Review on Indoor RGB-D Semantic Segmentation with Deep Convolutional Neural Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Review on Indoor RGB-D Semantic Segmentation with Deep Convolutional Neural Networks

Résumé

Many research works focus on leveraging the complementary geometric information of indoor depth sensors in vision tasks performed by deep convolutional neural networks, notably semantic segmentation. These works deal with a specific vision task known as "RGB-D Indoor Semantic Segmentation". The challenges and resulting solutions of this task differ from its standard RGB counterpart. This results in a new active research topic. The objective of this paper is to introduce the field of Deep Convolutional Neural Networks for RGB-D Indoor Semantic Segmentation. This review presents the most popular public datasets, proposes a categorization of the strategies employed by recent contributions, evaluates the performance of the current state-of-the-art, and discusses the remaining challenges and promising directions for future works.
Fichier principal
Vignette du fichier
CBMI_2021___Short_Review_Indoor_semantic_segmentation(1).pdf (700.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03264035 , version 1 (17-06-2021)

Identifiants

Citer

Sami Barchid, José Mennesson, Chaabane Chabane Djeraba. Review on Indoor RGB-D Semantic Segmentation with Deep Convolutional Neural Networks. CBMI 2021 - Content-based Multimedia Indexing, Jun 2021, Lille / Virtual, France. ⟨hal-03264035⟩
72 Consultations
207 Téléchargements

Altmetric

Partager

More