b̂′,1m (x) :=

m∑
j=1

[θ̂1
m]jϕ

′
j(x)

with m ∈ N\{0}. Obviously,

(̂b′,1m (X1), . . . , b̂′,1m (Xn))∗ = Φ̂′mθ̂
1
m =

1

n
Φ̂′mΨ̂−1

m Φ̂∗mY

with Φ̂′m := (ϕ′j(Xi))i,j . This requires to choose a regular basis. Note that, contrary to what may occur
for the density estimator, this way is simpler than derivating the Nadaraya-Watson kernel based estimator
as done in Bercu et al. [4]. Indeed, the latter involves the derivative of a quotient of two functions.

Strategy 2. On the other hand, when (bϕj)(inf(I)) = (bϕj)(sup(I)) for every j ∈ {1, . . . ,m}, 〈b′, ϕj〉 =
−〈b, ϕ′j〉 and the orthogonal projection (b′)m of b′ on Sm := span{ϕ1, . . . , ϕm} in L2(I, dx) satisfies

(b′)m(x) = −
m∑
j=1

〈b, ϕ′j〉ϕj(x).

Several of the basis we have in mind are such that the derivative of ϕj can be expressed as a finite linear
combination of the other ϕk’s. Thus, if there exist (known) coefficients dj,k such that ϕ′j =

∑m
k=1 dj,kϕk,

then

〈b, ϕ′j〉 =

m∑
k=0

dj,k〈b, ϕk〉.

A simple plug-in strategy leads thus to propose an estimate of 〈b, ϕ′j〉 by replacing 〈b, ϕk〉 in the above
formula by [θ̂1

m]k.
In other words, if there exists ∆m,m+p ∈Mm,m+p(R) such that Φ̂′m = Φ̂m+p∆

∗
m,m+p, one can consider

a projection estimator of the derivative instead of derivating the projection estimator of b:

(3) b̂′,2m (x) :=

m∑
j=1

[θ̂2
m]jϕj(x)
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with
θ̂2
m = − 1

n
∆m,m+pΨ̂

−1
m+pΦ̂

∗
m+pY.

Obviously,

(̂b′,2m (X1), . . . , b̂′,2m (Xn))∗ = − 1

n
Φ̂m+p∆m,m+pΨ̂

−1
m+pΦ̂

∗
m+pY.

We shall see in this paper that the two strategies are different and we will provide risk bounds that allow
to compare the two methods.

3. Risk bounds

3.1. Notations and useful elementary properties:
• The operator norm of a matrix M is defined by ‖M‖2op := λmax(MM∗), where we recall that
M∗ is the transpose of M and λmax(MM∗) is the largest eigenvalue of the square matrix MM∗,
which are nonnegative. Note that for a square, symmetric and nonnegative matrix A, ‖A‖op =
λmax(A). Note also that if A and B are two matrices such that AB and BA are well defined,
then λmax(AB) = λmax(BA). Finally, note that if A and B are two square, symmetric and
nonnegative matrices, then Tr(AB) 6 ‖A‖opTr(B) = λmax(A)Tr(B), where Tr(M) denotes the
trace of a (square) matrix M .

• The Frobenius norm of a matrix M is defined by

‖M‖2F := Tr(MM∗) = Tr(M∗M).

• The natural scalar product on L2(I, f(x)dx), also called f -weighted scalar product, is denoted
by 〈., .〉f , and the associated norm by ‖.‖f .

• For every ψ ∈ L2(I, dx), its orthogonal projection on Sm = {ϕ1, . . . , ϕm} in L2(I, dx) is denoted
by ψm.

3.2. Preliminary rough risk bounds on b̂′,1m and b̂′,2m . In the sequel, we assume that b′ exists and is
square integrable on I, and that the density function f fulfills the following assumption.

Assumption 3.1. The density function f is bounded on I.

First, we provide the following rough but general risk bound on b̂′,1m .

Proposition 3.2. Under Assumption 3.1,

E
[
‖b̂′,1m − b′‖2n

]
6 3‖f‖∞ inf

t∈Sm
‖t− b′‖2 + 3E

[
‖Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗m‖2op‖b− bm‖2n

]
+ 3‖b′m − (b′)m‖2f

+
σ2

n
E
[
Tr
(

(Φ̂∗mΦ̂m)−1(Φ̂′m)∗Φ̂′m

)]
,

where bm is the L2(I, dx)-orthogonal projection of b on Sm, and b′m is its derivative, while (b′)m is the
L2(I, dx)-orthogonal projection of b′ on Sm.

Let us comment the four terms in the previous bound:
(1) The first term is the bias term we could expect. It can be evaluated on regularity spaces. Without

Assumption 3.1, this terms can be replaced by inft∈Sm ‖t− b′‖2f .
(2) The second term involves the bias related to b, which would be negligible compared to the previous

one; but it is multiplied by a coefficient which has an order depending on m and will at least
compensate the improvement.

(3) The third term can be evaluated in the different bases: the procedure makes sense if the derivative
of the projection and the projection of the derivative are close, for fixed m. Under Assumption
3.1, it is less than 3‖f‖∞‖b′m − (b′)m‖2, null in trigonometric spaces with odd dimensions, and
of order less or equal than the first term in Laguerre or Hermite bases (see Proposition 4.1).

(4) The last term is the variance term, and it is established in Proposition 3.3 that it increases with
m as expected.

Proposition 3.3. The map m 7→ E
[
Tr
(

(Φ̂∗mΦ̂m)−1(Φ̂′m)∗Φ̂′m

)]
is increasing.
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To sum up, we will have to make a compromise between decreasing bias term (1) and increasing
variance term (4), with the specific difficulty related to nuisance terms (2) and (3).

Now, we turn to the estimator b̂′,2m and assume that there exists p ∈ N such that ϕ1, . . . , ϕm fulfill the
following assumption:

Assumption 3.4 (m, p). For every j ∈ {1, . . . ,m}, ϕ′j ∈ Sj+p.

Note that Assumption 3.4(m, p) implies that there exists ∆m,m+p ∈Mm,m+p(R) such that

(4) Φ̂′m = Φ̂m+p∆
∗
m,m+p.

Trigonometric, Laguerre, Hermite and Legendre bases satisfy Assumption 3.4(m, p), see Section 4. More
precisely, we have p = 0 for the Laguerre and Legendre bases and ∆m,m is a lower triangular square
matrix. We have p = 1 for Hermite and trigonometric bases with ∆m,m+1(j, k) = 0 for k > j+p. For the
trigonometric basis with an odd dimension, we can keep a square link ∆m,m with a null first line followed
by diagonal 2× 2 blocks of type (

0 −2πj
2πj 0

)
.

Assume that b and ϕ1, . . . , ϕm fulfill also the following assumption.

Assumption 3.5 (m). For every j ∈ {1, . . . ,m},
b(a)ϕj(a) = b(a)ϕj(a),

where a := inf(I) and a := sup(I).

Note that, for instance, Assumption 3.5(m) holds for every m ∈ N when b(a) = b(a) = 0. Under this
additional condition, by the integration by parts formula,

(5) 〈b′, ϕj〉 = −〈b, ϕ′j〉 ; ∀j ∈ {1, . . . ,m}.
So,

(6) (b′)m(X) = −
m∑
j=1

〈b, ϕ′j〉ϕj(X) = −Φ̂m∆m,m+p (〈b, ϕj〉)16j6m+p ,

which legitimates the definition (3) of the alternative estimator b̂′,2m of b′. Let us establish a risk bound
for this estimator.

Proposition 3.6. Under Assumptions 3.1, 3.4(m, p) and 3.5(m),

E
[
‖b̂′,2m − b′‖2n

]
6 2‖f‖∞ inf

t∈Sm
‖t− b′‖2 + 2E

[
‖Φ̂m∆m,m+p(Φ̂

∗
m+pΦ̂m+p)

−1Φ̂∗m+p‖2op‖b− bm+p‖2n
]

+
σ2

n
E
[
Tr
(

(Φ̂∗m+pΦ̂m+p)
−1∆∗m,m+pΦ̂

∗
mΦ̂m∆m,m+p

)]
.

Now we have elements to compare the two estimators.
Comparison of the two estimators. Note that for p = 0, this bound is almost the same as in
Proposition 3.2, except that the undesirable term ‖b′m − (b′)m‖2f no longer appears. The counterpart is
that the result of Proposition 3.6 requires the additional Assumptions 3.4 and 3.5. Thanks to Proposition
4.1 (see Section 4 for details):

• In the specific case of the trigonometric basis, the additional term ‖b′m− (b′)m‖2f in the bound of
Proposition 3.2 is null, and the first estimator requires less assumptions, so the first strategy is
better.

• In the case of the Hermite basis, Assumption 3.4(m, p), p = 1 and Assumption 3.5(m) are
automatically fulfilled. However, it is difficult to determine which strategy is better.

• In the Laguerre basis, Assumption 3.5(m) is satisfied for all m if b(0) = 0. If this holds, it follows
from Proposition 4.1 (iii) that both strategies give the same rate.

• In the case of the Legendre basis, the additional term ‖b′m − (b′)m‖2f is likely to be large, so the
second strategy should be preferred.
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3.3. Elaborate risk bounds on b̂′,1m and b̂′,2m . First of all, under Assumption 3.1, let us consider

Ψm := E(Ψ̂m) = (〈ϕj , ϕk〉f )j,k.

Assume also that it fulfills the following assumption called "stability assumption" by Cohen et al. [8].

Assumption 3.7 (m). The matrix Ψm satisfies

L(m) := sup
x∈I

m∑
j=1

ϕj(x)2 <∞ and L(m)(‖Ψ−1
m ‖op ∨ 1) 6

c

2
· n

log(n)
,

where c = (3 log(3/2)− 1)/9.

Since the ϕj ’s do not depend onm, the Sm’s are nested spaces. Thus, sincem 7→ L(m) andm 7→ ‖Ψ−1
m ‖op

are increasing, if there exists m0 ∈ N\{0} such that Assumption 3.7(m0) is fulfilled, then Assumption
3.7(m) is fulfilled for every m 6 m0.

Now, consider the truncated estimators

b̃′,1m := b̃′,1m 1Λm+p
and b̃′,2m := b̃′,2m 1Λm+p

,

where

Λm :=

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) 6 c
n

log(n)

}
.

Then, let us establish elaborate risk bounds on b̃′,1m and b̃′,2m .

Proposition 3.8. Under Assumptions 3.1, 3.4(m, p) and 3.7(m+p), if E[b′(X1)4] <∞ and E(Y 4
1 ) <∞,

then

E
[
‖b̃′,1m − b′‖2n

]
6 3‖f‖∞ inf

t∈Sm
‖t− b′‖2 + 9‖∆f,1

m,m+p‖2op‖b− bm‖2f + 3‖b′m − (b′)m‖2f +
2σ2

n
‖∆f,1

m,m+p‖2F

+

[
2cn

log(n)
‖∆m,m+p‖2opE(Y 4

1 )1/2 + 3E(b′(X1)4)1/2

]
c
1/2
8.1

n4

with ∆f,1
m,m+p := Ψ

1/2
m+p∆

∗
m,m+pΨ

−1/2
m and ∆m,m+p is defined in (4).

Proposition 3.9. Under Assumptions 3.1, 3.4(m, p), 3.5(m) and 3.7(m + p), if E[b′(X1)4] < ∞ and
E(Y 4

1 ) <∞, then

E
[
‖b̃′,2m − b′‖2n

]
6 2‖f‖∞ inf

t∈Sm
‖t− b′‖2 + 6‖∆f,2

m,m+p‖2op‖b− bm+p‖2f +
2σ2

n
‖∆f,2

m,m+p‖2F

+

[
2cn

log(n)
‖∆m,m+p‖opE(Y 4

1 )1/2 + 3E(b′(X1)4)1/2

]
c
1/2
8.1

n4

with ∆f,2
m,m+p := Ψ

−1/2
m+p∆∗m,m+pΨ

1/2
m and ∆m,m+p is defined in (4).

The coefficients involved in the bounds given in Propositions 3.8 and 3.9 are the theoretical ones instead
of the empirical in Propositions 3.2 and 3.6. They will allow us to evaluate rates of convergence for the
estimator, provided that the basis is specified. This is the point of the next section.

Let us conclude this section with the following proposition which allows to control the risk in norm
‖.‖f of b̃′,1m (resp. b̃′,2m ) via its risk in empirical norm, already controlled several ways in Propositions 3.2
and 3.8 (resp. Propositions 3.6 and 3.9).

Proposition 3.10. Under Assumptions 3.1, 3.4(m, p) and 3.7(m), if ‖∆m,m+p‖2op 6 m∆n
2 with m∆ > 0

not depending on m and n, then

E(‖b̃′,1m − b′‖2f ) 6 5‖f‖∞ inf
t∈Sm

‖t− b′‖2 + 4E(‖b̃′,1m − b′‖2n) +
c3.10

n
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and, if in addition Assumption 3.5(m) is satisfied, then

E(‖b̃′,2m − b′‖2f ) 6 5‖f‖∞ inf
t∈Sm

‖t− b′‖2 + 4E(‖b̃′,2m − b′‖2n) +
c3.10

n
,

where c3.10 > 0 is a constant not depending on m and n.

The condition ‖∆m,m+p‖2op 6 m∆n
2 is satisfied by the trigonometric basis and Hermite’s basis (see

Section 4).

4. Bases examples and explicit risk bounds

In this section, we describe more precisely several examples of bases. Then we evaluate, for each,
the order of the term ‖b′m − (b′)m‖2, which represents the main difference between the risk bounds of
the two estimates b̃′,1m and b̃′,2m . Lastly, we give explicit orders for all the terms involved in the bound of
Proposition 3.9 in order to obtain from our nonasymptotic risk bound asymptotic rates of convergence.

4.1. Examples of bases. First of all, let us provide four usual bases which can be considered because
the ϕj ’s are differentiable:

• The trigonometric basis: Defined on I = [0, 1] by t1(x) := 1, t2j(x) :=
√

2 cos(2πjx) and
t2j+1(x) :=

√
2 sin(2πjx) for j = 1, . . . , p with m = 2p + 1. Thus, L(m) = m for (ϕj)16j6m =

(tj)16j6m.
• The Laguerre basis: Defined on I = R+, via Laguerre’s polynomials Lj , j > 0, by

`j(x) :=
√

2Lj(2x)e−x with Lj(x) :=

j∑
k=0

(
j

k

)
(−1)k

xk

k!
.

It satisfies 〈`j , `k〉 = δk,j (see Abramowitz and Stegun [1], 22.2.13), where δk,j is the Kronecker
symbol. Then, (`j)j>0 is an orthonormal family of L2(R+) such that `j(0) =

√
2 and

‖`j‖∞ = sup
x∈R+

|`j(x)| =
√

2.

Thus, L(m) = 2m for (ϕj)16j6m = (`j−1)16j6m. The `′j ’s satisfy the following recursive formula
(see Lemma 8.1 in Comte and Genon-Catalot [12]):

(7) `′0 = −`0 and `′j = −`j − 2

j−1∑
k=0

`k for j > 1.

• The Hermite basis: Defined on I = R, via Hermite’s polynomials Hj , j > 0, by

hj(x) := ch(j)Hj(x)e−x
2/2

with

Hj(x) := (−1)jex
2 dj

dxj
(e−x

2

) and ch(j) = (2jj!
√
π)−1/2.

The family (Hj)j>0 is orthogonal for the e−x
2

-weighted scalar product and as∫
R
Hj(x)Hk(x)e−x

2

dx = c2h(j)δj,k,

we get 〈hj , hk〉 = δj,k, (see Abramowitz and Stegun [1], 22.2.14). Moreover,

‖hj‖∞ = sup
x∈R
|hj(x)| 6 φ0

with φ0 = π−1/4 (see Abramowitz and Stegun [1], 22.14.17 and Indritz [26]). Thus, L(m) 6
π−1/2m, but it is proved in [13] that there exists K > 0 such that

sup
x∈R

m−1∑
j=0

hj(x)2 6 K
√
m.
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Therefore, we set L(m) = K
√
m for (ϕj)16j6m = (hj−1)16j6m. The h′j ’s also satisfy a recursive

formula (see Comte and Genon-Catalot [12], Equation (52) in Section 8.2):

(8) h′0 = − 1√
2
h1 and h′j =

1√
2

(
√
jhj−1 −

√
j + 1hj+1) for j > 1.

• The Legendre basis: Defined on I = [−1, 1], via Legendre polynomials Gj , j > 0, by

gj(x) :=

√
2j + 1

2
Gj(x) with Gj(x) :=

1

2jj!
· d

j

dxj
[(x2 − 1)j ].

As ∫ 1

−1

Gj(x)Gk(x)dx =
2

2j + 1
δj,k,

the family (gj)j>0 is an orthonormal family of L2([−1, 1]). For example, g0(x) = 1/
√

2, g1(x) =√
3/2x, g2(x) = 1/2

√
5/2(3x2 − 1), etc. Note that they are easy to compute numerically thanks

to the recursive formula gj(x) = 1
j [(2j − 1)xgj−1(x)− (j − 1)gj−2(x)], j > 1, (see Formula 2.6.2

in [20]). Moreover,

‖gj‖∞ 6
√

2j + 1

2
, which gives

m−1∑
j=0

gj(x)2 6
1

2

m−1∑
j=0

(2j + 1) =
m2

2

and L(m) = m2/2 (see also Cohen et al. [8]) for (ϕj)16j6m = (gj−1)16j6m. The g′j ’s also satisfy
a recursive formula (see Formula (22) p.10 in Lagrange [27]):

d

dx
gj+1(x) =

√
2j + 3

[j/2]∑
k=0

√
2(j − 2k) + 1gj−2k(x),

which can be written

(9) g′2p+1(x) =
√

4p+ 3

p∑
k=0

√
4k + 1g2k(x), g′2p+2(x) =

√
4p+ 5

p∑
k=0

√
4k + 3g2k+1(x).

Under Assumption 3.5(m), thanks to Equality (5) and to the recursive formulas available for each basis
described above, we are able to compare the derivative b′m of bm to the derivative of the projection (b′)m
of b′ as follows:

Proposition 4.1. Under Assumption 3.5(m):

(i) If I = [0, 1] and ϕj = tj (the trigonometric basis with an odd m), then ‖b′m − (b′)m‖2 = 0.
(ii) If I = R and ϕj = hj−1 (the Hermite basis), then

‖b′m − (b′)m‖2 =
m

2
(〈b, hm−1〉2 + 〈b, hm〉2).

(iii) If I = R+ and ϕj = `j−1 (the Laguerre basis), then

‖b′m − (b′)m‖2 = 4m

(
m−1∑
k=0

〈b, `k〉

)2

.

If in addition b(0) = 0, then

‖b′m − (b′)m‖2 = 4m

∑
k>m

〈b, `k〉

2

.
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(iv) If I = [−1, 1], ϕj = gj−1 (the Legendre basis) and m = 2p, then

‖b′m − (b′)m‖2 = 3

(
p−1∑
k=0

√
4k + 3〈b, g2k+1〉

)2

+ (4p− 1)

(
p−1∑
k=0

√
4k + 1〈b, g2k〉

)2

+

p−1∑
j=0

√4j + 3

p−1∑
k=j

√
4k + 3〈b, g2k+1〉+

√
4j + 1

j∑
k=0

√
4k + 3〈b, g2k+1〉

2

+

p−2∑
j=0

√4j + 5

p−1∑
k=j+1

√
4k + 1〈b, g2k〉+

√
4j + 2

j∑
k=0

√
4k + 1〈b, g2k〉

2

.

This implies that there exists a deterministic constant c4.1 > 0, not depending on m and n, such
that ‖b′m − (b′)m‖2 6 c4.1m

4.

The cases are ordered from the simplest (the trigonometric one) to the most complicated (Legendre case
for an even m). Proposition 4.1 shows that the term ‖b′m − (b′)m‖2 which appears in the risk bound of
b̃′,1m importantly depends on the basis. Clearly, the first two bases are more convenient for this problem
and we will focus on them in the sequel (for rates and simulation experiments).

4.2. Explicit risk bound for the trigonometric basis. As the trigonometric basis has compact
support, say I, we estimate in fact b := b1I and we can assume that f(x) > f0 > 0 for every x ∈ I.
Moreover, we assume that f is bounded (Assumption 3.1). We set I = [0, 1] for simplicity and assume that
b(0) = b(1) (which ensures Assumption 3.5(m) for all m). Then, by considering models with an odd m,
Assumption 3.4(m, p) is fulfilled for all m with p = 0. Moreover, we know from [11] that ‖Ψ−1

m ‖op 6 1/f0.
Then, we get

L(m) = m, ‖∆m,m‖2op 6 π
2m2, ‖∆f,1

m,m‖2op = ‖∆f,2
m,m‖2op 6

‖f‖∞
f0

m2,

and
‖∆f,1

m,m‖2F = ‖∆f,2
m,m‖2F 6

1

f0
m3.

The last bound comes from the following inequalities

‖∆f,2
m,m‖2F = Tr[Ψ−1

m ∆∗m,mΨm∆m,m] 6 ‖Ψ−1
m ‖opTr[∆∗m,mΨm∆m,m] = ‖Ψ−1

m ‖opE
[
Tr(∆∗m,mΨ̂m∆m,m)

]
=

1

n
‖Ψ−1

m ‖opE
[
Tr(Φ̂′m(Φ̂′m)∗)

]
=

1

n
‖Ψ−1

m ‖opE

 n∑
i=1

m−1∑
j=0

ϕ′j(Xi)
2

(10)

6
m2

n
‖Ψ−1

m ‖opE

 n∑
i=1

m−1∑
j=0

ϕ2
j (Xi)

 = m3‖Ψ−1
m ‖op 6

m3

f0
,

using that for ϕj = tj , ϕ′j = ±2πjϕj±1. So, the risk bound on b̃′,2m established at Proposition 3.9 becomes

(11) E
[
‖b̃′,2m − b′‖2n

]
6 2‖f‖∞

(
inf
t∈Sm

‖t− b′‖2 +
6

f0
m2‖b− bm‖2

)
+

2σ2

nf0
m3 +

c1
n

with c1 > 0 and odd m. Since p = 0 and b′m = (b′)m for the trigonometric basis, the risk bound on b̃′,1m
established at Proposition 3.8 is the same up to a multiplicative constant.

Now, let us evaluate the rate of convergence of the estimator for b in some regularity space and well
chosen m. Let β be a positive integer, L > 0 and define

W per(β, L) := {g ∈ Cβ([0, 1];R) : g(β−1) is absolutely continuous,∫ 1

0

g(β)(x)2dx 6 L2 and g(j)(0) = g(j)(1), ∀j = 0, . . . , β − 1}.
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We obtain the following result:

Corollary 4.2. Consider the estimators b̂′,im, i = 1, 2 computed in the trigonometric basis on I = [0, 1]
with 0 < f0 6 f(x) 6 ‖f‖∞ < ∞, E[b′(X1)4] < ∞ and E(Y 4

1 ) < ∞. If b ∈ W per(β, L) with β > 1,
b(0) = b(1) and mopt = n1/(2β+1), then

E
[
‖b̃′,imopt

− b′‖2n
]
6 ci(L, β, ‖f‖∞, f0, σ

2)n−2(β−1)/(2β+1), for i = 1, 2.

Proof. By Proposition 1.14 of [38], a function f ∈W per(β, L) admits a development

f =

∞∑
j=0

θjϕj such that
∑
j>0

θ2
j τ

2
j 6 C(L),

where τj = jβ for even j, τj = (j − 1)β for odd j, and C(L) := L2π−2β . Moreover, if b belongs to a the
Sobolev ellipsoid W per(β, L) with β > 1, then b′ ∈W per(β − 1, 2πL). So,

‖b− bm‖2 6 c(L, β)m−2β and ‖b′ − (b′)m‖2 6 c(L, β)m−2(β−1).

Therefore, plugging m = mopt = n1/(2β+1) in (11) gives the result of Corollary 4.2. Indeed, Propositions
3.8 and 3.9 apply because the required conditions are automatically satisfied by the trigonometric basis.

�

Note that we obtain the optimal rate for estimating the derivative of a regression function (see Stone
[36]). It coincides also with the rate of estimation for the derivative of a density (see Tsybakov [38],
Efromovich [19, 20], recently Lepski [28] on general Nikolski’s spaces, or Comte et al. [10]).

4.3. Explicit risk bound for Hermite basis. Consider s,D > 0 and the Sobolev-Hermite ball of
regularity s

(12) W s
H(D) =

θ ∈ L2(R) :
∑
k>0

ksa2
k(θ) 6 D

 ,

where a2
k(θ) = 〈θ, hk〉. In the Hermite case, the following bounds hold:

L(m) = K
√
m, ‖∆m,m+1‖2op 6 2m, ‖∆f,1

m,m+1‖2op = ‖∆f,2
m,m+1‖2op 6 2‖f‖∞‖Ψ−1

m+1‖opm

and
‖∆f,1

m,m+1‖2F = ‖∆f,2
m,m+1‖2F 6 2K‖Ψ−1

m+1‖op(m+ 1)3/2.

The last bound is obtained by following the line of the trigonometric case above, up to (10), using next
formula (8) for the derivative of the basis functions.

In this context, it is proved in [11] that ‖Ψ−1
m ‖op is increasing with m. Therefore, we can state the

following result.

Corollary 4.3. Consider the estimators b̂′,im, i = 1, 2 computed in the Hermite basis on I = R under
Assumptions 3.1 and 3.7(m+ 1). Assume that b′ is square integrable, E[b′(X1)4] < ∞, E(Y 4

1 ) < ∞ and
that b ∈W s

H(D). If ‖Ψ−1
m ‖op . mγ for all m and s > 1 + γ, then by choosing mopt = n1/(s+1/2) yields

E
[
‖b̃′,imopt

− b′‖2n
]
6 c(D, s, ‖f‖∞, σ2)n−2(s−1−γ)/(2s+1) for i = 1, 2.

Remark 4.4. The rate is deteriorated compared to n−2(s−1)/(2s+1), which is the optimal rate of estimation
for the derivative of a density in a similar non compact setting (see bounds (15) and (16) in [10]).
However, we are in the framework of an inverse problem, due both to the derivative aspect and to the non
compact support feature of the basis. If we compare the rate with the one found in [11] for the estimation
of b in the same context, n−s/(s+1), we would expect n−(s−1)/(s+1) (which is larger). The deterioration
is unavoidable as soon as the term ‖Ψ−1

m ‖op appears as multiplicative factor in the variance and the
additional bias term. So the order obtained in Proposition 4.3 shows consistency but we do not know if
it is optimal.
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The main question is about the bounds ‖∆f,1
m,m+1‖2op and ‖∆f,1

m,m+1‖2F : the matrices in the norms involve
both a matrix of type Ψm and a matrix of type Ψ−1

m and if they could be associated, the factor ‖Ψ−1
m ‖op

would not appear in the risk bound. The order of the additional bias term would be m−(s−1) and the
variance would be of order m2/n. This seems to be true numerically.

The behavior of Ψm is crucial for understanding our procedure. We want here to mention that in [11],
it is proved that, for all m, the matrix Ψm computed in the Hermite basis is invertible and there exists
a constant c? such that,

(13) ‖Ψ−1
m ‖2op > c

?m.

So, in the Hermite case, Inequality (13) clearly implies that ‖Ψ−1
m ‖op cannot be uniformly bounded in m

contrary to the case of compactly supported bases. Moreover, if we assume that f(x) > c/(1 + x2)k for
x ∈ R and k > 1, then for m large enough, ‖Ψ−1

m ‖op 6 Cmk. Numerical experiments seem to indicate
that the order mk is sharp.

Proof of Corollary 4.3. The following Lemma (Lemma 2.2 in Comte et al. [10]) gives a relationship
between the regularity of θ ∈W s

H(D) and the regularity of its derivative.

Lemma 4.5. Consider s > 1 and D > 0. If θ ∈W s
H(D) admits a square integrable derivative, then there

exists a constant D′ = C(D) > D such that θ′ ∈W s−1
H (D′).

By Lemma 4.5, if b ∈W s
H(D), then ‖b− bm‖2 6 Dm−s, ‖b′− (b′)m‖2 6 C(D)m−s+1, and the risk bound

on b̃′,2m established at Proposition 3.9 becomes

E
[
‖b̃′,2m − b′‖2n

]
6 2‖f‖∞

(
inf
t∈Sm

‖t− b′‖2 + 6‖Ψ−1
m+1‖opm‖b− bm+1‖2

)
+

4Kσ2

n
‖Ψ−1

m+1‖op(m+ 1)3/2 +
c1
n

6 C(D)‖f‖∞[m−(s−1) + ‖Ψ−1
m+1‖opm(m+ 1)−s] +

4Kσ2

n
‖Ψ−1

m+1‖op(m+ 1)3/2 +
c1
n

(14)

with c1 > 0. Thus, if ‖Ψ−1
m ‖op = O(mγ), for s > γ+ 1, the estimator is consistent, and to plug the choice

m = mopt = n1/(s+1/2) in (14) gives the result of Corollary 4.3 for i = 2.
The risk E

[
‖b̃′,1m − b′‖2n

]
involves an additional term ‖f‖∞‖b′m − (b′)m‖2. From Proposition 4.1, (ii),

we have

‖b′m − (b′)m‖2 = (m/2)(a2
m(b) + a2

m−1(b)) 6 (1/2)(
∑

k>m−1

a2
k(b) +

∑
k>m−1

ka2
k(b)) . m−(s−1)

under our assumptions, by writing that∑
k>m−1

ka2
k(b) =

∑
k>m−1

ksa2
k(b)× k−s+1 6 (m− 1)−s+1

∑
k>0

ksa2
k(b) 6 D(m− 1)−(s−1) 6 D2s−1m−(s−1).

This gives the result of Corollary 4.3 for i = 1. �

4.4. Explicit risk bound for Legendre basis. By Proposition 2.6.1 in [20] (see also [17], Section 7.6),
it is known that if b ∈ Cr([−1, 1];R) (r > 1) and if there exists α ∈ (0, 1] such that

|b(r)(t)− b(r)(s)| 6 Q|t− s|α ; ∀s, t ∈ [−1, 1],

then there exists c > 0 such that

‖b− bm‖2 6 cm−2(r+α) and ‖b′ − (b′)m‖2 6 cm−2(r−1+α).

The space of regularity β = r + α considered above will be called Hölder space and denoted by H(β,Q).

By Proposition 4.1, we can see that the first estimator may not be consistent as ‖(bm)′ − (b′)m‖2 may
not tend to zero. However, Formula (9) shows that the Legendre basis satisfies Assumption 3.4(m, p)
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with p = 0 and triangular matrix ∆m,m with null diagonal. As the basis is compactly supported, we can
proceed as in the case of the trigonometric basis, assuming I = [−1, 1], 0 < f0 < f(x) < ‖f‖∞ < ∞ for
every x ∈ I, and b(−1) = b(1) = 0. Then,

L(m) =
m2

2
, ‖∆m,m‖2op 6 cm

4, ‖∆f,1
m,m‖2op = ‖∆f,2

m,m‖2op 6 c
‖f‖∞
f0

m4,

‖∆f,1
m,m‖2F = ‖∆f,2

m,m‖2F 6
c

f0
m5.

As a consequence, for b ∈ H(β,Q) with β > 2 and b(−1) = b(1) = 0, Proposition 3.9 implies that if
mopt = n1/(2β+1), then

E
[
‖b̃′,2m − b′‖2n

]
6 c(Q, β, ‖f‖∞, f0, σ

2)n−2(β−2)/(2β+1).

We mention this rate, but it is sub-optimal in the compact support case, specifically in comparison with
the trigonometric basis.

5. A Goldenshluger-Lepski type adaptive estimator

The choice of the adequate m is crucial to reach the best order for the quadratic risk. However, this
choice depends on unknown quantities, such as the order of regularity of the unknown function. This is
why it is important to propose a way to select this dimension from the data. The problem is difficult,
especially if we intend to bound the risk of the associated adaptive estimator. Penalty based model
selection often rely on a contrast minimization, which seems not possible here. This is why we propose
a Goldenshluger-Lepski type strategy, described in [23] for kernel estimators, and extended to dimension
selection in Chagny [5].
More precisely, consider the random collection

M̂n :=

{
m ∈ {1, . . . , n} : L(m+ p)(‖Ψ̂−1

m+p‖2op ∨ 1) 6 d
n

log(n)

}
where d > 0 is a constant depending on ‖f‖∞ (see the proof of Theorem 8.3), and the random penalty

V̂ (m) :=
σ2m

n
‖(Φ̂∗mΦ̂m)−1(Φ̂′m)∗Φ̂′m‖op.

This section deals with the adaptive estimator

(15) b̂′ := b̂′,1m̂ ,

where
m̂ = arg min

m∈M̂n

{
A(m) + κ1V̂ (m)

}
with

A(m) := sup
m′∈M̂n

{
‖b̂′,1m∧m′ − b̂

′,1
m′‖

2
n − κ0V̂ (m′)

}
+

and κ0 6 κ1.

Consider

Mn :=

{
m ∈ {1, . . . , n} : L(m+ p)(‖Ψ−1

m+p‖2op ∨ 1) 6
d

4
· n

log(n)

}
,

the theoretical counterpart of M̂n, and M+
n with the same definition as Mn but with d/4 replaced by

4d. The maximal element ofM+
n is denoted by M+

n . Finally, let

V (m) :=
σ2m

n
‖∆f,1

m,m+p‖2op

be the theoretical version of V̂ (m).

Lemma 5.1. The map m 7→ V̂ (m) is increasing.
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A general Theorem is stated and proved in Section 8.9, the intested reader is refered to this section
where comments are also provided. We emphasize that the procedure is general and does not depend on
the basis. Moreover, the general results states an automatic squared-bias variance compromise. This is
important in regard of Remark 4.4 above and Proposition 5.3 below, in case the rates would not be the
best possible ones.

To avoid technicalities, we state two Propositions resulting from this theorem when considering the
two main bases we previously described. More precisely, for the trigonometric case, we get the following
result.

Proposition 5.2. Consider the estimator b̂′ computed in the trigonometric basis on I = [0, 1] with
0 < f0 6 f(x) 6 ‖f‖∞ < ∞ under Assumption 3.7(m). Moreover, assume that there exists κ > 0 such
that E(exp(κε2

1)) <∞ and that b′ is square-integrable on I. If b ∈W per(β, L) with β > 1, then

E(‖b̂′ − b′‖2n) 6 c(f0, ‖f‖∞, L)n−2(β−1)/(2β+1).

Therefore, our data driven estimator automatically reaches the optimal rate, up to a multiplicative
constant, in the compactly supported setting associated to the trigonometric basis. For the Hermite case,
we obtain the following bound.

Proposition 5.3. Consider the estimator b̂′ computed in the Hermite basis on I = R under Assumptions
3.1 and 3.7(m+ 1). Assume also that b′ is square integrable on I, E[b′(X1)4] <∞ and that there exists
κ > 0 such that E(exp(κε2

1)) < ∞. If ‖Ψ−1
m ‖op . mγ for every m ∈ {1, . . . , n}, and if b ∈ W s

H(D) with
s > 2γ + 9/4, then

E(‖b̂′ − b′‖2n) 6 c(D, s, ‖f‖∞, σ2)n−2(s−1−γ)/(2s+1).

As a consequence, the Hermite estimator also reaches automatically the best rate we could expect, in
the difficult context of non compact setting, but under stronger conditions. Note again that the general
Theorem states that the data driven estimator performs the bias-variance compromise, whatever the
effective orders of the terms are; this is why the estimator in the Hermite basis can numerically perform
even better than in the trigonometric basis, see the next section.

6. A numerical insight on the method

We consider the four simple functions

(16) b1(x) = 2 sin(πx), b2(x) = 0.5x exp(−x2/2), b3(x) = x2, b4(x) = 4x/(1 + x2),

and we generate Yi = b(Xi) + εi, i = 1, . . . , n, for i.i.d. Xi ∼ N (0, 1), independent of the i.i.d
εi ∼ N (0, σ2), with σ = 0.25 and b = bj , j = 1, . . . , 4. For each sample, we compute the least squares
estimator of b, together with its derivative, in the Hermite and in the trigonometric bases. We use what
we call the "half" trigonometric basis, relying on functions x 7→

√
2 sin(πjx) and x 7→

√
2 cos(πjx) on

[0, 1], rescaled to the interval [a, b]. For each function b, we considered K = 400 repetitions, and samples
of sizes n = 250, 1000 and 4000.

Due to the theoretical difficulty of the question, in a model which looked rather simple at first sight, we
first wondered if the strategy consisting in derivating the least squares regression estimator was relevant,
and if numerical investigations could bring information about a good estimation strategy. This is why
we first look at oracles: we compute all estimators of the collection and use the knowledge of the true
function to compute the error associated to all of them in order to select the best one (the resulting
"estimator" is called "oracle") in term of its L2-distance to the true. We also look at the associated
dimensions.

We compute the L2-distance between each oracle estimator of b and the true b, and each oracle esti-
mator of b′ and the true b′, on an interval with bounds corresponding to the 3% and 97% quantiles of
the Xi’s, and finally take the average on 400 independent paths generated. Moreover, we average the
selected dimensions for each sample. In other words, we retain the dimension and error corresponding in
each case to the smallest error, and compute means and standard deviations. The results are reported in
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n = 250 n = 1000 n = 4000
Herm Trigo Herm Trigo Herm Trigo

b1 100 MSE 0.91(0.50) 0.82(0.46) 0.23(0.13) 0.23(0.13) 0.06(0.03) 0.07(0.03)

dim 10.7(1.30) 4.94(0.93) 13.1(1.46) 6.13(1.30) 15.2(2.05) 7.40(1.45)

b′1 100 MSE 11.1(6.27) 8.75(5.11) 2.97(1.79) 3.16(1.92) 0.85(0.47) 1.24(0.62)

dim 10.8(1.01) 4.76(0.76) 12.9(1.37) 5.99(1.12) 15.2(2.01) 7.30(1.34)

b2 100 MSE 0.18(0.17) 0.47(0.34) 0.05(0.04) 0.12(0.08) 0.01(0.01) 0.03(0.02)

dim 2.15(0.47) 3.08(0.91) 2.15(0.47) 3.08(0.91) 2.18(0.58) 3.46(0.91)

b′2 100 MSE 0.18(0.19) 1.77(1.07) 0.05(0.05) 0.58(0.36) 0.01(0.01) 0.160.12)

dim 2.26(0.54) 2.50(0.61) 2.26(0.54) 3.01(0.60) 2.22(0.55) 3.28(0.56)

b3 MSE 1.14(0.91) 0.64(0.55) 0.25(0.13) 0.19(0.10) 0.06(0.03) 0.06(0.03)

dim 11.3(1.15) 3.69(1.16) 14.1(1.35) 5.12(1.77) 16.7(1.44) 7.18(2.07)

b′3 100 MSE 18.824.7) 4.96(9.84) 3.89(2.69) 2.31(2.33) 1.08(0.71) 1.21(0.73)

dim 11.4(1.15) 3.53(1.01) 14.2(1.30) 4.88(1.43) 16.7(1.42) 6.62(1.66)

b4 100 MSE 0.68(0.37) 0.82(0.44) 0.21(0.11) 0.24(0.12) 0.06(0.03) 0.07(0.03)

dim 8.71(2.21) 5.20(0.92) 11.6(2.21) 6.30(1.32) 14.9(2.43) 7.42(1.41)

b′4 100 MSE 7.60(3.48) 10.8(5.48) 2.65(1.18) 3.40(1.57) 0.93(0.43) 1.17(0.55)

dim 9.17(2.02) 5.11(0.75) 11.8(1.91) 6.17(1.11) 15.2(1.99) 7.28(0.94)

Table 1. "MSE": MSE of the oracle (for b and b′, defined by (16)) multiplied by 100
with standard deviations (Std) multiplied by 100 in small parenthesis. "dim": mean of
the oracle dimensions with Std in small parenthesis. Columns "Herm" correspond to the
Hermite basis, columns "Trigo" to the half trigonometric basis. 400 repetitions

n = 250 n = 1000 n = 4000
Herm Trigo NWO Herm Trigo NWO Herm Trigo NWO

b′1 MSE 78.7 13.6 335 22.0 7.13 128 1.73 3.11 46.8
std 480 10 12.5 37 28 34 2 6 11
dim 12.5 9.1 0.13 6.0 10.3 0.10 19.2 13.7 0.08

b′2 MSE 0.27 4.31 3.98 0.06 1.07 1.87 0.03 0.27 0.89
std 0.6 5.1 1.9 0.09 0.5 1 0.05 0.3 0.3
dim 2.04 4.5 0.32 2.02 5.1 0.26 2.5 5.9 0.20

b′3 MSE 20.4 17.3 62.1 5.87 9.75 23.9 1.71 11.8 9.03
std 22 12 25 6 34 10 0.9 39 3
dim 12.6 5.7 0.24 15.9 9.2 0.18 19.2 16.8 0.14

b′4 MSE 22.3 37.7 36.1 7.61 6.07 15.1 3.35 2.88 6.60
std 28 14 14 16 4 5 14 1 1
dim 12.2 6.83 0.19 15.8 10.0 0.15 19.0 11.2 0.12

Table 2. "MSE": MSE multiplied by 100 for the estimation of b′, obtained by GL
method and defined by (15)) with Hermite basis (columns "Herm"), trigonometric ba-
sis (columns "Trigo") and for the derivative of NW estimator with oracle bandwidth
(columns "NWO"), with their standard deviations multiplied by 100 ("std"). "dim":
mean of the selected dimensions or oracle bandwidths. 400 repetitions and 3 sample
sizes 250, 1000, 4000.

Table 1.

Table 1 shows that the MSE decreases when n increases, in all cases, and whether b or b′ is estimated.
We can notice that function b1 is chosen to be easy for the trigonometric basis, but the Hermite basis
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Figure 1. 40 estimated functions (dotted green) compared to the true (bold red), n =
1000. First line b1 (see (16)) by penalisation, 100 MSE = 0.26 and 0.29, mean selected
dimensions: 12.2 and 11.2. Second line b′1 with GL method, 100 MSE = 4.71 and 6.47,
mean selected dimensions: 16.1 and 10.5. Left Hermite basis, right trigonometric basis.

-2 -1 0 1 2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-2 -1 0 1 2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-2 -1 0 1 2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1 0 1 2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2. 40 estimated functions (dotted green) compared to the true (bold red), n =
1000. First line b2 (see (16)) by penalisation, 100 MSE = 0.07 and 0.18, mean selected
dimensions: 2.1 and 5.3. Second line b′2 with GL method, 100 MSE = 1.08 and 1.12,
mean selected dimensions: 2.05 and 5.05. Left Hermite basis, right trigonometric basis.

performs very well in this case too. On the contrary, the function b2 is supposed to be easy for the
Hermite basis, and it is, with small selected dimensions, but the trigonometric basis has a much worse
performance. For the two other functions, the two bases perform similarly, with decreasing error when
increasing n and simultaneous increase of the selected dimensions. This is expected from the theoretical
formula giving the asymptotic optimal choice of m as a power of n, at least when the function under
estimation does not admit a finite decomposition in the basis (like b1 for the trigonometric basis or b2 for
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the HErmite basis).
What is puzzling in these results is the comparison of oracle dimensions for b and b′: in each case, they
are almost the same. This suggests to keep the selected model obtained for estimation of b by classical
penalisation, and use this for b′ as well. This is coherent with the fact that the order of the optimal
dimension are the same for b and b′ when using the trigonometric basis.
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Figure 3. 40 estimated functions (dotted green) compared to the true (bold red), n =
1000. First line b3 (see (16)) by penalisation, 100 MSE = 0.30 and 0.30, mean selected
dimensions: 1.05 and 9.5. Second line b′3 with GL method, 100 MSE = 5.04 and 6.89,
mean selected dimensions: 15.97 and 8.65. Left Hermite basis, right trigonometric basis.

We also implement the Goldenshluger-Lespki method with κ1 = 2κ0 and κ0 = 1 for both Hermite and
Trigonometric bases. We compare the performance or our estimator to the derivative of the Nadaraya-
Watson estimator (with Gaussian kernel) with recursive computation in the spirit of Bercu el al. [4].
However, we took a fixed oracle bandwidth because their proposal of recursively varying bandwith hk =
k−α with α = 0.3 does not work in our case and the method of selection of α is not given in their paper.
So, we give the results for the best possible choice. The results are given in Table 2, and confirm that our
method performs well. Obviously, the selected dimension are larger than the ones pointed by oracles in
Table 1, and it is possible that other couples (κ0, κ1) may be better. But it is now documented that the
Goldenshluger and Lepski method is difficult to calibrate. The kernel estimator is generally less efficient
in spite of its ideal bandwidth choice, even if its error gets very comparable to the other estimators when
n increases. The orders associated with the MSE given are more concretely illustrated in Figures 1 to 4,
and we can see that the estimations are very satisfactory. The estimators of the regression function b is
obtained by penalisation as in Comte and Genon-Catalot [11]. The Hermite basis performs globally very
well, even to estimate a straight line as in Figure 3, which seems much more difficult for the trigonometric
basis. Lastly, Figure 4 shows that there are a lot of side-effects for the estimation of b′4, but it is probably
due to "heavy tail" effects since it does not occur for b′2 which has faster decrease, see Figure 2

7. Concluding Remarks

In this paper, we have defined two projection estimators of the derivative of b, based on observations
(Xi, Yi)16i6n drawn from Model (1). Under weak assumptions, we prove two simple risk bounds allow-
ing to understand the differences between the two strategies. More elaborate bounds under a stability
condition introduced by Cohen et al.[8] are also given. These results are illustrated in the context of
trigonometric, Legendre, Laguerre and Hermite bases, the first two ones being compactly supported, but
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Figure 4. 40 estimated functions (dotted green) compared to the true (bold red), n =
1000. First line b4 (see (16) by penalisation, 100 MSE = 0.29 and 0.33, mean selected
dimensions: 9.85 and 10.5. Second line b′4 with GL method, 100 MSE = 11.8 and 6.28
mean selected dimensions: 16.1 and 10.6. Left Hermite basis, right trigonometric basis.

not the last ones. Optimal rates are recovered with our method in the context of the trigonometric basis,
but our setting is more general, which is a novelty. Lastly, we propose a model selection procedure and
prove a general risk bound for the adaptive estimator. It automatically reaches the optimal rate in the
trigonometric case. These last results are also new and not straightforward.
The method we propose is implemented and the few numerical experiments conducted shows that our
estimator works well, in particular compared the derivative of a Nadaray-Watson kernel estimators; but
more comparisons would be useful to confirm these practical results. Our investigation for simple exam-
ples shows that the collection of estimators always contains a good one. It also suggests that keeping
for the estimation of b′ the dimension selected for b may be a safe simple strategy. Several extensions of
this work may be of obvious interest: explanatory variables with higher dimensions may be studied in
the spirit of Dussap [18], as well as higher order of derivatives, possibly only in the compactly supported
case to begin with. Extensions to dependent contexts (the case of autoregressive models or the case of
diffusion models) are also to be considered. As our proofs rely on results conditionally to the Xi’s, thanks
to their independence with the noise, dependency should imply theoretical difficulties.

8. Proofs

All the properties on matrix norms used in proofs are reminded in the Subsubsection 3.1 at the end
of the introduction.

Moreover, we denote by EX the conditional expectation given X = (X1, . . . , , Xn).

8.1. Proof of Proposition 3.2. Note first that

b̂′,1m (X) = Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mY,

and since Yi = b(Xi) + εi, Xi is independent of εi, and E(εi) = 0 for every i ∈ {1, . . . , n},

EX [̂b′,1m (X)] = Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mb(X)

and
EX(〈Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mε, Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mb(X)− b′(X)〉n) = 0.
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Then,

EX(‖b̂′,1m − b′‖2n) =
1

n
EX[‖b̂′,1m (X)− EX [̂b′,1m (X)] + EX [̂b′,1m (X)]− b′(X)‖22,n]

=
1

n
[EX(‖Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mε‖22,n) + ‖Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mb(X)− b′(X)‖22,n]

=:
1

n
(A+B).

On the one hand,

A = EX

[
ε∗Φ̂m(Φ̂∗mΦ̂m)−1(Φ̂′m)∗Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mε

]
= σ2Tr

[
Φ̂m(Φ̂∗mΦ̂m)−1(Φ̂′m)∗Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗m

]
= σ2Tr

[
(Φ̂∗mΦ̂m)−1(Φ̂′m)∗Φ̂′m

]
.

On the other hand,

B 6 3‖Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mb(X)− b′m(X)‖22,n + 3‖b′m(X)− (b′)m(X)‖22,n + 3‖(b′)m(X)− b′(X)‖22,n.

So,
1

n
E(B) 6 3 inf

t∈Sm
‖t− b′‖2f + 3‖b′m − (b′)m‖2f + 3E(C)

with
C =

1

n
‖Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mb(X)− b′m(X)‖22,n.

In order to manage this last term, note that bm(X) =
∑m
j=1〈b, ϕj〉ϕj(X) = Φ̂m(〈b, ϕj〉)16j6m. So,

(17) (〈b, ϕj〉)16j6m = (Φ̂∗mΦ̂m)−1Φ̂∗mbm(X)

and then,

b′m(X) =

m∑
j=1

〈b, ϕj〉ϕ′j(X) = Φ̂′m(〈b, ϕj〉)16j6m = Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mbm(X).

Therefore,

C =
1

n
‖Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗m(b(X)− bm(X))‖22,n 6 ‖Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗m‖2op‖b− bm‖2n.

This concludes the proof. �

8.2. Proof of Proposition 3.3. The ϕj ’s do not depend on m, so the Sm’s are nested spaces, and then
to establish the following equality is sufficient in order to conclude:

(18) EX

(
sup

t∈Sm:‖t‖n=1

νn(t)2

)
=
σ2

n
Tr
[
Ψ̂−1/2
m Ψ̂′mΨ̂−1/2

m

]
with

Ψ̂′m :=
1

n
(Φ̂′m)∗Φ̂′m and νn(t) := 〈ε, t′〉n.

Let us prove Equality (18). Consider t ∈ Sm such that ‖t‖n = 1. Necessarily (and sufficiently),

t =

m∑
j=1

ajϕj

with a = Ψ̂
−1/2
m u and u ∈ Rm such that ‖u‖2,m = 1. Then,

t =

m∑
k=1

uk

m∑
j=1

[Ψ̂−1/2
m ]j,kϕj
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and, thanks to Cauchy-Schwarz’s inequality,

νn(t)2 = 〈ε, t′〉2n =

 m∑
k=1

uk

〈
ε,

m∑
j=1

[Ψ̂−1/2
m ]j,kϕ

′
j

〉
n

2

6
m∑
k=1

〈
ε,

m∑
j=1

[Ψ̂−1/2
m ]j,kϕ

′
j

〉2

n

.

So,

sup
t∈Sm:‖t‖n=1

νn(t)2 = sup
u∈Rm:‖u‖2,m=1

 m∑
k=1

uk

〈
ε,

m∑
j=1

[Ψ̂−1/2
m ]j,kϕ

′
j

〉
n

2

=

m∑
k=1

〈
ε,

m∑
j=1

[Ψ̂−1/2
m ]j,kϕ

′
j

〉2

n

.

Therefore, since ε1, . . . , εn are i.i.d, centered, and respectively independent ofX1, . . . , Xn, and since Ψ̂
−1/2
m

and Ψ̂′m are symmetric matrices,

EX

(
sup

t∈Sm:‖t‖n=1

νn(t)2

)
=
σ2

n2

m∑
k=1

n∑
i=1

 m∑
j=1

[Ψ̂−1/2
m ]j,kϕ

′
j(Xi)

2

=
σ2

n

m∑
j,k,`=1

[Ψ̂−1/2
m ]j,k[Ψ̂−1/2

m ]`,k〈ϕ′j , ϕ′`〉n

=
σ2

n

m∑
j,k,`=1

[Ψ̂−1/2
m ]k,j [Ψ̂

′
m]j,`[Ψ̂

−1/2
m ]`,k =

σ2

n
Tr
[
Ψ̂−1/2
m Ψ̂′mΨ̂−1/2

m

]
.

This concludes the proof. �

8.3. Proof of Proposition 3.6. As in the proof of Proposition 3.2,

EX(‖b̂′,2m − b′‖2n) =
1

n
‖ − Φ̂m∆m,m+p(Φ̂

∗
m+pΦ̂m+p)

−1Φ̂∗m+pb(X)− b′(X)‖22,n

+
σ2

n
Tr
[
(Φ̂∗m+pΦ̂m+p)

−1∆∗m,m+pΦ̂
∗
mΦ̂m∆m,m+p

]
6

2

n
[‖ − Φ̂m∆m,m+p(Φ̂

∗
m+pΦ̂m+p)

−1Φ̂∗m+pb(X)− (b′)m(X)‖22,n
+‖(b′)m(X)− b′(X)‖22,n]

+
σ2

n
Tr
[
(Φ̂∗m+pΦ̂m+p)

−1∆∗m,m+pΦ̂
∗
mΦ̂m∆m,m+p

]
.

On the one hand, as previously,

2

n
E(‖(b′)m(X)− b′(X)‖22,n) = 2‖(b′)m − b′‖2f 6 2‖f‖∞ inf

t∈Sm
‖t− b′‖2.

On the other hand, thanks to Equalities (6) and (17),

(b′)m(X) = −Φ̂m∆m,m+p (〈b, ϕj〉)16j6m+p = −Φ̂m∆m,m+p(Φ̂
∗
m+pΦ̂m+p)

−1Φ̂∗m+pbm+p(X).

Then,

‖ − Φ̂m∆m,m+p(Φ̂
∗
m+pΦ̂m+p)

−1Φ̂∗m+pb(X)− (b′)m(X)‖22,n
= ‖ − Φ̂m∆m,m+p(Φ̂

∗
m+pΦ̂m+p)

−1Φ̂∗m+p(b(X)− bm+p(X))‖22,n.

This concludes the proof. �



20 FABIENNE COMTE* AND NICOLAS MARIE†

8.4. Proof of Proposition 3.8. Consider the following set

Ωm :=

{
|‖t‖2n/‖t‖2f − 1| 6 1

2
; ∀t ∈ Sm

}
=

{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Im‖op 6

1

2

}
.

The proof relies on the following lemma, borrowed from Comte and Genon-Catalot [11, Lemma 5].

Lemma 8.1. Under Assumption 3.7(m), there exists a deterministic constant c8.1 > 0, not depending
on m and n, such that

P(Ωcm) 6
c8.1
n8

and P(Λcm) 6
c8.1
n8

.

First of all,

E
[
‖b̃′,1m − b′‖2n

]
= E

[
‖b̂′,1m − b′‖2n1Λm+p

]
+ E(‖b′‖2n1Λc

m+p
).

Obviously, by applying Lemma 8.1, since E[b′(X1)4] <∞,

E(‖b′‖2n1Λc
m+p

) 6 E[b′(X1)4]1/2P(Λcm+p)
1/2 6 c

1/2
8.1 E[b′(X1)4]1/2

1

n4
.

Let us dissect ‖b̂′,1m − b′‖2n1Λm+p via the event Ωm+p:

E
[
‖b̂′,1m − b′‖2n1Λm+p

]
= E

[
‖b̂′,1m − b′‖2n1Λm+p∩Ωm+p

]
+ E

[
‖b̂′,1m − b′‖2n1Λm+p∩Ωc

m+p

]
6 E

[
‖b̂′,1m − b′‖2n1Λm+p∩Ωm+p

]
+2
[
E(‖b̂′,1m ‖4n1Λm+p

)1/2 + E(‖b′‖4n)1/2
]
P(Ωcm+p)

1/2 =: S + T.

On the one hand, let us find suitable bounds on the two remaining terms:
• For every measurable function ψ : R→ R and q ∈ [1,∞[ such that E(ψ(X1)2q) <∞, by Jensen’s

inequality,

(19) E(‖ψ‖2qn ) = E

[(
1

n

n∑
i=1

ψ2(Xi)

)q]
6

1

n

n∑
i=1

E[(ψ(Xi))
2q] = E(ψ2q(X1)).

Then, E(‖b′‖4n) 6 E(b′(X1)4).
• Recall that

b̂′,1m (X) = Φ̂′m(Φ̂∗mΦ̂m)−1Φ̂∗mY = Φ̂m+p∆
∗
m,m+p(Φ̂

∗
mΦ̂m)−1Φ̂∗mY.

First,

‖Φ̂m+p∆
∗
m,m+p(Φ̂

∗
mΦ̂m)−1Φ̂∗m‖2op = λmax(Φ̂m+p∆

∗
m,m+p(Φ̂

∗
mΦ̂m)−1∆m,m+pΦ̂

∗
m+p)

= n−1‖Φ̂m+p∆
∗
m,m+pΨ̂

−1/2
m ‖2op

6 n−1‖Ψ̂−1/2
m ‖2op‖Φ̂m+p∆

∗
m,m+p‖2op

= ‖Ψ̂−1
m ‖opλmax(∆m,m+pΨ̂m+p∆

∗
m,m+p)

6 ‖Ψ̂−1
m ‖op‖Ψ̂m+p‖op‖∆m,m+p‖2op.(20)

Moreover, ‖Ψ̂m+p‖op 6 L(m+p) and L(m)‖Ψ̂−1
m ‖op 6 L(m+p)‖Ψ̂−1

m+p‖op 6 cn/ log(n) on Λm+p.
Then,

E(‖b̂′,1m ‖4n1Λm+p
) 6

1

n2
E(‖Ψ̂−1

m ‖2op‖Ψ̂m+p‖2op1Λm+p‖Y‖42,n)‖∆m,m+p‖4op

6
c2n2

log(n)2
‖∆m,m+p‖4opE

( 1

n

n∑
i=1

Y 2
i

)2
 6 c2n2

log(n)2
‖∆m,m+p‖4opE(Y 4

1 ).
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Thus, thanks to Lemma 8.1,

T = 2
[
E(‖b̂′,1m ‖4n1Λm+p)1/2 + E(‖b′‖4n)1/2

]
P(Ωcm+p)

1/2

6 2

[
cn

log(n)
‖∆m,m+p‖2opE(Y 4

1 )1/2 + E(b′(X1)4)1/2

]
c
1/2
8.1

n4
.

On the other hand, with the exact same ideas as in the proof of Proposition 3.2,

S − 3‖f‖∞ inf
t∈Sm

‖t− b′‖2 − 3‖b′m − (b′)m‖2f

6 3E
[
‖Φ̂m+p∆

∗
m,m+p(Φ̂

∗
mΦ̂m)−1Φ̂∗m‖2op‖b− bm‖2n1Λm+p∩Ωm+p

]
+
σ2

n
E
[
Tr
(

(Φ̂∗mΦ̂m)−1∆m,m+pΦ̂
∗
m+pΦ̂m+p∆

∗
m,m+p

)
1Λm+p∩Ωm+p

]
=: S1 + S2.

Let us find suitable bounds on S1 and S2:

• On Ωm+p, the eigenvalues of Ψ
−1/2
m+p Ψ̂m+pΨ

−1/2
m+p belong to [1/2, 3/2]. The same way, on Ωm, the

eigenvalues of Ψ
−1/2
m Ψ̂mΨ

−1/2
m belong to [1/2, 3/2] and then, those of the matrix Ψ

1/2
m Ψ̂−1

m Ψ
1/2
m

belong to [2/3, 2]. So, on Ωm+p, Ŝ1 := ‖Φ̂m+p∆
∗
m,m+p(Φ̂

∗
mΦ̂m)−1Φ̂∗m‖2op satisfies

Ŝ1 = λmax(Φ̂m+p∆
∗
m,m+p(Φ̂

∗
mΦ̂m)−1∆m,m+pΦ̂

∗
m+p)

= λmax(∆∗m,m+pΨ̂
−1
m ∆m,m+pΨ̂m+p)

= λmax(Ψ
−1/2
m+p∆f,1

m,m+pΨ
1/2
m Ψ̂−1

m Ψ1/2
m (∆f,1

m,m+p)
∗Ψ
−1/2
m+p Ψ̂m+p)

= λmax((Ψ
−1/2
m+p Ψ̂m+pΨ

−1/2
m+p )1/2∆f,1

m,m+pΨ
1/2
m Ψ̂−1

m Ψ1/2
m (∆f,1

m,m+p)
∗(Ψ

−1/2
m+p Ψ̂m+pΨ

−1/2
m+p )1/2)

= ‖(Ψ−1/2
m+p Ψ̂m+pΨ

−1/2
m+p )1/2∆f,1

m,m+pΨ
1/2
m Ψ̂−1

m Ψ1/2
m (∆f,1

m,m+p)
∗(Ψ

−1/2
m+p Ψ̂m+pΨ

−1/2
m+p )1/2‖op

6 ‖Ψ−1/2
m+p Ψ̂m+pΨ

−1/2
m+p‖op‖∆f,1

m,m+p‖2op‖Ψ1/2
m Ψ̂−1

m Ψ1/2
m ‖op

6 3‖∆f,1
m,m+p‖2op.(21)

Thus,

S1 6 9‖∆f,1
m,m+p‖2opE(‖b− bm‖2n) = 9‖∆f,1

m,m+p‖2op‖b− bm‖2f .

• As previously, since the eigenvalues of Ψ
1/2
m Ψ̂−1

m Ψ
1/2
m 1Ωm+p

belong to [2/3, 2],

S2 =
σ2

n
E
[
Tr
(

Ψ1/2
m Ψ̂−1

m Ψ1/2
m (∆f,1

m,m+p)
∗Ψ
−1/2
m+p Ψ̂m+pΨ

−1/2
m+p∆f,1

m,m+p

)
1Λm+p∩Ωm+p

]
6
σ2

n
E
[
‖Ψ1/2

m Ψ̂−1
m Ψ1/2

m ‖opTr
(

(∆f,1
m,m+p)

∗Ψ
−1/2
m+p Ψ̂m+pΨ

−1/2
m+p∆f,1

m,m+p

)
1Ωm+p

]
6

2σ2

n
Tr
[
(∆f,1

m,m+p)
∗Ψ
−1/2
m+pE(Ψ̂m+p)Ψ

−1/2
m+p∆f,1

m,m+p

]
=

2σ2

n
‖∆f,1

m,m+p‖2F .

The result follows by gathering all the terms. �

8.5. Proof of Proposition 3.9. First of all,

E
[
‖b̃′,2m − b′‖2n

]
= E

[
‖b̂′,2m − b′‖2n1Λm+p

]
+ E(‖b′‖2n1Λc

m+p
).

Obviously, by applying Lemma 8.1, since E[b′(X1)4] <∞,

E(‖b′‖2n1Λc
m+p

) 6 E[b′(X1)4]1/2P(Λcm+p)
1/2 6 c

1/2
8.1 E[b′(X1)4]1/2

1

n4
.
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Let us dissect ‖b̂′,2m − b′‖2n1Λm+p
via the event Ωm+p:

E
[
‖b̂′,2m − b′‖2n1Λm+p

]
= E

[
‖b̂′,2m − b′‖2n1Λm+p∩Ωm+p

]
+ E

[
‖b̂′,2m − b′‖2n1Λm+p∩Ωc

m+p

]
6 E

[
‖b̂′,2m − b′‖2n1Λm+p∩Ωm+p

]
+2
[
E(‖b̂′,2m ‖4n1Λm+p

)1/2 + E(‖b′‖4n)1/2
]
P(Ωcm+p)

1/2 =: S + T.

On the one hand, let us find suitable bounds on the two remaining terms:

• As in the proof of Proposition 3.8, thanks to Inequality (19), E(‖b′‖4n) 6 E(b′(X1)4).
• Recall that

b̂′,2m (X) = Φ̂m∆m,m+p(Φ̂
∗
m+pΦ̂m+p)

−1Φ̂∗m+pY.

First,

‖Φ̂m∆m,m+p(Φ̂
∗
m+pΦ̂m+p)

−1Φ̂∗m+p‖2op = λmax(Φ̂m∆m,m+p(Φ̂
∗
m+pΦ̂m+p)

−1∆∗m,m+pΦ̂
∗
m)

= n−1‖Φ̂m∆m,m+pΨ̂
−1/2
m+p‖2op

6 n−1‖Ψ̂−1/2
m+p‖2op‖Φ̂m∆m,m+p‖2op

= ‖Ψ̂−1
m+p‖opλmax(∆∗m,m+pΨ̂m∆m,m+p)

6 ‖Ψ̂−1
m+p‖op‖Ψ̂m‖op‖∆m,m+p‖2op.

Moreover, ‖Ψ̂m‖op 6 L(m) 6 L(m+ p) and L(m+ p)‖Ψ̂−1
m+p‖op 6 cn/ log(n) on Λm+p. Then,

E(‖b̂′,2m ‖4n1Λm+p
) 6

1

n2
E(‖Ψ̂−1

m+p‖2op‖Ψ̂m‖2op1Λm+p
‖Y‖42,n)‖∆m,m+p‖4op

6
c2n2

log(n)2
‖∆m,m+p‖4opE

( 1

n

n∑
i=1

Y 2
i

)2
 6 c2n2

log(n)2
‖∆m,m+p‖4opE(Y 4

1 ).

Thus, thanks to Lemma 8.1,

T = 2
[
E(‖b̂′,2m ‖4n1Λm+p

)1/2 + E(‖b′‖4n)1/2
]
P(Ωcm+p)

1/2

6 2

[
cn

log(n)
‖∆m,m+p‖2opE(Y 4

1 )1/2 + E(b′(X1)4)1/2

]
c
1/2
8.1

n4
.

On the other hand, with the exact same ideas than in the proof of Proposition 3.6,

S − 2‖f‖∞ inf
t∈Sm

‖t− b′‖2 6 2E
[
‖Φ̂m∆m,m+p(Φ̂

∗
m+pΦ̂m+p)

−1Φ̂∗m+p‖2op‖b− bm+p‖2n1Λm+p∩Ωm+p

]
+
σ2

n
E
[
Tr
(

(Φ̂∗m+pΦ̂m+p)
−1∆∗m,m+pΦ̂

∗
mΦ̂m∆m,m+p

)
1Λm+p∩Ωm+p

]
=: S1 + S2.

Let us find suitable bounds on S1 and S2:

• On Ωm+p, the eigenvalues of Ψ
−1/2
m+p Ψ̂m+pΨ

−1/2
m+p belong to [1/2, 3/2] and then, those of the matrix

Ψ
1/2
m+pΨ̂

−1
m+pΨ

1/2
m+p belong to [2/3, 2]. The same way, on Ωm, the eigenvalues of Ψ

−1/2
m Ψ̂mΨ

−1/2
m
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belong to [1/2, 3/2]. So, on Ωm+p, Ŝ1 := ‖Φ̂m∆m,m+p(Φ̂
∗
m+pΦ̂m+p)

−1Φ̂∗m+p‖2op satisfies

Ŝ1 = λmax(Φ̂m∆m,m+p(Φ̂
∗
m+pΦ̂m+p)

−1∆∗m,m+pΦ̂
∗
m)

= λmax(∆m,m+pΨ̂
−1
m+p∆

∗
m,m+pΨ̂m)

= λmax(Ψ−1/2
m (∆f,2

m,m+p)
∗Ψ

1/2
m+pΨ̂

−1
m+pΨ

1/2
m+p∆

f,2
m,m+pΨ

−1/2
m Ψ̂m)

= λmax((Ψ−1/2
m Ψ̂mΨ−1/2

m )1/2(∆f,2
m,m+p)

∗Ψ
1/2
m+pΨ̂

−1
m+pΨ

1/2
m+p∆

f,2
m,m+p(Ψ

−1/2
m Ψ̂mΨ−1/2

m )1/2)

= ‖(Ψ−1/2
m Ψ̂mΨ−1/2

m )1/2(∆f,2
m,m+p)

∗Ψ
1/2
m+pΨ̂

−1
m+pΨ

1/2
m+p∆

f,2
m,m+p(Ψ

−1/2
m Ψ̂mΨ−1/2

m )1/2‖op

6 ‖Ψ−1/2
m Ψ̂mΨ−1/2

m ‖op‖∆f,2
m,m+p‖2op‖Ψ

1/2
m+pΨ̂

−1
m+pΨ

1/2
m+p‖op

6 3‖∆f,2
m,m+p‖2op.

Thus,
S1 6 6‖∆f,2

m,m+p‖2opE(‖b− bm+p‖2n) = 6‖∆f,2
m,m+p‖2op‖b− bm+p‖2f .

• As previously, since the eigenvalues of Ψ
1/2
m+pΨ̂

−1
m+pΨ

1/2
m+p1Ωm+p

belong to [2/3, 2],

S2 =
σ2

n
E
[
Tr
(

Ψ
1/2
m+pΨ̂

−1
m+pΨ

1/2
m+p∆

f,2
m,m+pΨ

−1/2
m Ψ̂mΨ−1/2

m (∆f,2
m,m+p)

∗
)
1Λm+p∩Ωm+p

]
6
σ2

n
E
[
‖Ψ1/2

m+pΨ̂
−1
m+pΨ

1/2
m+p‖opTr

(
∆f,2
m,m+pΨ

−1/2
m Ψ̂mΨ−1/2

m (∆f,2
m,m+p)

∗
)
1Ωm+p

]
6

2σ2

n
Tr
[
∆f,2
m,m+pΨ

−1/2
m E(Ψ̂m)Ψ−1/2

m (∆f,2
m,m+p)

∗
]

=
2σ2

n
‖∆f,2

m,m+p‖2F .

The result follows by gathering all the terms. �

8.6. Proof of Proposition 3.10. The proof of Proposition 3.10 relies on the following general lemma.

Lemma 8.2. Consider ϕ ∈ L2(I, dx) and let ϕ̂ be a measurable map from Ω × I into Sm such that
E(‖ϕ̂‖4f )1/2 6 mn3 with m > 0 not depending on m and n. Under Assumptions 3.1 and 3.7(m),

E(‖ϕ̂− ϕ‖2f ) 6 5‖f‖∞ inf
t∈Sm

‖t− ϕ‖2 + 4E(‖ϕ̂− ϕ‖2n) +
c3.10(m, ϕ)

n

with
c3.10(m, ϕ) =

√
8c8.1(‖ϕ‖2f + m).

The proof of Lemma 8.2 is postponed to the end of Subsection 8.6. Proposition 3.10 is obtained by
applying Lemma 8.2 to ϕ = b′ and ϕ̂ = b̃′,1m first, and then to ϕ = b′ and ϕ̂ = b̃′,2m . First,

‖b̂′,1m ‖2f =

∫
I

 m∑
j=1

[θ̂1
m]jϕ

′
j(x)

2

f(x)dx = (θ̂1
m)∗Ψ′mθ̂

1
m 6 ‖Ψ′m‖op‖θ̂1

m‖22,m

with
Ψ′m := (〈ϕ′j , ϕ′k〉f )j,k =

1

n
E[(Φ̂′m)∗Φ̂′m] = ∆m,m+pΨm+p∆m,m+p.

Then,
‖Ψ′m‖op 6 ‖∆m,m+p‖2op‖Ψm+p‖op 6 ‖∆m,m+p‖2opL(m+ p).

Moreover, as established in the proof of Comte and Genon-Catalot [11], Proposition 5,

‖θ̂1
m‖22,m 6

1

n
‖Ψ̂−1

m ‖op‖Y‖22,n 6
1

n
‖Ψ̂−1

m+p‖op‖Y‖22,n

and then, on Λm+p,

‖b̂′,1m ‖4f 6 ‖∆m,m+p‖4op

c2

log(n)2

(
n∑
i=1

Y 2
i

)2

.
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Since the Yi’s are independent and ‖∆m,m+p‖2op 6 m∆n
2,

E(‖b̃′,1m ‖4f )1/2 6

(
‖∆m,m+p‖4op

c2n

log(n)2
E(Y 4

1 )

)1/2

6 mn3 with m = cm∆E(Y 4
1 )1/2.

Therefore, by Lemma 8.2,

E(‖b̃′,1m − b′‖2f ) 6 5‖f‖∞ inf
t∈Sm

‖t− b′‖2 + 4E(‖b̃′,1m − b′‖2n) +
c3.10(m, b′)

n
.

The risk bound in norm ‖.‖f on b̃′,2m is obtained via similar arguments. �

Proof of Lemma 8.2. First of all, note that

E(‖ϕ̂− ϕ‖2f ) = E(‖ϕ̂− ϕ‖2f1Ωn) + E(‖ϕ̂− ϕ‖2f1Ωc
n
)

=: T1 + T2.

For any t ∈ L2(I, f(x)dx), let t(f) be the orthogonal projection of t on Sm for the theoretical norm ‖.‖f .
On the one hand, since ‖t‖2f1Ωn 6 2‖t‖2n1Ωn for every t ∈ Sm,

‖ϕ̂− ϕ‖2f1Ωn = (‖ϕ̂− ϕ(f)‖2f + ‖ϕ(f) − ϕ‖2f )1Ωn

6 ‖ϕ(f) − ϕ‖2f + 2‖ϕ̂− ϕ(f)‖2n1Ωn

6 inf
t∈Sm

‖t− ϕ‖2f + 4‖ϕ̂− ϕ‖2n + 4‖ϕ− ϕ(f)‖2n.

Since E(‖ϕ− ϕ(f)‖2n) = ‖ϕ− ϕ(f)‖2f ,

T1 6 5 inf
t∈Sm

‖t− ϕ‖2f + 4E(‖ϕ̂− ϕ‖2n)

6 5‖f‖∞ inf
t∈Sm

‖t− ϕ‖2 + 4E(‖ϕ̂− ϕ‖2n).

On the other hand, since P(Ωcm) 6 c8.1/n
8 by Lemma 8.1,

T2 6 E(‖ϕ̂− ϕ‖4f )1/2P(Ωcm)1/2 6
√

8[‖ϕ‖2f + E(‖ϕ̂‖4f )1/2]
c8.1
n4

.

Finally, the condition E(‖ϕ̂‖4f )1/2 6 mn3 implies that

E(‖ϕ̂− ϕ‖2f ) 6 5‖f‖∞ inf
t∈Sm

‖t− ϕ‖2 + 4E(‖ϕ̂− ϕ‖2n) +

√
8c8.1(‖ϕ‖2f + m)

n
. �

8.7. Proof of Proposition 4.1: The Hermite case. Consider a square integrable function b, and

bm =

m−1∑
j=0

〈b, hj〉hj

its projection on Sm = span{h0, . . . , hm−1}. On the one hand,

b′m =

m−1∑
j=0

〈b, hj〉h′j .
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Then, thanks to Equality (8),

b′m =
1√
2

m−1∑
j=0

〈b, hj〉(
√
jhj−1 −

√
j + 1hj+1)

=
1√
2

m−2∑
j=0

〈b, hj+1〉
√
j + 1hj −

m∑
j=1

〈b, hj−1〉
√
jhj


=

1√
2

m−2∑
j=0

[√
j + 1〈b, hj+1〉 −

√
j〈b, hj−1〉

]
hj −

(√
m− 1

2
〈b, hm−2〉hm−1 +

√
m

2
〈b, hm−1〉hm

)
.

On the other hand, if b′ is square integrable, then

b′ =
∑
j>0

〈b′, hj〉hj .

The usual integration by parts gives 〈b′, hj〉 = −〈b, h′j〉 as soon as limx→±∞ b(x)hj(x) = 0 (this holds
because the hj ’s have exponential decrease and b is square-integrable, thus bounded near infinity). So,
the projection of b′ is

(b′)m = −
m−1∑
j=0

〈b, h′j〉hj

= − 1√
2

m−1∑
j=0

〈b,
√
jhj−1 −

√
j + 1hj+1〉hj

=
1√
2

m−1∑
j=0

[√
j + 1〈b, hj+1〉 −

√
j〈b, hj−1〉

]
hj .

All the components of b′m and (b′)m are the same on Sm−2. So,

b′m − (b′)m = −
√
m

2
〈b, hm−1〉hm −

√
m

2
〈b, hm〉hm−1,

and then,

‖b′m − (b′)m‖2 =
m

2

(
〈b, hm−1〉2 + 〈b, hm〉2

)
.

If b belongs to a Hermite-Sobolev space with regularity index α > 1, then the term ‖b′m − (b′)m‖2 is of
order m−(α−1), which is also the order of inft∈Sm ‖t− b′‖2.

The Laguerre case. As previously, on the one hand, bm =
∑m−1
j=0 〈b, `j〉`j , and thanks to (7),

b′m =

m−1∑
j=0

〈b, `j〉

(
−`j − 2

j−1∑
k=0

`k

)

= −
m−1∑
j=0

〈b, `j〉`j − 2

m−2∑
k=0

 m−1∑
j=k+1

〈b, `j〉

 `k.

On the other hand, if b′ is square integrable, then b′ =
∑
j>0〈b′, `j〉`j . Thus, since 〈b′, `j〉 = −〈b, `′j〉 by

Assumption 3.5 (true when b(0) = 0),

(b′)m =

m−1∑
j=0

(
〈b, `j〉`j − 2

j−1∑
k=0

〈b, `k〉

)
`j .
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Consequently,

(b′)m − b′m = 2

m−1∑
j=0

(
m−1∑
k=0

〈b, `k〉

)
`j = 2

(
m−1∑
k=0

〈b, `k〉

)
m−1∑
j=0

`j ,

and then

‖(b′)m − b′m‖2 = 4m

(
m−1∑
k=0

〈b, `k〉

)2

.

Moreover, by assuming that b(0) = 0,∑
k>0

〈b, `k〉`k(0) =
√

2
∑
k>0

〈b, `k〉 = 0.

So,
∑m−1
k=0 〈b, `k〉 = −

∑
k>m〈b, `k〉, and then

‖(b′)m − b′m‖2 = 4m

∑
k>m

〈b, `k〉

2

.

Finally, if b belongs to a Laguerre-Sobolev space with index α > 1, then the right-hand side in the
previous equality is smaller than ∑

k>m

kα〈b, `k〉2 = O(m−α+1) �

8.8. Proof of Lemma 5.1. First,

V̂ (m) = σ2m

n
‖Ψ̂−1

m (Φ̂′m)∗Φ̂′m‖op = σ2m

n
‖Ψ̂−1/2

m (Φ̂′m)∗Φ̂′mΨ̂−1/2
m ‖op

where Ψ
−1/2
m is a symmetric square root of Ψ−1

m . Now, as the matrix is symmetric,

‖Ψ̂−1/2
m (Φ̂′m)∗Φ̂′mΨ̂−1/2

m ‖op = sup
x∈Rm

xΨ̂−1/2
m (Φ̂′m)∗Φ̂′mΨ̂−1/2

m x = n sup
t∈Sm:‖t‖n=1

‖t′‖2n.

So, clearly, m 7→ V̂ (m) = σ2m/n supt∈Sm:‖t‖n=1 ‖t′‖2n is increasing. �

8.9. Theorem 8.3 and its proof.

8.9.1. Statement of Theorem 8.3.

Theorem 8.3. Let Assumption 3.1 be fulfilled. Let also Assumption 3.7(m + p) be fulfilled for every
m ∈Mn. Moreover, assume that there exists κ > 0 such that E(exp(κε2

1)) <∞, that

(22) sup
n∈N\{0}

 1

log(n)

∑
m6n

L′(m)

L(m)
[exp(−a1m) + exp(−a2

√
L(m))]

 <∞ ; ∀a1,∀a2 > 0

with

L′(m) := sup
x∈I

m−1∑
j=0

ϕ′j(x)2,

and that there exists q ∈ N\{0} such that

(23) sup
n∈N\{0}

 1

nq/2 log(n)

∑
m6n

L′(m)

L(m)

 <∞.
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Then, there exists a constant c8.3 > 0, not depending on n, such that

E(‖b̂′ − b′‖2n) 6 c8.3 inf
m∈Mn

{
E(‖b̂′,1m − b′‖2n) + κ1V (m) + ‖∆f,1

m,m+p‖2op‖b− bm‖2f

+ sup
m′∈M+

n :m′>m

{
‖∆f,1

m′,m′+p‖
2
op(‖bM+

n
− bm′‖2f + ‖b− bM+

n
‖2∞)

}
+

9

2
‖f‖∞ sup

m′∈M+
n :m′>m

‖b′m′ − b′m‖2
}

+
c8.3
n
.

Conditions (22) and (23) are fulfilled by all the bases we mentioned (trigonometric, Laguerre, Hermite,
Legendre) because L(m) and L′(m) have the order of powers of m. The condition on ε1 is fulfilled by
Gaussian random variables for any κ < 1/(2σ2), and by random variables with a compactly supported
distribution. The quantity

inf
m∈Mn

{
E(‖b̂′,1m − b′‖2n) + κ1V (m) + ‖∆f,1

m,m+p‖2op‖b− bm‖2f
}

has the order of the minimum risk over the estimators of the collection in this problem. The three
additional terms are due to the bound on the bias term

E

(
sup

m′∈M̂n

‖EX(̂b′,1m∧m′)− EX(̂b′,1m′)‖
2
n

)
.

Concretely, Theorem 8.3 can be applied some of our specific bases.

8.9.2. Proof of Theorem 8.3. Throughout this subsection, for the sake of readability, we omit the super-
script 1 and write b̂′m instead of b̂′,1m .

Following the lines of the proof of Theorem 2 in Comte and Genon-Catalot [11], we consider the sets

Ξn = {ω :Mn ⊂ M̂n(ω) ⊂M+
n } and Ωn =

⋂
m∈M+

n

Ωm,

where

M+
n :=

{
m ∈ {1, . . . , n} : L(m+ p)(‖Ψ−1

m+p‖2op ∨ 1) 6 4c · n

log(n)

}
.

First,

E
[
‖b̂′ − b′‖2n1(Ωn∩Ξn)c

]
6

c1
n

with c1 > 0.

This follows from the proof of Proposition 3.8, using that P(Ξcn) 6 c3/n
8 and P(Ωcn) 6 c4/n

8. For
these last probabilities, we refer to Comte and Genon-Catalot [11], Lemmas 7 and 9, where the choice of
d = 1/[f(‖f‖∞ ∨ 1 + 3−1)] with f = 192 is explained. Here, the constant f has to be increased to obtain
the power n−8 instead of n−2.

Now, we control the loss of b̂′m̂ on Ωn ∩ Ξn. For any m ∈ Mn, using that on Ξn it also holds that
m ∈ M̂n, we have

‖b̂′m̂ − b
′‖2n 6 3(‖b̂′m̂ − b̂

′
m̂∧m‖

2
n + ‖b̂′m̂∧m − b̂

′
m‖2n + ‖b̂′m − b′‖2n)

6 3(A(m) + κ0V̂ (m̂) +A(m̂) + κ0V̂ (m) + ‖b̂′m − b′‖2n)

6 6(A(m) + κ1V̂ (m)) + 3‖b̂′m − b′‖2n as κ0 6 κ1.(24)
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Moreover,

A(m) 6 3 sup
m∈M̂n

{
‖b̂′m − EX(̂b′m)‖2n −

κ0

6
V̂ (m)

}
+

+3 sup
m′∈M̂n

{
‖b̂′m∧m′ − EX(̂b′m∧m′)‖2n −

κ0

6
V̂ (m′)

}
+

+3 sup
m′∈M̂n

‖EX(̂b′m∧m′)− EX(̂b′m′)‖2n,

and since

sup
m′∈M̂n

{ · · · } = max

(
sup

m′∈M̂n:m′6m

{ · · · } ; sup
m′∈M̂n:m′>m

{ · · · }

)
,

by Lemma 5.1 (m 7→ V̂ (m) is increasing),

sup
m′∈M̂n

{
‖b̂′m∧m′ − EX(̂b′m∧m′)‖2n −

κ0

6
V̂ (m′)

}
+

6 max

(
sup

m′∈M̂n

{
‖b̂′m′ − EX(̂b′m′)‖2n −

κ0

6
V̂ (m′)

}
+

;
{
‖b̂′m − EX(̂b′m)‖2n −

κ0

6
V̂ (m)

}
+

)
6 sup
m∈M̂n

{
‖b̂′m − EX(̂b′m)‖2n −

κ0

6
V̂ (m)

}
+
.

Thus,

(25) A(m) 6 6 sup
m∈M̂n

{
‖b̂′m − EX(̂b′m)‖2n −

κ0

6
V̂ (m)

}
+

+ 3 sup
m′∈M̂n

‖EX(̂b′m∧m′)− EX(̂b′m′)‖2n.

The following lemma provides a suitable bound on the first term in the right-hand side of Inequality (25)
obtained via the conditional Talagrand inequality.

Lemma 8.4. Let Assumption 3.1 be fulfilled. Let also Assumption 3.7(m + p) be fulfilled for every
m ∈ Mn. Moreover, assume that there exists κ > 0 such that E(exp(κε2

1)) < ∞, and that Conditions
(22) and (23) hold. Then,

E

[
sup

m∈M̂n

{
‖b̂′m − EX(̂b′m)‖2n −

κ0

6
V̂ (m)

}
+

]
6

c8.4
n
,

where c8.4 > 0 is a deterministic constant not depending on n.

By Inequalities (24) and (25), and then by Lemma 8.4, for any m ∈Mn,

E(‖b̂′ − b′‖2n1Ωn∩Ξn
) 6 36E

[
sup

m∈M̂n

{
‖b̂′m − EX(̂b′m)‖2n −

κ0

6
V̂ (m)

}
+

]

+18E

[
1Ξn∩Ωn

sup
m′∈M̂n

‖EX(̂b′m∧m′)− EX(̂b′m′)‖2n

]
+6κ1E(V̂ (m)1Ωn

) + 3E(‖b̂′m − b′‖2n)

6 3E(‖b̂′m − b′‖2n) + 6κ1c2V (m) +
c8.4
n

+18E

[
1Ξn∩Ωn sup

m′∈M̂n

‖EX(̂b′m∧m′)− EX(̂b′m′)‖2n

]

with c2 > 0. The inequality E(V̂ (m)1Ωn
) 6 c2V (m) is obtained via the same method than in the proof

of Proposition 3.9.
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Let us now control

Bm,n :=
1

n
E

[
1Ξn∩Ωn sup

m′∈M̂n:m′>m

‖EX(̂b′,1m (X))− EX(̂b′,1m′(X))‖22,n

]
.

Thanks to Equality (17),

EX(̂b′,1m′(X))− EX(̂b′,1m (X)) = EX(̂b′,1m′(X))− b′m′(X)− (EX(̂b′,1m (X))− b′m(X)) + b′m′(X)− b′m(X)

= P̂m′(b(X)− bm′(X)) + P̂m(b(X)− bm(X)) + b′m′(X)− b′m(X).

Since we are on Ωn, and since m,m′ ∈M+
n on Ξn when m ∈Mn and m′ ∈ M̂n,

Sp
[
Ψ
−1/2
m′+pΨ̂m′+pΨ

−1/2
m′+p

]
⊂ [1/2, 3/2] and Sp

[
Ψ

1/2
m′ Ψ̂−1

m′Ψ
1/2
m′

]
⊂ [2/3, 2],

and the same for m instead of m′. So, thanks to Inequality (21),

‖P̂m′‖2op 6 3‖∆f,1
m′,m′+p‖

2
op.

In the same way,
‖P̂m‖2op 6 3‖∆f,1

m,m+p‖2op.

Thus, on Ωn,
1

n
‖P̂m′(b(X)− bm′(X))‖22,n 6 3‖∆f,1

m′,m′+p‖
2
op‖b− bm′‖2n

6 6‖∆f,1
m′,m′+p‖

2
op(‖b− bMn

‖2n + ‖bMn
− bm′‖2n)

6 6‖∆f,1
m′,m′+p‖

2
op(‖b− bM+

n
‖2∞ + 3/2‖bM+

n
− bm′‖2f )

where M+
n is the maximal element ofM+

n , and
1

n
‖P̂m(b(X)− bm(X))‖22,n 6 3‖∆f,1

m,m+p‖2op‖b− bm‖2n.

For the last term, on Ωn,

‖b′m′(X)− b′m(X)‖2n 6
3

2
‖b′m′ − b′m‖2f 6

3

2
‖f‖∞‖b′m′ − b′m‖2.

Therefore,

Bm,n 6 9‖∆f,1
m,m+p‖2op‖b− bm‖2f + 18 sup

m′∈M+
n :m′>m

{
‖∆f,1

m′,m′+p‖
2
op(‖bM+

n
− bm′‖2f + ‖b− bM+

n
‖2∞)

}
+

9

2
‖f‖∞ sup

m′∈M+
n :m′>m

‖b′m′ − b′m‖2.

This concludes the proof. �

8.10. Proof of Lemma 8.4. We emphasize that the lemma would be true for M̂n replaced by the
weaker (and more natural){

m ∈ {1, . . . , n} : L(m+ p)(‖Ψ̂−1
m+p‖op ∨ 1) 6 c

n

log(n)

}
with c defined in Assumption 3.7(m+ p). We only use this constraint in the following.

First of all, for any m ∈ M̂n, since ‖ψ‖2n = supt∈Sm:‖t‖n=1〈t, ψ〉2n for every ψ ∈ Sm,

‖b̂′m − EX(̂b′m)‖2n = sup
t∈Sm:‖t‖n=1

νn(t)2

with, for any ~b = (b1, . . . , bm) ∈ Rm and t =
∑m
j=1 bjϕj ,

νn(t) =
1

n
〈t, Φ̂′mΨ̂−1

m Φ̂∗mε〉n =
1

n2
〈[Φ̂′mΨ̂−1

m Φ̂∗m]∗t(X), ε〉2,n =
1

n
〈Θt(X), ε〉2,n,
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where
Θt(X) =

1

n
Φ̂mΨ̂−1

m (Φ̂′m)∗t(X) =
1

n
Φ̂mΨ̂−1

m (Φ̂′m)∗Φ̂m~b.

Note that νn(t) = ν
(1)
n (t) + ν

(2)
n (t), where ν

(1)
n (t) = n−1〈Θt(X), ε(1)〉2,n with ε(1) = (εi1|εi|6mn

−
E(εi1|εi|6mn

))i and mn = (qκ−1 log(n))1/2, and ν(2)
n (t) = n−1〈Θt(X), ε(2)〉2,n with ε(2) = (εi1|εi|>mn

−
E(εi1|εi|>mn

))i. On the one hand, in order to apply Talagrand’s inequality to supt∈Sm:‖t‖n=1 ν
1
n(t)2

conditionally to (X1, . . . , Xn), consider

Am,n(X) := EX

(
sup

t∈Sm:‖t‖n=1

ν(1)
n (t)2

)
,

Bm,n := sup
t∈Sm:‖t‖n=1

{
sup

(e,x)∈[−2mn,2mn]×I
|eΘt(x)|

}
and

Cm,n(X) := sup
t∈Sm:‖t‖n=1

{
1

n

n∑
i=1

varX
[
ε

(1)
i Θt(Xi)

]}
,

and let us find suitable bounds on each of these random quantities.
• Bound on Am,n(X). Note that

var(ε(1)
1 ) 6 E(ε2

11|ε1|6mn
) 6 E(ε2

1) = σ2.

Then,

Am,n(X) 6
1

n3
EX(‖Φ̂′mΨ̂−1

m Φ̂∗mε
(1)‖22,n) =

var(ε(1)
1 )

n
Tr
[
Φ̂′mΨ̂−1

m (Φ̂′m)∗
]

6
σ2

n2
Tr
[
Φ̂′mΨ̂−1

m (Φ̂′m)∗
]
6
σ2m

n2
‖Ψ̂−1

m (Φ̂′m)∗Φ̂′m‖op =: H2.

• Bound on Bm,n. Since m ∈ M̂n, m‖Ψ̂−1
m ‖op 6 (m+ p)‖Ψ̂−1

m+p‖op 6 cn/ log(n), and then

Bm,n 6
2mn
n

sup
~b:‖Φ̂m

~b‖2,n=
√
n

∣∣∣∣∣∣
m∑
j=1

[Ψ̂−1
m (Φ̂′m)∗Φ̂m~b]jϕj(x)

∣∣∣∣∣∣
6

2mn
n

L(m)1/2 sup
~b:‖Φ̂m

~b‖2,n=
√
n

‖Ψ̂−1
m (Φ̂′m)∗Φ̂m~b‖m,2 6

2mn√
n

√
L(m)‖Ψ̂−1

m (Φ̂′m)∗‖2op

6
2mn√
n

√
L(m)‖Ψ̂−1

m ‖op‖Ψ̂−1
m (Φ̂′m)∗Φ̂′m‖op 6 2

√
cqκ−1‖Ψ̂−1

m (Φ̂′m)∗Φ̂′m‖op =: M.

Then,
nH

M
=

σ

2
√

cqκ−1
·
√
m.

• Bound on Cm,n(X):

Cm,n(X) 6
E(|ε(1)

1 |2)

n
sup

t∈Sm:‖t‖n=1

n∑
i=1

Θt(Xi)
2 6

σ2

n3
sup

~b:‖Φ̂m
~b‖2,n=

√
n

‖Φ̂mΨ̂−1
m (Φ̂′m)∗Φ̂m~b‖22,n

=
σ2

n3
sup

~b:‖Φ̂m
~b‖2,n=

√
n

~b∗Φ̂∗mΦ̂′mΨ̂−1
m Φ̂∗mΦ̂mΨ̂−1

m︸ ︷︷ ︸
=nIm

(Φ̂′m)∗Φ̂m~b

=
σ2

n2
sup

~b:‖Φ̂m
~b‖2,n=

√
n

‖Ψ̂−1/2
m (Φ̂′m)∗Φ̂m~b‖22,n 6

σ2

n
‖Ψ̂−1/2

m (Φ̂′m)∗‖2op =
σ2

n
‖Φ̂′mΨ̂−1

m (Φ̂′m)∗‖op =: v.

Then,
nH2

v
= m.
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So, by Talagrand’s inequality,

EX

[(
sup

t∈Sm:‖t‖n=1

ν(1)
n (t)2 − 4H2

)
+

]

6 c1

[
v

n
exp

(
−c2

nH2

v

)
+
M2

n2
exp

(
−c3

nH

M

)]
6

c1
n2
‖Ψ̂−1

m ‖opL
′(m)

[
e−c2m + q exp

(
− c3√

q
·
√

L(m)

)]
where c1, c2, c3, c1, c3 > 0 are universal constants, and thus

S := EX

[
sup

m∈M̂n

{
sup

t∈Sm:‖t‖n=1

ν(1)
n (t)2 − κ0

6
V̂ (m)

}
+

]

6
c1
n2

∑
m∈M̂n

[
‖Ψ̂−1

m ‖opL
′(m)

[
e−c2m + q exp

(
− c3√

q
·
√

L(m)

)]]

6
cc1

n log(n)

∑
m6n

[
L′(m)

L(m)

[
e−c2m + q exp

(
− c3√

q
·
√

L(m)

)]]
thanks to the definition of M̂n. Thanks to Condition (22), this term is of order 1/n. On the other hand,
since L(m)‖Ψ̂−1

m ‖op 6 cn/ log(n) for every m ∈ M̂n, and by Markov’s inequality,

T := EX

(
sup

m∈M̂n

sup
t∈Sm:‖t‖n=1

ν(2)
n (t)2

)
6

1

n2
E(‖ε(2)‖22,n) sup

m∈M̂n

sup
t∈Sm:‖t‖n=1

‖Θt(X)‖22,n

6
1

n
E(ε4

1)1/2P(|ε1| > mn)1/2 sup
m∈M̂n

{
1

n2
sup

~b:‖Φ̂m
~b‖2,n=

√
n

‖Φ̂mΨ̂−1
m (Φ̂′m)∗Φ̂m~b‖22,n

}

6
1

n
E(ε4

1)1/2P(exp(κε2
1) > nq)1/2 sup

m∈M̂n

‖Φ̂′mΨ̂−1
m (Φ̂′m)∗‖op

6
1

n
E(ε4

1)1/2 1

nq/2
E(exp(κε2

1))1/2 cn

log(n)

∑
m6n

L′(m)

L(m)
6

c4
nq/2 log(n)

∑
m6n

L′(m)

L(m)

with c4 = cE(ε4
1)1/2E(exp(κε2

1))1/2. Thanks to Condition (23), this term is of order 1/n. In conclusion,

E

[
sup

m∈M̂n

{
‖b̂′,1m − EX(̂b′,1m )‖2n −

κ0

3
V̂ (m)

}
+

]
6 2E(S) + 2E(T ) 6

c5
n
. �

8.11. Proof of Proposition 5.2. Here, (ϕj)j∈N∗ is the trigonometric basis. Thus, with L(m) of order m
and L′(m) of order m3, Conditions (22) and (23) are obviously fulfilled. Moreover, under f(x) > f0 > 0,
we know that ‖Ψ−1

m ‖op 6 1/f0, and thenM+
n has order n/ log(n). We takeM+

n = n/ log(n) for simplicity.
The first terms of the bound in Theorem 8.3 have been already evaluated in the proof of Corollary 4.2,
so we have to study the additional ones:

sup
m<m′6n/ log(n)

{
‖∆f,1

m′,m′+p‖
2
op(‖bM+

n
− bm′‖2f + ‖b− bM+

n
‖2∞)

}
and sup

m<m′6n/ log(n)

‖b′m′ − b′m‖2.

We assume that
∑
j〈b, ϕj〉2j2β 6 L with β ∈ N ∩ (1,∞). First,

sup
m<m′6n/ log(n)

‖∆f,1
m′,m′+p‖

2
op‖bM+

n
− bm′‖2f 6

‖f‖∞
f0

sup
m<m′6n/ log(n)

(m′)2
∑
j>m′

〈b, ϕj〉2 6
‖f‖∞
f0

m−2(β−1).

So, this term is of same order than the bias term. Next,

sup
m<m′6n/ log(n)

‖b′m′ − b′m‖2 6
∑
j>m

[(2πj)〈b, ϕj〉]2 6 Cm−2(β−1).
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Lastly, for any m and x ∈ I,

|(b− bm)(x)| 6
√

2
∑
j>m

|〈b, ϕj〉| 6
√

2

∑
j>m

j2β〈b, ϕj〉2
∑
j>m

j−2β

1/2

6

√
2L

2β − 1
m−β+1/2 6 c(β, L)m−β+1/2,

which gives ‖b− bm‖∞ 6 c(β, L)m−β+1/2 and

sup
m<m′6n/ log(n)

‖∆f,1
m′,m′+p‖

2
op‖b− bM+

n
‖2∞ 6

c(β, L)

f0

(
n

log(n)

)−2β+3

.

We have n−2β+3 6 n−2(β−1)/(2β+1) as soon as β > (3 +
√

13)/4 ' 1.65, which holds true when β ∈
N ∩ (1,∞). In conclusion, this together with Theorem 8.3 and the orders given in Section 4.2 gives the
announced result. �

8.12. Proof of Proposition 5.3. Here, (ϕj)j∈N∗ is the Hermite basis, and for ‖Ψ−1
m ‖op = mγ , the

constraint on the collection of models implies M+
n = n1/(2γ+1/2). This is compatible with the choice of

mopt = 1/ns+1/2 as s > 2γ + 9/4 > 2γ. Again, we have to study the orders of the additional terms of
the bound in Theorem 8.3:

sup
m<m′6n/ log(n)

{
‖∆f,1

m′,m′+p‖
2
op(‖bM+

n
− bm′‖2f + ‖b− bM+

n
‖2∞)

}
and sup

m<m′6n/ log(n)

‖b′m′ − b′m‖2

under the regularity condition b ∈WH
s (L) with s > 2γ + 9/4 > 1. First,

sup
m<m′6M+

n

‖∆f,1
m′,m′+p‖

2
op‖bM+

n
− bm′‖2f 6 ‖f‖∞ sup

m<m′6M+
n

(m′)γ+1
∑
j>m′

〈b, ϕj〉2

6 ‖f‖∞m−s+γ+1.

So, this term is of same order than the bias term. Next, using Formula (8),

sup
m<m′6M+

n

‖b′m′ − b′m‖2 .
∑
j>m

j〈b, ϕj〉2 6 Cm−s+1.

This term is also of same order than the first bias term and is negligible with respect to the previous one.
Lastly, ‖b− bm‖2∞ 6 C(s, L)π−1/2m−s+1, and thus

sup
m<m′6M+

n

{
‖∆f,1

m′,m′+p‖
2
op‖b− bM+

n
‖2∞
}
. n−(s−γ−2)/(2γ+1/2)

by using the value of M+
n . We have

−s− γ − 2

2γ + 1/2
6 −s− 1− γ

s+ 1/2
if (s− γ − 2)

(
s+

1

2

)
− (s− γ − 1)

(
2γ +

1

2

)
> 0.

Since

(s− γ − 2)

(
s+

1

2

)
− (s− γ − 1)

(
2γ +

1

2

)
= (s− γ)(s− 2γ − 2)− 1

2
,

s− γ > 2 and s− 2γ − 2 > 1/4, the constraint is fulfilled and this last term is negligible with respect to
the rate. Considering the orders obtained in section 4.3, we get the result. �
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