Threshold selection for cluster inference based on large deviation principles - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Threshold selection for cluster inference based on large deviation principles

Résumé

In the setting of regularly varying time series, a cluster of exceedances is a short period for which the supremum norm exceeds a high threshold. We propose to study a generalization of this notion considering short periods, or blocks, with lp−norm above a high threshold. We derive large deviation principles of blocks and apply these results to improve cluster inference. We focus on blocks estimators and show they are consistent when we use large empirical quantiles from the lp −norm of blocks as threshold levels. We derive an adaptive threshold selection method for cluster inference in lp. Our approach focuses on the case p < ∞ rather than the classical one for p = ∞ where the bias is more difficult to control.
Fichier principal
Vignette du fichier
main.pdf (688.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03269176 , version 1 (23-06-2021)
hal-03269176 , version 2 (27-09-2021)
hal-03269176 , version 3 (01-03-2022)
hal-03269176 , version 4 (20-07-2022)

Identifiants

Citer

Gloria Buriticá, Thomas Mikosch, Olivier Wintenberger. Threshold selection for cluster inference based on large deviation principles. 2021. ⟨hal-03269176v1⟩
188 Consultations
95 Téléchargements

Altmetric

Partager

More