Cell-Aware Diagnosis of Customer Returns Using Bayesian Inference - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Cell-Aware Diagnosis of Customer Returns Using Bayesian Inference

Résumé

This paper presents a new cell-aware diagnosis flow that can be used to address a specific scenario (test protocol) one may encounter during diagnosis of customer returns. In this flow, we use a Bayesian classification method to precisely identify defect candidates. Experiments done on benchmark circuits as well as on a test chip from STMicroelectronics have proven the efficacy of our flow in terms of diagnosis accuracy and resolution.
Fichier principal
Vignette du fichier
Cell-Aware_Diagnosis_of_Customer_Returns_Using_Bayesian_Inference.pdf (729.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03266815 , version 1 (14-10-2021)

Identifiants

Citer

Safa Mhamdi, Patrick Girard, Arnaud Virazel, Alberto Bosio, Aymen Ladhar. Cell-Aware Diagnosis of Customer Returns Using Bayesian Inference. ISQED 2021 - 22nd International Symposium on Quality Electronic Design, Apr 2021, Santa Clara (virtual), United States. pp.48-53, ⟨10.1109/ISQED51717.2021.9424337⟩. ⟨hal-03266815⟩
51 Consultations
73 Téléchargements

Altmetric

Partager

More