A Neural Tangent Kernel Perspective of GANs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

A Neural Tangent Kernel Perspective of GANs

Emmanuel de Bézenac
  • Fonction : Auteur
  • PersonId : 1101543
  • IdRef : 259426148
Mickaël Chen
  • Fonction : Auteur
  • PersonId : 1101545
Sylvain Lamprier

Résumé

We propose a novel theoretical framework of analysis for Generative Adversarial Networks (GANs). We start by pointing out a fundamental flaw in previous theoretical analyses that leads to ill-defined gradients for the discriminator. We overcome this issue which impedes a principled study of GAN training, solving it within our framework by taking into account the discriminator's architecture. To this end, we leverage the theory of infinite-width neural networks for the discriminator via its Neural Tangent Kernel. We provide a characterization of the trained discriminator for a wide range of losses and establish general differentiability properties of the network. Moreover, we derive new insights about the generated distribution's flow during training, advancing our understanding of GAN dynamics. We empirically corroborate these results via a publicly released analysis toolkit based on our framework, unveiling intuitions that are consistent with current GAN practice.
Fichier principal
Vignette du fichier
gantk2.pdf (2.98 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03254591 , version 1 (08-06-2021)
hal-03254591 , version 2 (20-10-2021)
hal-03254591 , version 3 (31-01-2022)
hal-03254591 , version 4 (15-06-2022)
hal-03254591 , version 5 (27-10-2022)

Licence

Identifiants

Citer

Jean-Yves Franceschi, Emmanuel de Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lamprier, et al.. A Neural Tangent Kernel Perspective of GANs. 2021. ⟨hal-03254591v2⟩

Collections

LIP6
332 Consultations
318 Téléchargements

Altmetric

Partager

More