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Abstract—This paper presents a new cell-aware diagnosis flow 
that can be used to address a specific scenario (test protocol) one 
may encounter during diagnosis of customer returns. In this flow, 
we use a Bayesian classification method to precisely identify 
defect candidates. Experiments done on benchmark circuits as 
well as on a test chip from STMicroelectronics have proven the 
efficacy of our flow in terms of diagnosis accuracy and resolution. 
Keywords—Diagnosis, Customer Returns, Machine Learning 

I. INTRODUCTION 
Digital ICs are designed on the basis of a library of standard 
cells used to describe the logic behavior and physical layout of 
the lowest level component in a netlist. With the 
semiconductor industry that continuously pushes for higher 
density, it turns out that increasingly more defects occur 
within the cell structures. For the more advanced technology 
nodes, some estimates put the number of defects found within 
cells to represent almost half of all circuit defects [1]. 
Cell-aware test is a test generation approach that explicitly 
targets cell-internal defects [2]. Using cell-aware test today is 
the only way to achieve the required low defective-parts-per-
million rates for critical applications. Similarly, Cell-Aware 
(CA) diagnosis is an approach used to pinpoint the possible 
defect candidates within the failing cell(s) of a defective IC [3-
6]. Results of CA diagnosis are used to guide Physical Failure 
Analysis (PFA), which is a time-consuming and destructive 
process for physically exposing the defect in order to 
characterize the failure mechanism. The outcome of this PFA 
usually leads to modify the design or manufacturing process to 
ensure no similar occurrence in the future. 

Customer returns are defective ICs that passed all 
functional and parametric tests after manufacturing but failed 
in the field. They are mostly due to latent defects [7]. This is 
especially true for, e.g., automotive products where a very 
comprehensive test flow has been applied to ensure zero test 
escape. So, the first step when a customer return occurs is to 
reproduce the failure mechanism with any original test and 
appropriate conditions. After that, a diagnosis program made of 
several routines is used to identify, step by step, the failing part 
and, finally, the suspected defects. Each routine corresponds to 
the application of a diagnosis algorithm at a given hierarchy 
level (system, core and cell levels) [8-11].  

With the density level of today’s ICs, a high resolution 
(very few or one defect candidate) is not always reachable by 
existing CA diagnosis tools based on conventional methods 
(effect-cause / cause-effect). As a result, many efforts have 

been dedicated recently for improving diagnosis resolution by 
using machine learning techniques [12]–[15]. Though efficient, 
these techniques address volume diagnosis for yield ramp-up, 
which is a different problem than fault diagnosis of customer 
returns. During volume diagnosis, a lot of data collected during 
manufacturing test and subsequent diagnosis phases are 
available, such as, e.g., hundreds of similar failed chips with 
candidates correctly labeled (good, bad). It is therefore possible 
to use these data for failure diagnosis of a new failed chip. 
Conversely, during fault diagnosis of a customer return, only 
one failed chip is investigated, with no information about the 
defective behavior of some other similar chips used in the same 
conditions (application, environment, workload). For this 
reason, learning-guided approaches existing for volume 
diagnosis cannot be reused for diagnosis of customer returns. 

In [16], we proposed a learning-guided framework for CA 
diagnosis of mission mode failures in customer returns. Several 
supervised learning algorithms were considered in that work 
for predicting the nature (likelihood to be a good candidate) of 
each new data instance (defect) that has to be evaluated. Two 
distinct processes were developed to diagnose static and 
dynamic defects separately, each one assuming a dedicated 
testing scheme, i.e., basic scan and fast sequential, for static 
and dynamic CA test sequences application respectively. The 
effectiveness of the proposed framework was demonstrated 
through comparison with a commercial tool. 

In an attempt to deal concurrently with all types of defects 
that may occur in customer returns, we proposed a new CA 
diagnosis flow in [17]. We assumed a test protocol in which 
two test sequences (static and dynamic) are used successively, 
each one assuming a dedicated testing scheme, i.e., basic scan 
and fast sequential. Constructing such a comprehensive flow 
imposed setting up a new framework with specific rules to 
achieve a high level of efficacy in terms of diagnosis accuracy 
and resolution. The proposed method was based on a Gaussian 
Naive Bayes trained model to predict good defect candidates. 
The flow was experimented and validated on industrial circuits. 

In this paper, we propose a new version of the CA 
diagnosis flow in which both static and dynamic defects can be 
diagnosed owing to a single dynamic test sequence applied at-
speed. Such a flow can be used to address a missing scenario in 
our former proposals [16-17]. As only dynamic instance tables 
are manipulated in this work, the representation of training and 
new data is simplified (a single type of feature vector is used) 
without loosing information and decreasing the quality of the 
training and inference phases. Experimental results have shown 
the benefit of using such a new CA diagnosis flow. 
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The rest of this paper is organized as follows. Section II 
discusses the test protocol considered in this work. Section III 
details the new CA diagnosis flow. Section IV shows results 
obtained on benchmark circuits and on a test chip developed by 
STMicroelectronics. Section VI concludes the paper. 

II. CONSIDERED TEST PROTOCOL FOR DIAGNOSIS 
During diagnosis of customer returns in industry, several 

scenarios with different test protocols may occur. The most 
common is when the test sequences used during manufacturing 
test are available and can be used again for diagnosis purpose 
so as to mimic the process used initially during manufacturing 
test. This is the scenario assumed in our previous work [17], in 
which we considered two successive test sequences used to 
performed customer return diagnosis. First, a static CA test 
sequence generated by a commercial cell-aware ATPG tool is 
applied to the Circuit Under Diagnosis (CUD). This sequence 
targets all cell-level stuck-at faults plus cell-internal static 
defects, considering that these defects are not covered by a 
standard stuck-at fault ATPG. A standard (low speed) scan-
based testing scheme is used to this purpose. Next, another 
option of the cell-aware ATPG is used to generate a dynamic 
CA test sequence that targets cell-level transition faults plus 
intra-cell dynamic defects not covered by a standard transition 
fault ATPG. In this case, an at-speed Launch-On-Capture 
(LOC) scheme (also called fast sequential) is used during test 
application. This scenario (test protocol) is sketched in Fig. 1. 

 
Figure 1: Test scenarios assumed in [16-17] and the proposed work 

In [16], another scenario was assumed, in which two test 
sequences (static and dynamic) are also used to diagnose static 
and dynamic defects, but this time independently, and each one 
assuming a dedicated testing scheme, i.e., basic scan and fast 
sequential. This scenario is also sketched in Fig. 1. 

 
Figure 2: Example of a multi-run industrial ATPG flow  

However, some other scenarios are possible, in which only 
one test sequence is available for customer return diagnosis. 
This test sequence can be composed of i) static test patterns 
applied at low speed, ii) dynamic test patterns applied at low 
speed, iii) or dynamic test patterns applied at high speed. Such 
a test sequence can be obtained from the various runs of an 
industrial ATPG flow as the one illustrated in Fig. 2. 

In this paper, we consider the scenario in which only one 
test sequence composed of dynamic cell-aware test patterns 

applied at high speed is available, and has failed during test 
of the customer return. According to the flow depicted in Fig. 
2, this scenario may happen when such a test sequence has 
been generated to target transition faults plus intra-cell 
dynamic defects, and appears to also cover the required 
percentage of stuck-at faults plus intra-cell static defects (or, 
more generally, satisfies the test coverage specifications) after 
the first run of ATPG in Fig. 2. In this case, note that only one 
(dynamic) datalog is generated after test application and can 
further be used for diagnosis purpose. Nevertheless, both static 
and dynamic defects are taken into account in this scenario. 
Again, the target of this scenario is sketched in Fig. 1. 

Static defects are defects that require one-vector test patterns 
to be detected. Dynamic defects are defects that require two-
vector test patterns to be detected. These defects can be non-
resistive defects modeled by stuck-open faults. More generally, 
these defects are mainly due to resistive opens or shorts that 
prevent signals to propagate within a circuit at the normal 
speed, and hence lead to IC failure. In this case, they are 
modeled by (quantitative) delay faults or (qualitative) transition 
faults (also called gross delay faults). With the advent of deep 
submicron technologies, the occurrence of dynamic defects is 
constantly increasing, not only during the manufacturing 
process of ICs, but also during the lifetime of the circuit where 
latent or wear-out defects may appear due to various stress 
conditions (operational, environmental, etc.). 

III. PROPOSED CELL-AWARE DIAGNOSIS FLOW 
Figure 3 is a generic view of the learning and prediction 

processes utilized in this work. Both approaches are based on 
supervised learning that takes a known set of input data and 
known responses (labeled data) used as training data, trains a 
model, and then implement a classifier based on this model to 
make predictions (inferences) for the response to new data. 

 
Figure 3: Generic view of the cell-aware diagnosis flow 

In the next subsections, we detail the various steps of the 
proposed cell-aware diagnosis flow able to deal with all types 
of defects (i.e., static and dynamic) that may occur in customer 
returns. Again, only one test sequence composed of dynamic 
cell-aware test patterns applied at high speed is available, and 
has failed during test of the customer return. 
A. Generation of Training Data 

Training data are generated for each type of cell existing in 
the Circuit Under Diagnosis (CUD) during an off-line 
characterization process done only once for a given cell library. 
These data are extracted from cell-aware views provided by a 

 



commercial CAD tool that contain all characterization results 
for a given cell type. These results are provided in the form of a 
fault dictionary containing, for each defect within a cell, the 
cell input patterns detecting (or not) this defect. An example of 
training data as used in [16-17] and containing four instances 
for an arbitrary two-input cell is shown in Fig. 4. Each instance 
is associated to a static defect (D1, D2) or a dynamic defect 
(D11, D12). A 1 (0) indicates that defect Di is detectable (not 
detectable) at the output of the cell when the cell-level test 
pattern Pj is applied at the inputs of the cell. Cell-level test 
patterns (or cell-patterns) are static (one input vector - P1 to P4 
in Fig. 4) or dynamic (two input vectors - P5 to P16 in Fig. 4 in 
which R (F) indicates a rising (falling) transition at the cell 
input). For an n-input cell, there exists 2n static cell-patterns 
and 2n.(2n–1) dynamic cell-patterns. 

 
Figure 4: Example of training data for all defect types in a two-input cell 
Dynamic defects can be detected not only by dynamic 

patterns, but also by static patterns applied using a basic scan 
testing scheme, provided that i) at least one transition has been 
generated at the cell inputs between the next-to-last scan shift 
cycle and the launch cycle, and ii) the delay induced by the 
defect is large enough to be detected (these are the detection 
conditions of a dynamic defect modeled by a stuck-open or a 
gross delay fault). For this reason, the value ‘0.5’ is assigned to 
each dynamic defect (D11, D12) for all related static cell-
patterns, meaning that such a defect is detectable or not 
depending on whether or not the above conditions are satisfied. 

 
Figure 5: New format of training data for all defect types in a two-input cell 

As only dynamic instance tables are manipulated in this 
work, the representation of training data as used in [16-17] can 
be simplified without loosing information and decreasing the 
quality of the training phase. This comes from the observation 
that a static defect is a particular case of dynamic defect (e.g., a 
full open is a resistive open with an infinite value of the 
resistance), and that all static cell-patterns for a given defect are 
embedded in its whole set of dynamic cell-patterns. Indeed, a 
dynamic defect requires a two-vector test pattern (V1V2) in 
which the values of V1 and V2 have to be properly defined for 
the defect to be detected. Conversely, only the value of V2 is 
significant for a static defect to be detected by such pattern, 
irrespective of the value taken by V1. When looking at Fig. 4, 
one can see that P1={00} is embedded in P6={0F}, P11={F0} 
and P12={FF}, and the same for P2, P3 and P4. Similarly, we 
can see that static defect D2 is detectable by P1 and P4, and 
hence by P6, P8, P10, P11, P12, and P15. So, by “compacting” a 
training dataset as shown in Fig. 5, in which only dynamic cell-
patterns are considered, one can see that all meaningful 
information is still contained in this set, while redundant (‘0’ 

and ‘1’ values in the first four columns of Fig. 4) or 
insignificant (‘0.5’ values in the same columns for dynamic 
defects) information is removed. More generally, such compact 
format for training data makes so that only one type of feature 
vector (dynamic) is used for both types of defect. 

As the goal with training data is to provide a distinct feature 
vector for each data (defect), it is important to be able to 
distinguish between static and dynamic defects with such a 
new format of the training dataset. Let us consider two defects 
D1 and D11 where D1 is static and detectable by {00} and D11 is 
dynamic and detectable by {F0} (note that {00} is the second 
vector of {F0}). As can be seen in Fig. 5, these two defects can 
easily be distinguished since their training data instances (or 
feature vectors) are different. The consequence of using such a 
new format for training data (and hence for new data as will be 
shown later on) is not an improved accuracy or resolution, but 
rather a simplified manipulation of feature vectors. 
B. Generation of Instance Tables 

As illustrated in Fig. 3, new data are generated after post-
processing of so-called instance tables describing the 
behaviour (pass / fail) of each suspected cell in presence of a 
real intra-cell defect (in one of the suspected cells) when a cell-
pattern is applied to the cell. The format of a dynamic instance 
table looks like the one illustrated in Fig. 6 for a given two-
input NAND cell and two dynamic cell-patterns [16]. In this 
example, the first part of the file gives information on how the 
cell is linked to other cells in the circuit, while the second part 
represents, respectively, the pattern number, the pattern status 
(failing, passing), and the cell output Z with the associated fault 
model for which exercising conditions are reported. These 
conditions shown right below each cell-pattern represent the 
stimulus arriving at the cell inputs during the shift phase 
(before ‘-’) and applied during launch & capture cycles (after ‘-
’). For example, cell-pattern 1 consists in applying a falling 
transition on input B, A being equal to static 1, and failing in 
detecting a rising transition on Z. 

 
Figure 6: Example of a dynamic instance table for a NAND cell 

The way to generate instance tables in our proposed cell-
aware diagnosis flow is illustrated in Fig. 7. First, cell-aware 
dynamic test patterns are applied to the failing CUD. 
Remember that in our method, each test sequence is obtained 
from a commercial CA test pattern generation tool that targets 
intra-cell defects. Then, we obtain a datalog containing 
information on the failing test patterns and corresponding 
failing primary outputs. From this information and the circuit 
netlist, we perform a logic diagnosis (by using the same 
commercial tool used for test generation) that gives the list of 
suspected cells. By using datalog information, we can finally 
generate an instance table for each suspected cell. 

 



 
Figure 7: Generation flow of instance tables 

Note that an instance table is generated for a given cell if 
and only if applying the dynamic test sequence to the CUD has 
led to at least one ‘fail’ at the circuit outputs. In other words, an 
instance table is generated for a given cell if the cell is a 
suspected cell after test application and logic diagnosis. 
C. Generation of New Data 

New data are composed of various instances, each of them 
being associated to one suspected cell in the CUD (customer 
return) and representing a feature vector that characterizes the 
real behavior of the cell during test application. From each 
feature vector (new data instance), we can further extract one 
or more defect candidates that have to be classified as good or 
bad candidate with a corresponding probability to be the root 
cause of failure. This classification is done by comparing the 
new data instance with the training data of the corresponding 
suspected cell, and identify those training data instances that 
match (or not) with the new data instance. 

 
Figure 8: Format of a new data instance for a two-input cell 

The format of a new data instance, illustrated in Fig. 8, is 
quite similar to that of the above training data instance, but has 
a different meaning. In each instance, the value ‘1’ (resp. ‘0’) is 
associated to a failing (resp. passing) cell-pattern Pi for a given 
defect candidate, meaning that the candidate is indeed 
detectable (resp. undetectable) by the cell-pattern Pi at the 
output of the cell during test of the CUD, and hence can 
(cannot) be the real defect. In such instance, the value ‘0.5’ is 
associated to a cell-pattern for a given defect candidate when 
this pattern cannot appear at the inputs of a suspected cell 
during real test application with an ATE. The median value 
‘0.5’ was chosen to avoid missing information in new data 
instances while not biasing the features of these data. 
D. Cell-Aware Diagnosis Flow 

Figure 3 depicts the two main steps of the supervised 
learning process used for CA defect diagnosis. We use a 
Bayesian classification method for predicting the nature 
(likelihood to be a good candidate) of each new data instance. 
This choice comes from the results obtained in our previous 
study after experimenting several learning algorithms and 
observing their inference accuracies [16]. So, the first main 
step of our CA diagnosis flow consists in generating a Naive 
Bayes (NB) model and to train it by using the training dataset. 
Training a model is done based on labeled training data and 
then can be used to assign a pre-defined class label to new 

objects. In this step, training data are used to incrementally 
improve the model’s ability to make inference. The training 
data is divided into mutually exclusive and equal subsets. For 
each subset, the model is trained on the union of all the other 
subsets. Once training is complete, the performance (accuracy) 
of the model is evaluated by using a part of the dataset initially 
set aside [18]. The second main step consists in implementing 
the NB classifier by using a Gaussian distribution to model the 
likelihood probability functions, and use this classifier to make 
probabilistic prediction (or inference) when a new data 
instance has to be evaluated. 

An important preliminary step before the above two steps is 
training data preparation, which is carried out in three phases: 
Data Selection, Data Preprocessing, and Data Transformation. 
It first consists of selecting the subset of all training data that 
will be used to build the model and classify new data. Then, it 
consists in putting all data together and randomize the ordering. 
In our selection process, 70% to 90% of the available data were 
randomly selected and this operation was repeated several 
times to obtain training data with good randomness. Few other 
manipulations are also done, such as grouping data by 
considering equivalent defects or removing data instances of 
undetectable defects. Then, it consists in splitting the data in 
two parts. The first part is further used to train the model and is 
made of the majority of the dataset randomly selected. The 
second part is used for evaluating the trained model’s 
performance. More details can be found in [16]. 
E. Extended Utilization of the Proposed Diagnosis Flow 

Though the CA diagnosis flow has been proposed and 
experienced for a given test protocol discussed in Section II, it 
can also be used in many other scenarios existing in industry. 
Let us briefly discuss two of them in the following. 

A first common scenario is when more than one clock 
scheme (typically basic scan and fast sequential) are used for a 
given test sequence (targeting static and dynamic defects), thus 
leading to a single instance table per suspected cells in which 
information about failing and passing cell-patterns are listed 
and used to create the corresponding single new data. In this 
case, despite the existence of different description formats for 
the exercising conditions of static and dynamic cell-patterns, 
the proposed flow can be used to easily extract information and 
create a “universal” new data for the suspected cell. 

Another common scenario is when several test sequences 
(typically one static and one dynamic applied at low and high 
speed, respectively) are used for diagnosis, possibly generating 
several instance tables per suspected cells. In [17], in case the 
real defect is detected by both sequences, two new data are 
extracted from the two instance tables: a Static New Data 
(SND) and a Dynamic New Data (DND).  From these data, we 
need to use a complex (though efficient) algorithm with a 
conflict identification protocol and specific rules to determine 
the final new data for the suspected cell. Conversely, in the 
flow proposed in this paper, such a final new data can be easily 
obtained by using simple and straightforward intersection rules 
between SND and DND. This is the consequence of using a 
compact format for new data (and training data as well). 

Note that all other scenarios listed in Section II are also 
manageable by the proposed flow and data representation. 

 



IV. EXPERIMENTAL RESULTS 
Our CA diagnosis flow has been implemented in a Python 

program and was experimented in two different ways. First, we 
conducted experiments on a set of ITC’99 benchmark circuits. 
Then, we considered a test chip from ST and performed a 
simulated case study with a defect injection campaign to 
corroborate the results achieved on the ITC’99 circuits. 
A. Experiments on ITC’99 Circuits 

We first conducted experiments on ITC’99 benchmark 
circuits synthesized in a full scan manner using a 28 nm 
FDSOI technology from ST. A commercial CA ATPG tool 
was used to generate a dynamic CA test sequence targeting 
maximum fault coverage for each circuit. For each circuit and 
the corresponding test set, we simulated the behavior of the 
ATE by performing a defect injection campaign (about 2000 
injections per circuit) into a number of randomly selected cells 
and collecting test information to build the tester data log. For 
the defect injection campaign, we considered each transistor of 
the selected cells and we targeted all possible static and 
dynamic defects affecting that transistor. As several defects 
have the same impact on the logic behavior of the cell, and 
hence are logical-equivalent defects, they were grouped in 
defect classes. We used a commercial logic diagnosis tool to 
determine the list(s) of Suspected Cells (SC) after dynamic test 
sequence application. The average number (#aSC) for each 
circuit is listed in Table I, together with information about each 
circuit: number of cells, scan flip-flops, dynamic test patterns, 
and transition (including dynamic CA) test coverage in %. The 
measured stuck-at test coverage of each dynamic CA test 
sequence is also given in Table I (sixth column). 

TABLE I.  CIRCUIT FEATURES AND RESULTS OF LOGIC DIAGNOSIS 
Circuit #Cells #SFF #dTP TrTC SaTC #aSC 

b15 2465 416 2665 88.38 90.05 1.84 
b17 7960 1314 4423 91.10 89.94 2.38 
b18 3238 215 4436 93.46 95.56 2.31 
b19 6337 430 5583 93.79 96.52 1.61 
b20 6733 430 5460 93.76 96.45 1.57 
b22 3218 215 4670 93.78 95.39 1.75 

 

For generating training data, we used characterization data 
provided by a commercial tool and ST technology libraries. For 
generating new data instances, we performed post-processing 
of instance tables obtained as seen in Fig. 7. From the training 
data and the Gaussian NB model, we make predictions on new 
data instances. Results obtained are a list of defect candidates 
with the highest probability to be the root cause of failure. 

Table II summarizes the results obtained on the biggest 
ITC’99 benchmark circuits. The first part of the table is about 
accuracy and gives, for each circuit, the percentage of cases in 
which the injected defect was reported in the list of suspects 
provided by the proposed CA diagnosis and the commercial 
CA diagnosis tool, respectively. The commercial tool is non-
probabilistic and provides the list of all suspects obtained after 
CA diagnosis with a ranking and a matching score. The same 
characterization data and test protocol have been used in 
both cases. These results show that the real (injected) defect is 
always identified by the proposed diagnosis flow. Sometimes, 
it is the only candidate and has a probability of 1 to be the best 
candidate. Sometimes, it is reported with some other candidates 
identified in one or more suspected cells. Conversely, we can 

observe that the commercial tool is not always able to report 
the injected defect as candidate. This proves the superiority of 
our proposed framework in terms of accuracy (always 100%), 
which is not the case of the commercial tool that sometimes 
provides inaccurate results (at least for 5 out of 6 circuits). 

The reason of these misdiagnosis cases with the 
commercial tool can be explained as follows. In such a tool, the 
logic diagnosis phase is embedded in the whole CA diagnosis 
flow, and no intermediate result about logic diagnosis can be 
observed (conversely to what is done in our learning-based 
flow). In such configuration, it may happen that the cell in 
which the real defect has been injected is found with a much 
lower probability to be the source of failure compared to the 
other identified suspected cells. In such a case, the tool may 
possibly ignore this cell in the next phases of the process, and 
finally arrive at a situation where either wrong defects or no 
defect will be identified as suspected candidates. Being unable 
to go deeper inside the functioning of the commercial tool, this 
is the most likely explanation about such cases of misdiagnosis. 

The second part of Table II is about resolution and gives, 
for each circuit and considering all injection campaigns, the 
average number of suspects reported by the proposed method 
and the commercial tool, respectively. As can be seen, the 
resolution achieved with our method is most of the time better. 
In only two cases (b18 and b22), the average resolution is 
slightly better with the commercial tool, but these results are 
biased, as the accuracy in both cases is less than 100%. So, 
overall, these results confirm the superiority of our approach. 

TABLE II.  OVERALL CELL-AWARE DIAGNOSIS RESULTS 

Circuit Accuracy Resolution 
Proposed Com. Tool Proposed Com. Tool 

b15 100 % 99.75 % 3.37 3.79 
b17 100 % 100 % 5.96 11.14 
b18 100 % 97.64 % 6.46 5.73 
b19 100 % 97.96 % 2.23 2.85 
b20 100 % 99.11 % 2.64 2.94 
b22 100 % 99.12 % 5.40 4.82 

 

For our experiments, we used a publicly available machine 
learning software package called Scikit-learn, which is an 
integrated development environment with a suite of ML tools 
[19]. The single defect assumption was considered, though the 
proposed framework is able to manage situations where 
multiple defects have occurred, provided that those defects are 
not in the same cell. This feature comes from the fact that our 
flow considers all suspected cells one at a time, and then 
incrementally constructs a list of suspected defects identified in 
each of these cells. Finally, in-field failure mechanisms related 
to premature aging, such as NBTI or HCI, essentially lead to 
resistive opens and shorts. These mechanisms, that need to be 
considered in the context of customer returns, can be 
appropriately taken into account in our CA diagnosis flow. 

The CPU time taken by the proposed flow to provide a list 
of good defect candidates is always very low (few seconds) and 
does not depend on the circuit size. Only the number of 
suspected cells obtained after logic diagnosis may have an 
impact on the CPU time (for the generation of instances tables) 
but in a very slight manner (as this number is always very low). 
In fact, the most time-consuming part (few hours) of the flow is 
the cell library characterization phase, but it is done only once 
and is not correlated with the circuit size. 

 



B. Comparison with [16] 
In order to confirm the efficacy of the proposed diagnosis 

flow, we have compared the above results with those reported 
in Section VI.B of [16]. Experiments in [16] are different as 
only dynamic defect injections were done, while both static and 
dynamic defects were injected during experiments in the 
current work. Moreover, about 600 random injections per 
circuit were done in [16] whereas 2000 defect injections have 
been carried out in the new experiments. This explains the 
different values of accuracy and resolution between the two 
papers. However, despite these differences, we can observe the 
same overall tendency when compared to a commercial CA 
diagnosis tool, i.e., a diagnosis accuracy of always 100% and a 
resolution comparable or even better with our flows. 
C. Simulated Test Case Study 

We also conducted experiments on a silicon test chip 
developed by STMicroelectronics and designed with a 28 nm 
FDSOI technology. The test chip is only composed of digital 
and memory blocks, and one PLL. The digital blocks are made 
of 1.385.864 cells. Other features are given in Table III. 

TABLE III.  MAIN FEATURES OF THE SILICON TEST CHIP 
#cells #PIs #POs #SFF #dTP TrTC SaTC 
1.3M 91 33 88K 1238 99.93 95.73 

We performed a simulated case study with an extensive 
defect injection campaign to corroborate the results achieved 
on the ITC’99 circuits. We randomly and successively injected 
4800 defects (2300 static plus 2500 dynamic) in the circuit 
description. As only realistic defects were considered during 
the library characterization process, only realistic defects were 
considered during this defect injection campaign. All defects 
were injected in a single full scan digital block composed of 
203K cells, and tested with a dynamic CA test sequence 
composed of 1238 test patterns and achieving a transition + 
dynamic CA test coverage of 99.93 %. The measured stuck-at 
test coverage of this test sequence was 95.73%. 

Results obtained after executing our learning-based CA 
diagnosis flow and averaged over all defect injections have 
shown an accuracy of 100% (the injected defect was always 
reported in the list of suspects). The average resolution 
obtained for the defect injection experiments is of 3.15. The 
resolution ranges between 1 up to 7, and in most of the cases, 
the number of suspects was less than 4. 

V. DISCUSSION AND FUTURE WORK 
The above results show the appropriateness of a learning-

based method to solve our problem, despite the small size of 
the training dataset used (only one sample for one defect class). 
This will be even truer when multiple defect sizes and test 
conditions will be used. In these cases, multiple samples (one 
for each defect size or defect size range, one for each PVT test 
condition) will be associated to a given defect class, simply 
because the behavior of the defect will differ when applying 
the same set of test patterns. In terms of timing and complexity, 
this will just slightly impact our method, since training dataset 
is extracted from characterized cell libraries that are generated 
anyway for test and diagnosis purpose. So, even with large cell 
libraries with a huge number of defects to be simulated (e.g., 
631 cells in a library, each with 4 to 6 inputs, 951 shorts and 

749 opens on average – example of an ST technology library), 
our flow will still be easily and time-efficiently applicable. 

In our experiments, all injected defects for evaluation 
purpose were present in the training dataset. However, in most 
of real silicon cases, especially for customer returns, actual 
defect behavior may not perfectly match the fault models that 
are used to train the NB classifier. Further work will be 
dedicated to see how well the proposed flow works in this case. 
Another perspective consists in exploiting the ranking of 
suspected cells usually provided after logic diagnosis by 
commercial tools, which was not done in this work. By this 
way, our flow will provide a similar ranking among defect 
candidates, thus giving additional useful information for PFA. 
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