
HAL Id: hal-03266815
https://hal.science/hal-03266815

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cell-Aware Diagnosis of Customer Returns Using
Bayesian Inference

Safa Mhamdi, Patrick Girard, Arnaud Virazel, Alberto Bosio, Aymen Ladhar

To cite this version:
Safa Mhamdi, Patrick Girard, Arnaud Virazel, Alberto Bosio, Aymen Ladhar. Cell-Aware Di-
agnosis of Customer Returns Using Bayesian Inference. ISQED 2021 - 22nd International Sym-
posium on Quality Electronic Design, Apr 2021, Santa Clara (virtual), United States. pp.48-53,
�10.1109/ISQED51717.2021.9424337�. �hal-03266815�

https://hal.science/hal-03266815
https://hal.archives-ouvertes.fr

Cell-Aware Diagnosis of Customer Returns
Using Bayesian Inference

S. Mhamdi P. Girard A. Virazel
LIRMM, Univ. of Montpellier / CNRS

Montpellier, France
<lastname>@lirmm.fr

A. Bosio
INL, École Centrale de Lyon

France
alberto.bosio@ec-lyon.fr

A. Ladhar
STMicroelectronics

Crolles, France
aymen.ladhar@st.com

Abstract—This paper presents a new cell-aware diagnosis flow
that can be used to address a specific scenario (test protocol) one
may encounter during diagnosis of customer returns. In this flow,
we use a Bayesian classification method to precisely identify
defect candidates. Experiments done on benchmark circuits as
well as on a test chip from STMicroelectronics have proven the
efficacy of our flow in terms of diagnosis accuracy and resolution.
Keywords—Diagnosis, Customer Returns, Machine Learning

I. INTRODUCTION
Digital ICs are designed on the basis of a library of standard
cells used to describe the logic behavior and physical layout of
the lowest level component in a netlist. With the
semiconductor industry that continuously pushes for higher
density, it turns out that increasingly more defects occur
within the cell structures. For the more advanced technology
nodes, some estimates put the number of defects found within
cells to represent almost half of all circuit defects [1].
Cell-aware test is a test generation approach that explicitly
targets cell-internal defects [2]. Using cell-aware test today is
the only way to achieve the required low defective-parts-per-
million rates for critical applications. Similarly, Cell-Aware
(CA) diagnosis is an approach used to pinpoint the possible
defect candidates within the failing cell(s) of a defective IC [3-
6]. Results of CA diagnosis are used to guide Physical Failure
Analysis (PFA), which is a time-consuming and destructive
process for physically exposing the defect in order to
characterize the failure mechanism. The outcome of this PFA
usually leads to modify the design or manufacturing process to
ensure no similar occurrence in the future.

Customer returns are defective ICs that passed all
functional and parametric tests after manufacturing but failed
in the field. They are mostly due to latent defects [7]. This is
especially true for, e.g., automotive products where a very
comprehensive test flow has been applied to ensure zero test
escape. So, the first step when a customer return occurs is to
reproduce the failure mechanism with any original test and
appropriate conditions. After that, a diagnosis program made of
several routines is used to identify, step by step, the failing part
and, finally, the suspected defects. Each routine corresponds to
the application of a diagnosis algorithm at a given hierarchy
level (system, core and cell levels) [8-11].

With the density level of today’s ICs, a high resolution
(very few or one defect candidate) is not always reachable by
existing CA diagnosis tools based on conventional methods
(effect-cause / cause-effect). As a result, many efforts have

been dedicated recently for improving diagnosis resolution by
using machine learning techniques [12]–[15]. Though efficient,
these techniques address volume diagnosis for yield ramp-up,
which is a different problem than fault diagnosis of customer
returns. During volume diagnosis, a lot of data collected during
manufacturing test and subsequent diagnosis phases are
available, such as, e.g., hundreds of similar failed chips with
candidates correctly labeled (good, bad). It is therefore possible
to use these data for failure diagnosis of a new failed chip.
Conversely, during fault diagnosis of a customer return, only
one failed chip is investigated, with no information about the
defective behavior of some other similar chips used in the same
conditions (application, environment, workload). For this
reason, learning-guided approaches existing for volume
diagnosis cannot be reused for diagnosis of customer returns.

In [16], we proposed a learning-guided framework for CA
diagnosis of mission mode failures in customer returns. Several
supervised learning algorithms were considered in that work
for predicting the nature (likelihood to be a good candidate) of
each new data instance (defect) that has to be evaluated. Two
distinct processes were developed to diagnose static and
dynamic defects separately, each one assuming a dedicated
testing scheme, i.e., basic scan and fast sequential, for static
and dynamic CA test sequences application respectively. The
effectiveness of the proposed framework was demonstrated
through comparison with a commercial tool.

In an attempt to deal concurrently with all types of defects
that may occur in customer returns, we proposed a new CA
diagnosis flow in [17]. We assumed a test protocol in which
two test sequences (static and dynamic) are used successively,
each one assuming a dedicated testing scheme, i.e., basic scan
and fast sequential. Constructing such a comprehensive flow
imposed setting up a new framework with specific rules to
achieve a high level of efficacy in terms of diagnosis accuracy
and resolution. The proposed method was based on a Gaussian
Naive Bayes trained model to predict good defect candidates.
The flow was experimented and validated on industrial circuits.

In this paper, we propose a new version of the CA
diagnosis flow in which both static and dynamic defects can be
diagnosed owing to a single dynamic test sequence applied at-
speed. Such a flow can be used to address a missing scenario in
our former proposals [16-17]. As only dynamic instance tables
are manipulated in this work, the representation of training and
new data is simplified (a single type of feature vector is used)
without loosing information and decreasing the quality of the
training and inference phases. Experimental results have shown
the benefit of using such a new CA diagnosis flow.

 22nd Int'l Symposium on Quality Electronic Design

20
21

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

78
-1

-7
28

1-
76

41
-3

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
51

71
7.

20
21

.9
42

43
37

iPad de Gouat

iPad de Gouat

The rest of this paper is organized as follows. Section II
discusses the test protocol considered in this work. Section III
details the new CA diagnosis flow. Section IV shows results
obtained on benchmark circuits and on a test chip developed by
STMicroelectronics. Section VI concludes the paper.

II. CONSIDERED TEST PROTOCOL FOR DIAGNOSIS
During diagnosis of customer returns in industry, several

scenarios with different test protocols may occur. The most
common is when the test sequences used during manufacturing
test are available and can be used again for diagnosis purpose
so as to mimic the process used initially during manufacturing
test. This is the scenario assumed in our previous work [17], in
which we considered two successive test sequences used to
performed customer return diagnosis. First, a static CA test
sequence generated by a commercial cell-aware ATPG tool is
applied to the Circuit Under Diagnosis (CUD). This sequence
targets all cell-level stuck-at faults plus cell-internal static
defects, considering that these defects are not covered by a
standard stuck-at fault ATPG. A standard (low speed) scan-
based testing scheme is used to this purpose. Next, another
option of the cell-aware ATPG is used to generate a dynamic
CA test sequence that targets cell-level transition faults plus
intra-cell dynamic defects not covered by a standard transition
fault ATPG. In this case, an at-speed Launch-On-Capture
(LOC) scheme (also called fast sequential) is used during test
application. This scenario (test protocol) is sketched in Fig. 1.

Figure 1: Test scenarios assumed in [16-17] and the proposed work

In [16], another scenario was assumed, in which two test
sequences (static and dynamic) are also used to diagnose static
and dynamic defects, but this time independently, and each one
assuming a dedicated testing scheme, i.e., basic scan and fast
sequential. This scenario is also sketched in Fig. 1.

Figure 2: Example of a multi-run industrial ATPG flow

However, some other scenarios are possible, in which only
one test sequence is available for customer return diagnosis.
This test sequence can be composed of i) static test patterns
applied at low speed, ii) dynamic test patterns applied at low
speed, iii) or dynamic test patterns applied at high speed. Such
a test sequence can be obtained from the various runs of an
industrial ATPG flow as the one illustrated in Fig. 2.

In this paper, we consider the scenario in which only one
test sequence composed of dynamic cell-aware test patterns

applied at high speed is available, and has failed during test
of the customer return. According to the flow depicted in Fig.
2, this scenario may happen when such a test sequence has
been generated to target transition faults plus intra-cell
dynamic defects, and appears to also cover the required
percentage of stuck-at faults plus intra-cell static defects (or,
more generally, satisfies the test coverage specifications) after
the first run of ATPG in Fig. 2. In this case, note that only one
(dynamic) datalog is generated after test application and can
further be used for diagnosis purpose. Nevertheless, both static
and dynamic defects are taken into account in this scenario.
Again, the target of this scenario is sketched in Fig. 1.

Static defects are defects that require one-vector test patterns
to be detected. Dynamic defects are defects that require two-
vector test patterns to be detected. These defects can be non-
resistive defects modeled by stuck-open faults. More generally,
these defects are mainly due to resistive opens or shorts that
prevent signals to propagate within a circuit at the normal
speed, and hence lead to IC failure. In this case, they are
modeled by (quantitative) delay faults or (qualitative) transition
faults (also called gross delay faults). With the advent of deep
submicron technologies, the occurrence of dynamic defects is
constantly increasing, not only during the manufacturing
process of ICs, but also during the lifetime of the circuit where
latent or wear-out defects may appear due to various stress
conditions (operational, environmental, etc.).

III. PROPOSED CELL-AWARE DIAGNOSIS FLOW
Figure 3 is a generic view of the learning and prediction

processes utilized in this work. Both approaches are based on
supervised learning that takes a known set of input data and
known responses (labeled data) used as training data, trains a
model, and then implement a classifier based on this model to
make predictions (inferences) for the response to new data.

Figure 3: Generic view of the cell-aware diagnosis flow

In the next subsections, we detail the various steps of the
proposed cell-aware diagnosis flow able to deal with all types
of defects (i.e., static and dynamic) that may occur in customer
returns. Again, only one test sequence composed of dynamic
cell-aware test patterns applied at high speed is available, and
has failed during test of the customer return.
A. Generation of Training Data

Training data are generated for each type of cell existing in
the Circuit Under Diagnosis (CUD) during an off-line
characterization process done only once for a given cell library.
These data are extracted from cell-aware views provided by a

commercial CAD tool that contain all characterization results
for a given cell type. These results are provided in the form of a
fault dictionary containing, for each defect within a cell, the
cell input patterns detecting (or not) this defect. An example of
training data as used in [16-17] and containing four instances
for an arbitrary two-input cell is shown in Fig. 4. Each instance
is associated to a static defect (D1, D2) or a dynamic defect
(D11, D12). A 1 (0) indicates that defect Di is detectable (not
detectable) at the output of the cell when the cell-level test
pattern Pj is applied at the inputs of the cell. Cell-level test
patterns (or cell-patterns) are static (one input vector - P1 to P4
in Fig. 4) or dynamic (two input vectors - P5 to P16 in Fig. 4 in
which R (F) indicates a rising (falling) transition at the cell
input). For an n-input cell, there exists 2n static cell-patterns
and 2n.(2n–1) dynamic cell-patterns.

Figure 4: Example of training data for all defect types in a two-input cell
Dynamic defects can be detected not only by dynamic

patterns, but also by static patterns applied using a basic scan
testing scheme, provided that i) at least one transition has been
generated at the cell inputs between the next-to-last scan shift
cycle and the launch cycle, and ii) the delay induced by the
defect is large enough to be detected (these are the detection
conditions of a dynamic defect modeled by a stuck-open or a
gross delay fault). For this reason, the value ‘0.5’ is assigned to
each dynamic defect (D11, D12) for all related static cell-
patterns, meaning that such a defect is detectable or not
depending on whether or not the above conditions are satisfied.

Figure 5: New format of training data for all defect types in a two-input cell

As only dynamic instance tables are manipulated in this
work, the representation of training data as used in [16-17] can
be simplified without loosing information and decreasing the
quality of the training phase. This comes from the observation
that a static defect is a particular case of dynamic defect (e.g., a
full open is a resistive open with an infinite value of the
resistance), and that all static cell-patterns for a given defect are
embedded in its whole set of dynamic cell-patterns. Indeed, a
dynamic defect requires a two-vector test pattern (V1V2) in
which the values of V1 and V2 have to be properly defined for
the defect to be detected. Conversely, only the value of V2 is
significant for a static defect to be detected by such pattern,
irrespective of the value taken by V1. When looking at Fig. 4,
one can see that P1={00} is embedded in P6={0F}, P11={F0}
and P12={FF}, and the same for P2, P3 and P4. Similarly, we
can see that static defect D2 is detectable by P1 and P4, and
hence by P6, P8, P10, P11, P12, and P15. So, by “compacting” a
training dataset as shown in Fig. 5, in which only dynamic cell-
patterns are considered, one can see that all meaningful
information is still contained in this set, while redundant (‘0’

and ‘1’ values in the first four columns of Fig. 4) or
insignificant (‘0.5’ values in the same columns for dynamic
defects) information is removed. More generally, such compact
format for training data makes so that only one type of feature
vector (dynamic) is used for both types of defect.

As the goal with training data is to provide a distinct feature
vector for each data (defect), it is important to be able to
distinguish between static and dynamic defects with such a
new format of the training dataset. Let us consider two defects
D1 and D11 where D1 is static and detectable by {00} and D11 is
dynamic and detectable by {F0} (note that {00} is the second
vector of {F0}). As can be seen in Fig. 5, these two defects can
easily be distinguished since their training data instances (or
feature vectors) are different. The consequence of using such a
new format for training data (and hence for new data as will be
shown later on) is not an improved accuracy or resolution, but
rather a simplified manipulation of feature vectors.
B. Generation of Instance Tables

As illustrated in Fig. 3, new data are generated after post-
processing of so-called instance tables describing the
behaviour (pass / fail) of each suspected cell in presence of a
real intra-cell defect (in one of the suspected cells) when a cell-
pattern is applied to the cell. The format of a dynamic instance
table looks like the one illustrated in Fig. 6 for a given two-
input NAND cell and two dynamic cell-patterns [16]. In this
example, the first part of the file gives information on how the
cell is linked to other cells in the circuit, while the second part
represents, respectively, the pattern number, the pattern status
(failing, passing), and the cell output Z with the associated fault
model for which exercising conditions are reported. These
conditions shown right below each cell-pattern represent the
stimulus arriving at the cell inputs during the shift phase
(before ‘-’) and applied during launch & capture cycles (after ‘-
’). For example, cell-pattern 1 consists in applying a falling
transition on input B, A being equal to static 1, and failing in
detecting a rising transition on Z.

Figure 6: Example of a dynamic instance table for a NAND cell

The way to generate instance tables in our proposed cell-
aware diagnosis flow is illustrated in Fig. 7. First, cell-aware
dynamic test patterns are applied to the failing CUD.
Remember that in our method, each test sequence is obtained
from a commercial CA test pattern generation tool that targets
intra-cell defects. Then, we obtain a datalog containing
information on the failing test patterns and corresponding
failing primary outputs. From this information and the circuit
netlist, we perform a logic diagnosis (by using the same
commercial tool used for test generation) that gives the list of
suspected cells. By using datalog information, we can finally
generate an instance table for each suspected cell.

Figure 7: Generation flow of instance tables

Note that an instance table is generated for a given cell if
and only if applying the dynamic test sequence to the CUD has
led to at least one ‘fail’ at the circuit outputs. In other words, an
instance table is generated for a given cell if the cell is a
suspected cell after test application and logic diagnosis.
C. Generation of New Data

New data are composed of various instances, each of them
being associated to one suspected cell in the CUD (customer
return) and representing a feature vector that characterizes the
real behavior of the cell during test application. From each
feature vector (new data instance), we can further extract one
or more defect candidates that have to be classified as good or
bad candidate with a corresponding probability to be the root
cause of failure. This classification is done by comparing the
new data instance with the training data of the corresponding
suspected cell, and identify those training data instances that
match (or not) with the new data instance.

Figure 8: Format of a new data instance for a two-input cell

The format of a new data instance, illustrated in Fig. 8, is
quite similar to that of the above training data instance, but has
a different meaning. In each instance, the value ‘1’ (resp. ‘0’) is
associated to a failing (resp. passing) cell-pattern Pi for a given
defect candidate, meaning that the candidate is indeed
detectable (resp. undetectable) by the cell-pattern Pi at the
output of the cell during test of the CUD, and hence can
(cannot) be the real defect. In such instance, the value ‘0.5’ is
associated to a cell-pattern for a given defect candidate when
this pattern cannot appear at the inputs of a suspected cell
during real test application with an ATE. The median value
‘0.5’ was chosen to avoid missing information in new data
instances while not biasing the features of these data.
D. Cell-Aware Diagnosis Flow

Figure 3 depicts the two main steps of the supervised
learning process used for CA defect diagnosis. We use a
Bayesian classification method for predicting the nature
(likelihood to be a good candidate) of each new data instance.
This choice comes from the results obtained in our previous
study after experimenting several learning algorithms and
observing their inference accuracies [16]. So, the first main
step of our CA diagnosis flow consists in generating a Naive
Bayes (NB) model and to train it by using the training dataset.
Training a model is done based on labeled training data and
then can be used to assign a pre-defined class label to new

objects. In this step, training data are used to incrementally
improve the model’s ability to make inference. The training
data is divided into mutually exclusive and equal subsets. For
each subset, the model is trained on the union of all the other
subsets. Once training is complete, the performance (accuracy)
of the model is evaluated by using a part of the dataset initially
set aside [18]. The second main step consists in implementing
the NB classifier by using a Gaussian distribution to model the
likelihood probability functions, and use this classifier to make
probabilistic prediction (or inference) when a new data
instance has to be evaluated.

An important preliminary step before the above two steps is
training data preparation, which is carried out in three phases:
Data Selection, Data Preprocessing, and Data Transformation.
It first consists of selecting the subset of all training data that
will be used to build the model and classify new data. Then, it
consists in putting all data together and randomize the ordering.
In our selection process, 70% to 90% of the available data were
randomly selected and this operation was repeated several
times to obtain training data with good randomness. Few other
manipulations are also done, such as grouping data by
considering equivalent defects or removing data instances of
undetectable defects. Then, it consists in splitting the data in
two parts. The first part is further used to train the model and is
made of the majority of the dataset randomly selected. The
second part is used for evaluating the trained model’s
performance. More details can be found in [16].
E. Extended Utilization of the Proposed Diagnosis Flow

Though the CA diagnosis flow has been proposed and
experienced for a given test protocol discussed in Section II, it
can also be used in many other scenarios existing in industry.
Let us briefly discuss two of them in the following.

A first common scenario is when more than one clock
scheme (typically basic scan and fast sequential) are used for a
given test sequence (targeting static and dynamic defects), thus
leading to a single instance table per suspected cells in which
information about failing and passing cell-patterns are listed
and used to create the corresponding single new data. In this
case, despite the existence of different description formats for
the exercising conditions of static and dynamic cell-patterns,
the proposed flow can be used to easily extract information and
create a “universal” new data for the suspected cell.

Another common scenario is when several test sequences
(typically one static and one dynamic applied at low and high
speed, respectively) are used for diagnosis, possibly generating
several instance tables per suspected cells. In [17], in case the
real defect is detected by both sequences, two new data are
extracted from the two instance tables: a Static New Data
(SND) and a Dynamic New Data (DND). From these data, we
need to use a complex (though efficient) algorithm with a
conflict identification protocol and specific rules to determine
the final new data for the suspected cell. Conversely, in the
flow proposed in this paper, such a final new data can be easily
obtained by using simple and straightforward intersection rules
between SND and DND. This is the consequence of using a
compact format for new data (and training data as well).

Note that all other scenarios listed in Section II are also
manageable by the proposed flow and data representation.

IV. EXPERIMENTAL RESULTS
Our CA diagnosis flow has been implemented in a Python

program and was experimented in two different ways. First, we
conducted experiments on a set of ITC’99 benchmark circuits.
Then, we considered a test chip from ST and performed a
simulated case study with a defect injection campaign to
corroborate the results achieved on the ITC’99 circuits.
A. Experiments on ITC’99 Circuits

We first conducted experiments on ITC’99 benchmark
circuits synthesized in a full scan manner using a 28 nm
FDSOI technology from ST. A commercial CA ATPG tool
was used to generate a dynamic CA test sequence targeting
maximum fault coverage for each circuit. For each circuit and
the corresponding test set, we simulated the behavior of the
ATE by performing a defect injection campaign (about 2000
injections per circuit) into a number of randomly selected cells
and collecting test information to build the tester data log. For
the defect injection campaign, we considered each transistor of
the selected cells and we targeted all possible static and
dynamic defects affecting that transistor. As several defects
have the same impact on the logic behavior of the cell, and
hence are logical-equivalent defects, they were grouped in
defect classes. We used a commercial logic diagnosis tool to
determine the list(s) of Suspected Cells (SC) after dynamic test
sequence application. The average number (#aSC) for each
circuit is listed in Table I, together with information about each
circuit: number of cells, scan flip-flops, dynamic test patterns,
and transition (including dynamic CA) test coverage in %. The
measured stuck-at test coverage of each dynamic CA test
sequence is also given in Table I (sixth column).

TABLE I. CIRCUIT FEATURES AND RESULTS OF LOGIC DIAGNOSIS
Circuit #Cells #SFF #dTP TrTC SaTC #aSC

b15 2465 416 2665 88.38 90.05 1.84
b17 7960 1314 4423 91.10 89.94 2.38
b18 3238 215 4436 93.46 95.56 2.31
b19 6337 430 5583 93.79 96.52 1.61
b20 6733 430 5460 93.76 96.45 1.57
b22 3218 215 4670 93.78 95.39 1.75

For generating training data, we used characterization data
provided by a commercial tool and ST technology libraries. For
generating new data instances, we performed post-processing
of instance tables obtained as seen in Fig. 7. From the training
data and the Gaussian NB model, we make predictions on new
data instances. Results obtained are a list of defect candidates
with the highest probability to be the root cause of failure.

Table II summarizes the results obtained on the biggest
ITC’99 benchmark circuits. The first part of the table is about
accuracy and gives, for each circuit, the percentage of cases in
which the injected defect was reported in the list of suspects
provided by the proposed CA diagnosis and the commercial
CA diagnosis tool, respectively. The commercial tool is non-
probabilistic and provides the list of all suspects obtained after
CA diagnosis with a ranking and a matching score. The same
characterization data and test protocol have been used in
both cases. These results show that the real (injected) defect is
always identified by the proposed diagnosis flow. Sometimes,
it is the only candidate and has a probability of 1 to be the best
candidate. Sometimes, it is reported with some other candidates
identified in one or more suspected cells. Conversely, we can

observe that the commercial tool is not always able to report
the injected defect as candidate. This proves the superiority of
our proposed framework in terms of accuracy (always 100%),
which is not the case of the commercial tool that sometimes
provides inaccurate results (at least for 5 out of 6 circuits).

The reason of these misdiagnosis cases with the
commercial tool can be explained as follows. In such a tool, the
logic diagnosis phase is embedded in the whole CA diagnosis
flow, and no intermediate result about logic diagnosis can be
observed (conversely to what is done in our learning-based
flow). In such configuration, it may happen that the cell in
which the real defect has been injected is found with a much
lower probability to be the source of failure compared to the
other identified suspected cells. In such a case, the tool may
possibly ignore this cell in the next phases of the process, and
finally arrive at a situation where either wrong defects or no
defect will be identified as suspected candidates. Being unable
to go deeper inside the functioning of the commercial tool, this
is the most likely explanation about such cases of misdiagnosis.

The second part of Table II is about resolution and gives,
for each circuit and considering all injection campaigns, the
average number of suspects reported by the proposed method
and the commercial tool, respectively. As can be seen, the
resolution achieved with our method is most of the time better.
In only two cases (b18 and b22), the average resolution is
slightly better with the commercial tool, but these results are
biased, as the accuracy in both cases is less than 100%. So,
overall, these results confirm the superiority of our approach.

TABLE II. OVERALL CELL-AWARE DIAGNOSIS RESULTS

Circuit Accuracy Resolution
Proposed Com. Tool Proposed Com. Tool

b15 100 % 99.75 % 3.37 3.79
b17 100 % 100 % 5.96 11.14
b18 100 % 97.64 % 6.46 5.73
b19 100 % 97.96 % 2.23 2.85
b20 100 % 99.11 % 2.64 2.94
b22 100 % 99.12 % 5.40 4.82

For our experiments, we used a publicly available machine
learning software package called Scikit-learn, which is an
integrated development environment with a suite of ML tools
[19]. The single defect assumption was considered, though the
proposed framework is able to manage situations where
multiple defects have occurred, provided that those defects are
not in the same cell. This feature comes from the fact that our
flow considers all suspected cells one at a time, and then
incrementally constructs a list of suspected defects identified in
each of these cells. Finally, in-field failure mechanisms related
to premature aging, such as NBTI or HCI, essentially lead to
resistive opens and shorts. These mechanisms, that need to be
considered in the context of customer returns, can be
appropriately taken into account in our CA diagnosis flow.

The CPU time taken by the proposed flow to provide a list
of good defect candidates is always very low (few seconds) and
does not depend on the circuit size. Only the number of
suspected cells obtained after logic diagnosis may have an
impact on the CPU time (for the generation of instances tables)
but in a very slight manner (as this number is always very low).
In fact, the most time-consuming part (few hours) of the flow is
the cell library characterization phase, but it is done only once
and is not correlated with the circuit size.

B. Comparison with [16]
In order to confirm the efficacy of the proposed diagnosis

flow, we have compared the above results with those reported
in Section VI.B of [16]. Experiments in [16] are different as
only dynamic defect injections were done, while both static and
dynamic defects were injected during experiments in the
current work. Moreover, about 600 random injections per
circuit were done in [16] whereas 2000 defect injections have
been carried out in the new experiments. This explains the
different values of accuracy and resolution between the two
papers. However, despite these differences, we can observe the
same overall tendency when compared to a commercial CA
diagnosis tool, i.e., a diagnosis accuracy of always 100% and a
resolution comparable or even better with our flows.
C. Simulated Test Case Study

We also conducted experiments on a silicon test chip
developed by STMicroelectronics and designed with a 28 nm
FDSOI technology. The test chip is only composed of digital
and memory blocks, and one PLL. The digital blocks are made
of 1.385.864 cells. Other features are given in Table III.

TABLE III. MAIN FEATURES OF THE SILICON TEST CHIP
#cells #PIs #POs #SFF #dTP TrTC SaTC
1.3M 91 33 88K 1238 99.93 95.73

We performed a simulated case study with an extensive
defect injection campaign to corroborate the results achieved
on the ITC’99 circuits. We randomly and successively injected
4800 defects (2300 static plus 2500 dynamic) in the circuit
description. As only realistic defects were considered during
the library characterization process, only realistic defects were
considered during this defect injection campaign. All defects
were injected in a single full scan digital block composed of
203K cells, and tested with a dynamic CA test sequence
composed of 1238 test patterns and achieving a transition +
dynamic CA test coverage of 99.93 %. The measured stuck-at
test coverage of this test sequence was 95.73%.

Results obtained after executing our learning-based CA
diagnosis flow and averaged over all defect injections have
shown an accuracy of 100% (the injected defect was always
reported in the list of suspects). The average resolution
obtained for the defect injection experiments is of 3.15. The
resolution ranges between 1 up to 7, and in most of the cases,
the number of suspects was less than 4.

V. DISCUSSION AND FUTURE WORK
The above results show the appropriateness of a learning-

based method to solve our problem, despite the small size of
the training dataset used (only one sample for one defect class).
This will be even truer when multiple defect sizes and test
conditions will be used. In these cases, multiple samples (one
for each defect size or defect size range, one for each PVT test
condition) will be associated to a given defect class, simply
because the behavior of the defect will differ when applying
the same set of test patterns. In terms of timing and complexity,
this will just slightly impact our method, since training dataset
is extracted from characterized cell libraries that are generated
anyway for test and diagnosis purpose. So, even with large cell
libraries with a huge number of defects to be simulated (e.g.,
631 cells in a library, each with 4 to 6 inputs, 951 shorts and

749 opens on average – example of an ST technology library),
our flow will still be easily and time-efficiently applicable.

In our experiments, all injected defects for evaluation
purpose were present in the training dataset. However, in most
of real silicon cases, especially for customer returns, actual
defect behavior may not perfectly match the fault models that
are used to train the NB classifier. Further work will be
dedicated to see how well the proposed flow works in this case.
Another perspective consists in exploiting the ranking of
suspected cells usually provided after logic diagnosis by
commercial tools, which was not done in this work. By this
way, our flow will provide a similar ranking among defect
candidates, thus giving additional useful information for PFA.

ACKNOWLEDGEMENTS
This work has been funded by the French National Research Agency (ANR)
under the framework of the ANR-17-CE24-0014-01 EDITSoC (Electrical
Diagnosis for IoT SoCs in automotive) project.

REFERENCES
[1] S. Pateras, “IC Test Solutions for the Automotive Market,” Mentor

Graphics, White Paper, May 2017.
[2] F. Hapke, et. al., “Cell-Aware Test,” IEEE Transactions on Computer-

Aided Design, vol. 33, no. 9, pp. 1396 - 1409, 2014.
[3] A. Ladhar, M. Masmoudi, and L. Bouzaida, “Efficient and Accurate

�Method for Intra-Gate Defect Diagnoses in Nanometer Technology,” in
Proc. IEEE/ACM Design Automation and Test in Europe, 2009.

[4] Z. Sun, A. Bosio, L. Dilillo, P. Girard, A. Virazel, and E. Auvray,
“Effect-Cause Intra-cell Diagnosis at Transistor Level,” in Proc. IEEE
International Symposium on Quality Electronic Design, 2013.

[5] T.P. Ho, E. Faehn, A. Virazel, A. Bosio, and P. Girard, “An Effective
Intra-Cell Diagnosis Flow for Industrial SRAMs,” in Proc. IEEE
International Test Conference, 2018

[6] P. Maxwell, F. Hapke, and H. Tang, “Cell-Aware Diagnosis: Defective
Inmates Exposed in their Cells,” in Proc. IEEE European Test
Symposium, 2016.

[7] J. Tikkanen, N. Sumikawa, Li-C. Wang, and M.S. Abadir, “Multivariate
Outlier Modeling for Capturing Customer Returns – How Simple It Can
Be,” in Proc. IEEE On-Line Test Symposium, 2014.

[8] Y. Benabboud, A. Bosio, L. Dilillo, P. Girard, A. Virazel, and O.
Riewer, “A Comprehensive System-on-Chip Logic Diagnosis,” in Proc.
IEEE Asian Test Symposium, 2010.

[9] Li-C. Wang, “Data Learning Based Diagnosis,” in Proc. ACM/IEEE
Asia and South Pacific Design Automation Conference, 2010.

[10] L. M. Huisman, “Diagnosing Arbitrary Defects in Logic Designs Using
the Single Location At a Time (SLAT),” IEEE Transactions on
Computer-Aided Design, vol. 23, no. 1, pp. 91, 2004.

[11] S. Holst, H-J. Wunderlich, “Adaptative Debug and Diagnosis Without
Fault Dictionaries,” in Proc. IEEE European Test Symposium, 2007.

[12] Y. Xue, X. Li, R. D. Blanton, and C. Lim, “Diagnosis Resolution
Improvement through Learning-Guided Physical Failure Analysis,” in
Proc. IEEE International Test Conference, 2016.

[13] Y. Huang, W. Yang, and W. Cheng, “Advancements in Diagnosis
Driven Yield Analysis: A Survey of State-of-the-Art Scan Diagnosis and
Yield Analysis Technologies,” in Proc. IEEE Euro. Test Symp., 2015.

[14] R.J. Tikkanen, S. Siatkowski, Li-C. Wang, and M.S. Abadir, “Yield
Optimization Using Advanced Statistical Correlation Methods,” in Proc.
IEEE International Test Conference, 2014.

[15] Y. Xue, O. Poku, X. Li, and R. D. Blanton, “PADRE: Physically- Aware
Diagnostic Resolution Enhancement,” in Proc. IEEE International Test
Conference, 2013.

[16] S. Mhamdi, P. Girard, A. Virazel, A. Bosio, E. Faehn, and A. Ladhar,
“Cell-Aware Defect Diagnosis of Customer Returns Based on
Supervised Learning,” IEEE Transactions on Device Material and
Reliability, 2020. DOI: 10.1109/TDMR.2020.2992482

[17] S. Mhamdi, P. Girard, A. Virazel, A. Bosio, and A. Ladhar, “A
Learning-Based Cell-Aware Diagnosis Flow for Industrial Customer
Returns,” in Proc. IEEE International Test Conference, 2020.

[18] S.B. Kotsiantis, “Supervised Machine Learning: A Review of
Classification Techniques,” Informatica, vol. 31, no. 3, 2007.

[19] http://scikit-learn.org/stable/user_guide.html

