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Abstract

We propose a novel theoretical framework of
analysis for Generative Adversarial Networks
(GANs). We start by pointing out a funda-
mental flaw in previous theoretical analyses
that leads to ill-defined gradients for the dis-
criminator. We overcome this issue which
impedes a principled study of GAN training,
solving it within our framework by taking into
account the discriminator’s architecture. To
this end, we leverage the theory of infinite-
width neural networks for the discriminator
via its Neural Tangent Kernel. We provide a
characterization of the trained discriminator
for a wide range of losses and establish gen-
eral differentiability properties of the network.
Moreover, we derive new insights about the
generated distribution’s flow during training,
advancing our understanding of GAN dynam-
ics. We empirically corroborate these results
via a publicly released analysis toolkit based
on our framework, unveiling intuitions that
are consistent with current GAN practice.

1 INTRODUCTION

Generative Adversarial Networks (GANs; Goodfellow
et al., 2014) have become a canonical approach to gen-
erative modeling as they produce realistic samples for
numerous data types, with a plethora of variants (Wang
et al., 2021). These models are notoriously difficult
to train and require extensive hyperparameter tuning
(Brock et al., 2019; Karras et al., 2020; Liu et al., 2021).
To alleviate these shortcomings, much effort has been
put in gaining a better understanding of the training
process, resulting in a vast literature on theoretical
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analyses of GANs (see related work below). A large
portion of them focus on studying GAN loss functions
to conclude about their comparative advantages.

Yet, empirical evaluations (Lucic et al., 2018; Kurach
et al., 2019) showed that different GAN formulations
can yield approximately the same performance in terms
of sample quality and stability of the training algorithm,
regardless of the chosen loss. This indicates that by
focusing exclusively on the loss function, theoretical
studies might not model practical settings adequately.

In particular, the discriminator being a trained neural
network is not taken into account, nor are the cor-
responding inductive biases which might considerably
alter the generator’s loss landscape. Moreover, we show
that neglecting this constraint hampers the analysis
of gradient-based learning of the generator on finite
training sets, since the gradient from the associated
discriminator is ill-defined everywhere. These limita-
tions thus hinder the potential of theoretical analyses
to explain GAN’s empirical behavior.

In this work, we provide a framework of analysis for
GANs solving these issues by explicitly incorporating
the discriminator’s architecture. To this end, we lever-
age the recent developments in the theory of deep learn-
ing driven by Neural Tangent Kernels (NTKs; Jacot
et al., 2018), and develop theoretical results demonstrat-
ing the relevance of our approach. We first characterize
the trained infinite-width discriminator under mild con-
ditions on its architecture and loss. Then, we establish
its differentiability by proving novel regularity results
on its NTK. This confirms that our framework does
overcome the limitations of previous analyses, making
it closer to GAN practice.

This more accurate formalization enables us to derive
new insights about the generator. We formulate the dy-
namics of the generated distribution via the generator’s
NTK, and discuss its consequences by linking it to gradi-
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ent flows on probability spaces. We deduce that, under
the Integral Probability Metric loss, the generated dis-
tribution minimizes its Maximum Mean Discrepancy
given by the discriminator’s NTK w.r.t. the target
distribution. Moreover, we release the Generative Ad-
versarial Neural Tangent Kernel ToolKit GAN(TK)2
based on our framework, which we use to empirically
validate our analysis. For example, we study the role
of the ReLU activation in GAN architectures.

Related Work

GAN Theory. A first line of research, started by
Goodfellow et al. (2014) and pursued by many others
(Nowozin et al., 2016; Zhou et al., 2019; Sun et al.,
2020), studies the loss minimized by the generator.
Assuming that the discriminator is optimal and can
take arbitrary values, different families of divergences
can be recovered. However, as noted by Arjovsky &
Bottou (2017), these divergences should be ill-suited
to GANs training, contrary to empirical evidence. Our
framework addresses this discrepancy, as it properly
characterizes the generator’s loss and gradient.

Another line of work analyzes the dynamics and con-
vergence of the generated distribution (Nagarajan &
Kolter, 2017; Mescheder et al., 2017, 2018). As the stud-
ied dynamics are highly non-linear, this approach typi-
cally requires strong simplifying assumptions, e.g. re-
stricting to linear neural networks or reducing datasets
to a single datapoint. The most advanced modeliza-
tions taking into account discriminator’s parameter-
ization are specialized to specific models (Bai et al.,
2019), such as a linear one, or random feature models
(Liu et al., 2017; Balaji et al., 2021). In contrast to
these works, our framework of analysis provides a more
comprehensive modelization as we establish generally
applicable results about the influence of the discrimi-
nator’s architecture on the generator’s dynamics.

Neural Tangent Kernel. NTKs were introduced by
Jacot et al. (2018), who showed that a trained neural
network in the infinite-width regime equates to a kernel
method, thereby making the dynamics of the training
algorithm tractable and amenable to theoretical study.
This fundamental work has been followed by a thorough
line of research generalizing and expanding its initial
results (Arora et al., 2019; Bietti & Mairal, 2019; Lee
et al., 2019; Liu et al., 2020; Sohl-Dickstein et al., 2020),
developing means of computing NTKs (Novak et al.,
2020; Yang, 2020), further analyzing these kernels (Fan
& Wang, 2020; Bietti & Bach, 2021; Chen & Xu, 2021),
studying and leveraging them in practice (Zhou et al.,
2019; Arora et al., 2020; Lee et al., 2020; Littwin et al.,
2020b; Tancik et al., 2020), and more broadly exploring
infinite-width networks (Littwin et al., 2020a; Yang &

Hu, 2021; Alemohammad et al., 2021). These prior
works validate that NTKs can encapsulate the charac-
teristics of neural network architectures, providing a
solid theoretical basis to study the effect of architecture
on learning problems.

Other works studied the regularity of NTKs (Bietti
& Mairal, 2019; Yang & Salman, 2019; Basri et al.,
2020) but, as far as we know, ours is the first to state
general derivability results for NTKs and infinite-width
networks. While Jacot et al. (2019) sought to improve
generators by investigating checkerboard artifacts in
the light of NTKs, our contribution is the first to employ
NTKs to theoretically study GAN training.

2 LIMITS OF PREVIOUS STUDIES

We present in this section the usual GAN formulation
and illustrate the limitations of prior analyses.

First, we introduce some notations. Let Ω ⊆ Rn be a
closed convex set, P(Ω) the set of probability distri-
butions over Ω, and L2(µ) the set of square-integrable
functions from the support suppµ of µ to R with re-
spect to measure µ, with scalar product 〈·, ·〉L2(µ). If
Λ ⊆ Ω, we write L2(Λ) for L2(λ), with λ the Lebesgue
measure on Λ.

2.1 Generative Adversarial Networks

GAN algorithms seek to produce samples from an un-
known target distribution β ∈ P(Ω). To this extent, a
generator function g ∈ G:Rd → Ω parameterized by θ
is learned to map a latent variable z ∼ pz to the space
of target samples such that the generated distribution
αg and β are indistinguishable for a discriminator net-
work f ∈ F parameterized by ϑ. The generator and
the discriminator are trained in an adversarial manner
as they are assigned conflicting objectives.

Many GAN models consist in solving the following
optimization problem, with a, b, c:R→ R:

inf
g∈G

{
Cf?αg

(
αg
)
, Ex∼αg

[
cf?αg (x)

]}
, (1)

where cf = c ◦ f , and f?αg is chosen to solve, or approx-
imate, the following optimization problem:

sup
f∈F

{
Lαg (f) , Ex∼αg

[
af (x)

]
− Ey∼β

[
bf (y)

]}
. (2)

For instance, Goodfellow et al. (2014) originally used
a(x) = log

(
1− σ(x)

)
, b(x) = c(x) = − log

(
σ(x)

)
;

in LSGAN (Mao et al., 2017), a(x) = −(x+ 1)
2,

b(x) = (x− 1)
2, c(x) = x2; and for Integral Probability

Metrics (IPMs; Müller, 1997) used e.g. by Arjovsky
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et al. (2017), a = b = c = id. Many more fall under this
formulation (Nowozin et al., 2016; Lim & Ye, 2017).

Equation (1) is then solved using gradient descent on
the generator’s parameters, with at each step j ∈ N:

θj+1 = θj − ηEz∼pz

∇θgθj (z)>∇x cf?αgθj (x)

∣∣∣∣
x=gθj (z)

.
(3)

Since ∇xcf?α(x) = ∇xf?α(x) · c′
(
f?α(x)

)
, and as high-

lighted e.g. by Goodfellow et al. (2014) and Arjovsky &
Bottou (2017), the gradient of the discriminator plays a
crucial role in the convergence of training. For example,
if this vector field is null on the training data when
α 6= β, the generator’s gradient is zero and convergence
is impossible. For this reason, this paper is devoted
to developing a better understanding of this gradient
field and its consequences when the discriminator is a
neural network. In order to characterize this gradient
field, we must first study the discriminator itself.

2.2 On the Necessity of Modeling the
Discriminator Parameterization

For each GAN formulation, it is customary to elucidate
the loss implemented by Equation (2), often assuming
that F = L2(Ω), i.e. the discriminator can take arbi-
trary values. Under this assumption, the original GAN
yields the Jensen-Shannon divergence between αg and
β, and LSGAN a Pearson χ2-divergence, for instance.

However, as pointed out by Arora et al. (2017), the
discriminator is trained in practice with a finite number
of samples: both fake and target distributions are finite
mixtures of Diracs, which we respectively denote as
α̂g and β̂. Let γ̂g = 1

2 α̂g + 1
2 β̂ be the distribution of

training samples.
Assumption 1. γ̂g ∈ P(Ω) is a finite mixture of
Diracs.

In this setting, the Jensen-Shannon and χ2-divergence
are constant since α̂g and β̂ generally do not have the
same support. This is the theoretical reason given by
Arjovsky & Bottou (2017) to introduce new losses, such
as in WGAN (Arjovsky et al., 2017). However, this is
inconsistent with empirical results showing that GANs
can be trained even without the latter losses. Actually,
perhaps surprisingly, in the alternating optimization
setting used in practice – as described by Equation (3) –
the constancy of Lα̂g does not imply that ∇xcf?αg in
Equation (3) is zero on these points; see Section 4.2
and Appendix B.2 for further discussion on this matter.
Yet, in their theoretical framework where the discrimi-
nator can take arbitrary values, this gradient field is
not even defined for any loss Lα̂g .

Indeed, when the discriminator’s loss Lα̂g (f) is only

computed on the empirical distribution γ̂g (as it is the
case for most GAN formulations), the discriminator
optimization problem of Equation (2) never yields a
unique optimal solution outside γ̂g. This is illustrated
by the following straightforward result.
Proposition 1 (Ill-Posed Problem in L2(Ω)). Sup-
pose that F = L2(Ω), supp γ̂g ( Ω. Then, for all
f, h ∈ F coinciding over supp γ̂g, Lα̂g (f) = Lα̂g (h)
and Equation (2) has either no or infinitely many opti-
mal solutions in F , all coinciding over supp γ̂g.

In particular, the set of solutions, if non-empty, contains
non-differentiable discriminators as well as discrimi-
nators with null or non-informative gradients. This
underspecification of the discriminator over Ω makes
the gradient of the optimal discriminator in standard
GAN analyses ill-defined.

This signifies that the loss alone does not impose any
constraint on the values that fα̂g takes outside supp γ̂g,
and more particularly that there are no constraints on
the gradients. Therefore, an analysis beyond the loss
function is necessary to precisely determine the learning
problem of the generator defined by the discriminator.

3 NTK ANALYSIS OF GANS

To tackle the aforementioned issues, we notice that in
practice, the inner optimization problem of Equation (2)
is not solved exactly. Instead, using an alternating
optimization procedure, a proxy neural discriminator
is trained using several steps of gradient ascent for
each update of the generator (Goodfellow, 2016). For
a learning rate ε and a fixed generator g, this results
in the optimization procedure, from i = 0 to N :

ϑgi+1 = ϑgi + ε∇ϑLα̂g (fϑi), f?α̂g = fϑgN . (4)

This parameterization and training of the discriminator
as a neural network solve the underspecification of its
gradient highlighted in the previous section, but this
makes a theoretical analysis of its impact unattainable.
We propose to facilitate this theoretical analysis thanks
to the theory of NTKs, that we develop in Sections 3.1
to 3.3. We then leverage these results to analyze the dy-
namics of the generated distribution via the generator’s
NTK in Section 3.4.

3.1 Modeling Inductive Biases of the
Discriminator in the Infinite-Width Limit

We study the continuous-time version of Equation (4):

∂tϑ
g
t = ∇ϑLα̂g

(
fϑgt

)
, (5)

which we consider in the infinite-width limit of the
discriminator, making its analysis more tractable.
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In the limit where the width of the hidden layers of
ft , fϑgt tends to infinity, Jacot et al. (2018) showed
that its so-called NTK kϑgt remains constant during
a gradient ascent such as Equation (5), i.e. there is a
limiting kernel k such that:

∀τ ∈ R+, ∀x, y ∈ Rn, ∀t ∈ [0, τ ],

kϑgt (x, y) , ∂ϑft(x)
>
∂ϑft(y) = k(x, y).

(6)

In particular, k only depends on the architecture of
f and the initialization distribution of its parameters.
The constancy of the NTK of ft during gradient descent
holds for many standard architectures, typically with-
out bottleneck and ending with a linear layer (Liu et al.,
2020), which is the case of most standard discriminators
in the setting of Equation (2). We discuss the appli-
cability of this approximation in Appendix B.1. We
more particularly highlight that, under the same con-
ditions, the disciminator’s NTK remains constant over
the whole GAN optimization process of Equation (3),
and not only under a fixed generator.
Assumption 2. k: Ω2 → R is a symmetric positive
semi-definite kernel with k ∈ L2

(
Ω2
)
.

The constancy of the NTK simplifies the dynamics
of training in the functional space. In order to ex-
press these dynamics, we must first introduce some
preliminary definitions and assumptions.
Definition 1 (Functional Gradient). Whenever a func-
tional L:L2(µ)→ R has sufficient regularity, its gradi-
ent with respect to µ evaluated at f ∈ L2(µ) is defined
in the usual way as the element ∇µL(f) ∈ L2(µ) such
that for all ψ ∈ L2(µ):

lim
ε→0

1

ε

(
L(f + εψ)− L(f)

)
=
〈
∇µL(f), ψ

〉
L2(µ)

. (7)

Definition 2 (RKHS w.r.t. µ and kernel integral
operator (Sriperumbudur et al., 2010)). If k follows
Assumption 2 and µ ∈ P(Ω) is a finite mixture of
Diracs, we define the Reproducing Kernel Hilbert
Space (RKHS) Hµk of k with respect to µ given by
the Moore–Aronszajn theorem as the linear span of
functions k(x, ·) for x ∈ suppµ. Its kernel integral
operator from Mercer’s theorem is defined as:

Tk,µ:L2(µ)→ Hµk , h 7→
∫
x

k(·, x)h(x) dµ(x). (8)

Note that Tk,µ generates Hµk , and elements of Hµk are
functions defined over all Ω as Hµk ⊆ L2(Ω).

In this infinite-width limit, the results of Jacot et al.
(2018) imply that the discriminator ft trained by Equa-
tion (9) obeys the following differential equation in-
between generator updates:

∂tft = Tk,γ̂g
(
∇γ̂gLα̂(ft)

)
. (9)

Within the alternating optimization of GANs at step j,
f0 would correspond to the previous discriminator step
f?αgθj

, f j , and f j+1 = fτ , with τ being the training
time of the discriminator in-between generator updates.

In this section, we rely on this differential equation
to gain a better understanding of the discriminator
during training and its implications for training the
generator. Firstly, under mild assumptions on the
discriminator loss function, we prove that Equation (9)
admits a unique solution for a given initial condition,
thereby solving the indeterminacy issues. We then
study differentiability of neural networks in this regime,
a necessary condition for trainability of GANs. These
results are not specific to GANs but generalize to all
neural networks trained under empirical losses of the
form of Equation (2), e.g. any pointwise loss such as
binary classification and regression. Finally, we expose
the consequences of this analysis on the generated
distribution’s dynamics. Presented in the context of
a discrete distribution γ̂g but generalizable to other
distributions, all results are proved in Appendix A.

3.2 Existence, Uniqueness and
Characterization of the Discriminator

The following is a positive result on the existence and
uniqueness of the discriminator that also characterizes
its general form, amenable to theoretical analysis.

Assumption 3. a and b from Equation (2) are differ-
entiable with Lipschitz derivatives over R.
Theorem 1 (Solution of gradient descent). Under
Assumptions 1 to 3, Equation (9) with initial value
f0 ∈ L2(Ω) admits a unique solution f·:R+ → L2(Ω).
Moreover, the following holds for all t ∈ R+:

∀t ∈ R+, ft = f0 +

∫ t

0

Tk,γ̂g
(
∇γ̂gLα̂g (fs)

)
ds

= f0 + Tk,γ̂g

(∫ t

0

∇γ̂gLα̂g (fs) ds

)
.

(10)

As for any given training time t, there exists a unique
ft ∈ L2(Ω), defined over all of Ω and not only the
training set, the aforementioned issue in Section 2.2 of
determining the discriminator associated to γ̂g is now
resolved. It is now possible to study the discriminator
in its general form thanks to Equation (10). It involves
two terms: the previous discriminator state f0 = f j ,
as well as the kernel operator of an integral. This
integral is a function that is undefined outside supp γ̂g,
as by definition∇γ̂gLα̂g (fs) ∈ L2

(
γ̂g
)
. Fortunately, the

kernel operator behaves like a smoothing operator, as
it not only defines the function on all of Ω but embeds
it in a highly structured space.
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Corollary 1. Under Assumptions 1 to 3, ft − f0 be-
longs to the RKHS Hγ̂gk for all t ∈ R+.

In our setting, this space is generated from the NTK k,
which only depends on the discriminator architecture,
and not on the loss function. This highlights the crucial
role of the discriminator’s implicit biases, and enables
us to characterize its regularity for a given architecture.

3.3 Differentiability of the Discriminator and
its NTK

We study in this section the smoothness, i.e. infinite
differentiability, of the discriminator. It mostly re-
lies on the differentiability of the kernel k, by Equa-
tion (10). Therefore, we prove differentiability of NTKs
of standard architectures, and then conclude about the
differentiability of ft.
Assumption 4 (Discriminator architecture). The dis-
criminator is a standard architecture (fully connected,
convolutional or residual). The activation can be any
standard activation function: tanh, softplus, ReLU-like,
sigmoid, Gaussian, etc.
Assumption 5 (Discriminator regularity). The acti-
vation function is smooth at 0, or linear layers have
non-null bias terms.

We first prove the differentiability of the NTK.
Proposition 2 (Differentiability of k). Let k be the
NTK of an architecture following Assumption 4. Then,
for any y, k(·, y) is smooth over Ω \ {0}. If Assump-
tion 5 is also assumed, k is then smooth everywhere.
Remark 1. This result in particular contradicts Bietti
& Mairal (2019) about the non-Lipschitzness of the
bias-free ReLU kernel, that we prove to be incorrect.
We further discuss this matter in Appendix B.3.

From Proposition 2, NTKs satisfy Assumption 2. We
can thus use Theorem 1 and conclude about ft.
Theorem 2 (Differentiability of ft, informal). Suppose
that k is the NTK of a network following Assumption 4.
Then ft has the same regularity as k over Ω.
Remark 2. ReLU networks with hidden layers and
no bias are not differentiable at 0. However, by intro-
ducing non-zero bias, the NTK and the infinite-width
discriminator become differentiable everywhere. This
explains some experimental results in Section 5.

This result demonstrates that, for a wide range of GAN
formulations, e.g. vanilla GAN and LSGAN, the op-
timized discriminator indeed admits gradients almost
everywhere, making the gradient flow given to the gen-
erator well-defined in our framework. This supports our
motivation to bring the theory closer to the empirical
evidence that many GAN models do work in practice

while their theoretical interpretation until now has been
stating the opposite (Arjovsky & Bottou, 2017).

3.4 Dynamics of the Generated Distribution

The previous differentiability results allow us to study
Equation (3), by ensuring the existence of ∇f?α̂g . We
consider Equation (3) in its continuous-time version like
Equation (5), with training time ` as well as g` , gθ`
and α` , αg` . The theory of NTKs enables us to
describe the generated distribution’s dynamics.
Proposition 3 (Dynamics of α`). Under Assump-
tions 4 and 5, Equation (5) is well-posed and yields in
continuous-time, with kg` the NTK of the generator g`:

∂`α` = −∇ ·

α`Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

).
(11)

In the infinite-width limit of the generator, the gener-
ator’s NTK is also fixed: kg` = kg; this is the setting
that we consider to study the implications of the latter
proposition. Suppose that there exists a functional C
over L2(Ω) such that cf?α̂ = ∂α̂C (α̂). Standard results
in gradient flows theory (see Ambrosio et al. (2008,
Chapter 10), or Arbel et al. (2019, Appendix A.3) for
a summary) state that ∇cf?α̂ is in this case the strong
subdifferential of C (α̂) for the Wasserstein geometry.

When kg(x, y) = δx−yIn with δ a Dirac centered at 0,
we have Tkg,pz = id. Then, from Equation (11), α`
follows the Wasserstein gradient flow with cf?α̂ as poten-
tial. This implies that C (α̂`) is a decreasing function
of the generator’s training time `. In other words, the
generator g is trained to minimize C

(
α̂g
)
, which is the

implicit objective induced by the discriminator.

In the general case, Tkg,pz introduces interactions be-
tween generated particles as a consequence of the neural
parameterization of the generator. Then, Equation (11)
amounts to following the same gradient flow as before,
but in a Stein geometry (Duncan et al., 2019) – instead
of a Wasserstein geometry – determined by the genera-
tor’s integral operator, directly implying that in this
case C (α̂`) also decreases during training. This geo-
metrical understanding opens interesting perspectives
for theoretical analysis, e.g. we see that GAN training
in this regime generalizes Stein variational gradient
descent (Liu & Wang, 2016), with the Kullback-Leibler
minimization objective between generated and target
distributions being replaced by C (α̂).

Improving our understanding of Equation (11) is fun-
damental towards elucidating the open problem of the
neural generator’s convergence. Our study enables us
to shed light on these dynamics and highlights the ne-
cessity of pursuing the study of GANs via NTKs to
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obtain a more comprehensive understanding of them,
which is the purpose of the remaining of this paper. In
particular, the non-interacting case where Tkg,pz = id
already yields particularly useful insights, that we ex-
plore in Section 5. Moreover, we discuss in the following
section standard GAN losses and attempt to determine
the minimized functional C in these cases.

4 STUDY OF SPECIFIC LOSSES

Armed with the general framework of the previous
section, we derive in this section more fine-grained
results thanks to additional assumptions on the loss
function covering standard GAN models. Proofs are
detailed in Appendix A.

4.1 The IPM as an NTK MMD Minimizer

We study the case of the IPM loss, with the following
remarkable discriminator expression, from which we
deduce the objective minimized by the generator.

Proposition 4 (IPM Discriminator). Under Assump-
tions 1 and 2, the solutions of Equation (9) for a =
b = id are the functions of the form ft = f0 + tf∗α̂g ,
where f∗α̂g is the unnormalized MMD witness function
(Gretton et al., 2012) with kernel k, yielding:

f∗α̂g = Ex∼α̂g
[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

]
,

Lα̂g (ft) = Lα̂g (f0) + t ·MMD2
k

(
α̂g, β̂

)
.

(12)

The latter result signifies that the direction of the gradi-
ent given to the discriminator at each of its optimization
step is optimal within the RKHS of its NTK, stemming
from the linearity of the IPM loss. The connection with
MMD is especially interesting as it has been thoroughly
studied in the literature (Muandet et al., 2017). If k
is characteristic, as discussed in Appendix B.5, then it
defines a distance between distributions. Moreover, the
statistical properties of the loss induced by the discrim-
inator directly follow from those of the MMD: it is an
unbiased estimator with a squared sample complexity
that is independent of the dimension of the samples
(Gretton et al., 2007).

Remark 3 (Link with Instance Smoothing). It is possi-
ble to show for IPMs that modeling the discriminator’s
architecture amounts to smoothing out the input distri-
bution using the kernel integral operator Tk,γ̂g and can
thus be seen as a generalization of the regularization
technique for GANs called instance noise (Sønderby
et al., 2017). This is discussed in Appendix B.4.

Suppose that the discriminator is reinitialized at every
step of the generator, with f0 = 0 in Equation (9); this
is possible with the initialization scheme of Zhang et al.

(2020). Then, as c = id and from Proposition 4, ∇cfα̂ =
τ∇f∗α̂g , where τ is the training time of the discriminator.
The latter gradient constitutes the gradient flow of the
squared MMD, as shown by Arbel et al. (2019) with
convergence guarantees and discretization properties
in the absence of generator. This signifies that C (α̂) =

τMMD2
k

(
α̂g, β̂

)
(see Section 3.4).

Therefore, in the IPM case, the discriminator leads the
generator to be trained to minimize the MMD between
the empirical generated and target distributions, with
respect to the NTK of the discriminator. This is the
subject of study of Mroueh & Nguyen (2021), who
derive convergence results about the generator trained
in such conditions, considerations about the discrimina-
tor’s NTK aside. This is, to the best of our knowledge,
the first work considering the use of NTKs as kernels
for the MMD, concurrently with Cheng & Xie (2021).

4.2 LSGAN and New Divergences

Optimality of the discriminator can be proved when
assuming that its loss function is well-behaved. Con-
sider the case of LSGAN, for which Equation (9) can
be solved by slightly adapting the results from Jacot
et al. (2018) in the context of regression.
Proposition 5 (LSGAN Discriminator). Under As-
sumptions 1 and 2, the solutions of Equation (9) for
a = −(id + 1)

2 and b = −(id− 1)
2 are the functions

defined for all t ∈ R+ as:

ft = exp
(
−4tTk,γ̂g

)
(f0 − ρ) + ρ, ρ =

d
(
β̂ − α̂g

)
d
(
β̂ + α̂g

) .
(13)

In the previous result, ρ is the optimum of Lα̂g over
L2
(
γ̂g
)
. When k is positive definite over γ̂g (see Ap-

pendix B.5), ft tends to the optimum for Lα̂g as its
limit is ρ over supp γ̂g. Nonetheless, unlike the dis-
criminator with arbitrary values of Section 2.2, f∞ is
defined over all Ω thanks to the integral operator Tk,γ̂g .
It is also the solution to the minimum norm interpolant
problem in the RKHS (Jacot et al., 2018), therefore
explaining why the discriminator does not overfit in
scarce data regimes (see Section 5), and consequently
has bounded gradients despite large training times. We
also prove a generalization of this optimality conclusion
for concave bounded losses in Appendix A.5.

Following the discussion initiated in Section 2.2, and
applying it to the case of LSGAN using Proposition 5,
similarly to the Jensen-Shannon, the resulting genera-
tor loss on discrete training data is constant. However,
the gradients received by the generator are not neces-
sarily null; see e.g. the empirical analysis of Section 5.
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Figure 1: Values of cf? for LSGAN and IPM, where f? is a 3-layer ReLU MLP with bias and varying width
trained on the dataset represented by t (real) and s (fake) markers, initialized at f0 = 0. The infinite-width
network is trained for a time τ = 1 and the finite-width networks using 10 gradient descent steps with learning
rate ε = 0.1, to make training times correspond. The gradients ∇xcf? are shown with white arrows on the
two-dimensional plots for the fake distribution.
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Figure 2: Generator (l) and target (×) samples for different methods. In the background, cf? .
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This is because the learning problem of the generator
induced by the discriminator makes the generator min-
imize another loss C , as explained in Section 3.4. This
raises the question of determining C for LSGAN and
other standard losses. Furthermore, the same problem
arises for gradients obtained from incompletely trained
discriminators ft. Unlike the IPM case for which the
results of Arbel et al. (2019) who leveraged the theory
of Ambrosio et al. (2008) led to a remarkable solution,
this connection remains to be established for other
adversarial losses. We leave this as future work.

5 EMPIRICAL STUDY

In this section, we present a selection of empirical re-
sults for different losses and architectures and evaluate
the adequacy and practical implications of our theoret-
ical framework in different settings; see Appendix C
for more results. All experiments were performed with
the proposed Generative Adversarial Neural Tangent
Kernel ToolKit GAN(TK)2, that we publicly release
at https://github.com/emited/gantk2 in the hope
that the community leverages and expands it for prin-
cipled GAN analyses. It is based on the JAX Neural
Tangents library (Novak et al., 2020), and is conve-
nient to evaluate novel architectures and losses based
on different visualizations and analyses.

Adequacy for Fixed Distributions. Firstly, we an-
alyze the case where generated and target distributions
are fixed. In this setting, we qualitatively study the
similarity between the finite- and infinite-width regime
of the discriminator and its gradients. Figure 1 shows
cf? and its gradients on one- and two-dimensional data
for LSGAN and IPM losses with a 3-layer ReLU MLP
with varying widths. We find the behavior of finite-
width discriminators to be close to their infinite-width
counterpart for commonly used widths, and converges
rapidly to the given limit as the width becomes larger.

In the remaining of this section, we focus on the study
of convergence of the generated distribution.

Experimental Setting. We consider a target distri-
bution sampled from 8 Gaussians evenly distributed on
a centered sphere (Figure 2), in a setup similar to that
of Metz et al. (2017), Srivastava et al. (2017) and Ar-
jovsky et al. (2017). We alleviate the complexity of the
analysis by following Equation (11) with Tkg` ,pz = id,
similarly to Mroueh et al. (2019) and Arbel et al. (2019),
thereby modeling the generator’s evolution by consid-
ering a finite number of samples, initially Gaussian.
For IPM and LSGAN losses, we evaluate the conver-
gence of the generated distributions for a discriminator
with ReLU activations in the finite- and infinite-width
regime, either with or without bias; we refer to Fig-

ure 2 for qualitative results and Table 1 in Appendix C
for a complete numerical evaluation supporting our
analysis. It is also possible to comparatively evaluate
the advantages of this architecture by considering the
case where the infinite-width loss is not given by an
NTK, but by the popular Radial Basis Function (RBF)
kernel, which is characteristic and presents attractive
properties (Muandet et al., 2017). Note that results for
more datasets, including MNIST (LeCun et al., 1998),
and architectures are also available in Appendix C.

Adequacy. We observe that performances between
the finite- and infinite-width regime are correlated,
ReLU networks being considerably better in the infinite-
width regime. Remarkably, for the infinite-width IPM,
generated and target distributions perfectly match.
This can be explained by the high capacity of infinite-
width neural networks and their idealized setting; it has
already been shown that NTKs benefit from low-data
regimes (Arora et al., 2020).

Impact of Bias. The bias-free version of the dis-
criminator performs worse than with bias, for both
regimes and both losses. This is in line with findings
of e.g. Basri et al. (2020), and can be explained in
our theoretical framework by comparing their NTKs.
Indeed, the NTK of a bias-free ReLU network is not
characteristic, whereas its bias counterpart was proven
to present powerful approximation properties (Ji et al.,
2020). Furthermore, results of Section 3.3 state that
the ReLU NTK with bias is differentiable everywhere,
whereas its bias-free version admits non-differentiability
points, which can disrupt optimization based on its
gradients: note in Figure 2 the abrupt streaks of the
discriminator and its consequences on convergence.

NTK vs. RBF Kernel. Finally, we observe the
superiority of NTKs over the RBF kernel. This high-
lights that the gradients of a ReLU network with bias
are particularly well adapted to GANs. Visualizations
of the gradients given by the ReLU architecture in the
infinite-width limit are available in Appendix C.4 and
further corroborate these findings. More generally, for
the same reasons, we believe that the NTK of ReLU
networks could be of particular interest for kernel meth-
ods requiring the computation of a spatial gradient,
like Stein variational gradient descent (Liu & Wang,
2016).

6 CONCLUSION

Leveraging the theory of infinite-width neural networks,
we propose a framework of analysis of GANs explicitly
modeling a large variety of discriminator architectures.
We show that the proposed framework models more

https://github.com/emited/gantk2
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accurately GAN training compared to prior approaches
by deriving properties of the trained discriminator. We
demonstrate the analysis opportunities of the proposed
modelization by further studying the generated distri-
bution for specific GAN losses and architectures, both
theoretically and empirically, notably using our pub-
lic GAN analysis toolkit. We believe that this work
will serve as a basis for more elaborate analyses, thus
leading to more principled, better GAN models.
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In the course of this appendix, we drop the subscript g for γ̂g, α̂g and other notations when the dependency on a
fixed generator g is clear and indicated in the main paper, for the sake of clarity.

A PROOFS OF THEORETICAL RESULTS AND ADDITIONAL RESULTS

We prove in this section all theoretical results mentioned in Sections 3 and 4. Appendix A.2 is devoted to
the proof of Theorem 1, Appendix A.3 focuses on proving the differentiability results skimmed in Section 3.3,
Appendix A.4 contains the demonstration of Proposition 3, and Appendices A.5 and A.6 develop the results
presented in Section 4.

We will need in the course of these proofs the following standard definition. For any measurable function T and
measure µ, T]µ denotes the push-forward measure which is defined as T]µ(B) = µ

(
T−1(B)

)
, for any measurable

set B.

A.1 Recall of Assumptions in the Paper

Assumption 1. γ̂ ∈ P(Ω) is a finite mixture of Diracs.

Assumption 2. k: Ω2 → R is a symmetric positive semi-definite kernel with k ∈ L2
(
Ω2
)
.

Assumption 3. a and b from Equation (2) are differentiable with Lipschitz derivatives over R.
Assumption 4 (Discriminator architecture). The discriminator is a standard architecture (fully connected,
convolutional or residual). Any activation φ in the network satisfies the following properties:

• φ is smooth everywhere except on a closed set D of null Lebesgue measure;

• there exists scalars λ1 and λ2 such that:

∀x ∈ R,
∣∣φ(x)

∣∣ ≤ λ1|x|+ λ2. (14)

Assumption 5 (Discriminator regularity). 0 6∈ D, or linear layers have non-null bias terms.

A.2 On the Solutions of Equation (9)

The methods used in this section are adaptations to our setting of standard methods of proof. In particular,
they can be easily adapted to slightly different contexts, the main ingredient being the structure of the kernel
integral operator. Moreover, it is also worth noting that, although we relied on Assumption 1 for γ̂, the results
are essentially unchanged if we take a compactly supported measure γ instead.

Let us first prove the following two intermediate lemmas.

Lemma 1. Let δT > 0 and FδT = C
(

[0, δT ], BL2(γ̂)(f0, 1)
)
endowed with the norm:

∀u ∈ FδT , ‖u‖ = sup
t∈[0,δT ]

‖ut‖L2(γ̂). (15)

Then FδT is complete.

Proof. Let (un)n be a Cauchy sequence in FδT . For a fixed t ∈ [0, δT ]:

∀n,m, ‖unt − umt ‖L2(γ̂) ≤ ‖u
n − um‖, (16)

which shows that (unt )n is a Cauchy sequence in L2(γ̂). L2(γ̂) being complete, (unt )n converges to a u∞t ∈ L2(γ̂).
Moreover, for ε > 0, because (un) is Cauchy, we can choose N such that:

∀n,m ≥ N, ‖un − um‖ ≤ ε. (17)

We thus have that:
∀t,∀n,m ≥ N, ‖unt − umt ‖L2(γ̂) ≤ ε. (18)
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Then, by taking m to ∞, by continuity of the L2(γ̂) norm:

∀t,∀n ≥ N, ‖unt − u∞t ‖L2(γ̂) ≤ ε, (19)

which means that:
∀n ≥ N, ‖un − u∞‖ ≤ ε. (20)

so that (un)n tends to u∞.

Moreover, as:
∀n, ‖unt ‖L2(γ̂) ≤ 1, (21)

we have that ‖u∞t ‖L2(γ̂) ≤ 1.

Finally, let us consider s, t ∈ [0, δT ]. We have that:

∀n, ‖u∞t − u∞s ‖L2(γ̂) ≤ ‖u
∞
t − unt ‖L2(γ̂) + ‖unt − uns ‖L2(γ̂) + ‖u∞s − uns ‖L2(γ̂). (22)

The first and the third terms can then be taken as small as needed by definition of u∞ by taking n high enough,
while the second can be made to tend to 0 as t tends to s by continuity of un. This proves the continuity of u∞
and shows that u∞ ∈ FδT .

Lemma 2. For any F ∈ L2(γ̂), we have that F ∈ L2(α̂) and F ∈ L2
(
β̂
)
with:

‖F‖L2(α̂) ≤
√

2‖F‖L2(γ̂) and ‖F‖L2(β̂) ≤
√

2‖F‖L2(γ̂). (23)

Proof. For any F ∈ L2(γ̂), we have that

‖F‖2L2(γ̂) =
1

2
‖F‖2L2(α̂) +

1

2
‖F‖2L2(β̂), (24)

so that F ∈ L2(α̂) and F ∈ L2
(
β̂
)
with:

‖F‖2L2(α̂) = 2‖F‖2L2(γ̂) − ‖F‖
2
L2(β̂) ≤ 2‖F‖2L2(γ̂) (25)

and ‖F‖2L2(β̂) = 2‖F‖L2(γ̂) − ‖F‖L2(α̂) ≤ 2‖F‖2L2(γ̂), (26)

which allows us to conclude.

From this, we can prove the existence and uniqueness of the initial value problem from Equation (9).

Theorem 3. Under Assumptions 1 to 3, Equation (9) with initial value f0 admits a unique solution f· : R+ →
L2(Ω).

Proof.

A Few Inequalities. We start this proof by proving a few inequalities.

Let f, g ∈ L2(γ̂). We have, by the Cauchy-Schwarz inequality, for all z ∈ Ω:∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(f)

)
− Tk,γ̂

(
∇γ̂Lα̂(g)

))
(z)

∣∣∣∣∣ ≤ ∥∥k(z, ·)
∥∥
L2(γ̂)

∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥
L2(γ̂)

. (27)

Moreover, by definition:〈
∇γ̂Lα̂(f)−∇γ̂Lα̂(g), h

〉
L2(γ̂)

=

∫ (
a′f − a′g

)
hdα̂−

∫ (
b′f − b′g

)
hdβ̂, (28)
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so that: ∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥2

L2(γ̂)

≤
∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)

∥∥∥
L2(γ̂)

(∥∥∥a′f − a′g∥∥∥
L2(α̂)

+
∥∥∥b′f − b′g∥∥∥

L2(β̂)

)
,

(29)

and then, along with Lemma 2:∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥
L2(γ̂)

≤
∥∥∥a′f − a′g∥∥∥

L2(α̂)
+
∥∥∥b′f − b′g∥∥∥

L2(β̂)

≤
√

2

(∥∥∥a′f − a′g∥∥∥
L2(γ̂)

+
∥∥∥b′f − b′g∥∥∥

L2(γ̂)

)
.

(30)

By Assumption 3, we know that a′ and b′ are Lipschitz with constants that we denote K1 and K2. We can then
write:

∀x,
∣∣∣a′(f(x)

)
− a′

(
g(x)

)∣∣∣ ≤ K1

∣∣f(x)− g(x)
∣∣ (31)

and ∀x,
∣∣∣b′(f(x)

)
− b′

(
g(x)

)∣∣∣ ≤ K2

∣∣f(x)− g(x)
∣∣, (32)

so that: ∥∥∥a′f − a′g∥∥∥
L2(γ̂)

≤ K1‖f − g‖L2(γ̂),
∥∥∥b′f − b′g∥∥∥

L2(γ̂)
≤ K2‖f − g‖L2(γ̂). (33)

Finally, we can now write, for all z ∈ Ω:∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(f)

)
− Tk,γ̂

(
∇γ̂Lα̂(g)

))
(z)

∣∣∣∣∣ ≤ √2(K1 +K2)‖f − g‖L2(γ̂)

∥∥k(z, ·)
∥∥
L2(γ̂)

, (A)

and then: ∥∥∥∥Tk,γ̂(∇γ̂Lα̂(f)
)
− Tk,γ̂

(
∇γ̂Lα̂(g)

)∥∥∥∥
L2(γ̂)

≤ K‖f − g‖L2(γ̂), (B)

where K =
√

2(K1 +K2)
√∫ ∥∥k(z, ·)

∥∥2

L2(γ̂)
dγ̂(z) is finite as a finite sum of finite terms from Assumptions 1 and 2.

In particular, putting g = 0 and using the triangular inequality also gives us:∥∥∥∥Tk,γ̂(∇γ̂Lα̂(f)
)∥∥∥∥

L2(γ̂)

≤ K‖f‖L2(γ̂) +M, (B’)

where M =
∥∥∥Tk,γ̂(∇γ̂Lα̂(0)

)∥∥∥
L2(γ̂)

.

Existence and Uniqueness in L2(γ̂). We now adapt the standard fixed point proof to prove existence and
uniqueness of a solution to the studied equation in L2(γ̂).

We consider the family of spaces FδT = C
(

[0, δT ], BL2(γ̂)(f0, 1)
)
. FδT is defined, for δT > 0, as the space of

continuous functions from [0, δT ] to the closed ball of radius 1 centered around f0 in L2(γ̂) which we endow with
the norm:

∀u ∈ FδT , ‖u‖ = sup
t∈[0,δT ]

‖ut‖L2(γ̂). (34)

We now define the application Φ where Φ(u) is defined as, for any u ∈ FδT :

Φ(u)t = f0 +

∫ t

0

Tk,γ̂
(
∇γ̂Lα̂(us)

)
ds. (35)

We have, using Equation (B’):∥∥Φ(u)t − f0

∥∥
L2(γ̂)

≤
∫ t

0

(
K‖us‖L2(γ̂) +M

)
ds ≤ (K +M)δT. (36)
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Thus, taking δT =
(
2(K +M)

)−1 makes Φ an application from FδT into itself. Moreover, we have:

∀u, v ∈ FδT ,
∥∥Φ(u)− Φ(v)

∥∥ ≤ 1

2
‖u− v‖, (37)

which means that Φ is a contraction of FδT . Lemma 1 and the Banach-Picard theorem then tell us that Φ has a
unique fixed point in FδT . It is then obvious that such a fixed point is a solution of Equation (9) over [0, δT ].

Let us now consider the maximal T > 0 such that a solution ft of Equation (9) is defined over [0, T ). We have,
using Equation (B’):

∀t ∈ [0, T ), ‖ft‖L2(γ̂) ≤ ‖f0‖L2(γ̂) +

∫ t

0

(
‖fs‖L2(γ̂) +M

)
ds, (38)

which, using Grönwall’s lemma, gives:

∀t ∈ [0, T ), ‖ft‖L2(γ̂) ≤ ‖f0‖L2(γ̂)e
KT +

M

K

(
eKT − 1

)
. (39)

Define gn = fT− 1
n
. We have, again using Equation (B’):

∀m ≥ n, ‖gn − gm‖L2(γ̂) ≤
∫ T− 1

m

T− 1
n

(K‖fs‖+M) ds

≤
(

1

n
− 1

m

)(
‖f0‖L2(γ̂)e

KT +
M

K

(
eKT − 1

))
.

(40)

which shows that (gn)n is a Cauchy sequence. L2(γ̂) being complete, we can thus consider its limit g∞. Obviously,
ft tends to g∞ in L2(γ̂). By considering the initial value problem associated with Equation (9) starting from g∞,
we can thus extend the solution ft to [0, T + δT ), thus contradicting the maximality of T , which proves that the
solution can be extended to R+.

Existence and Uniqueness in L2(Ω). We now conclude the proof by extending the previous solution to
L2(Ω). We keep the same notations as above and, in particular, f is the unique solution of Equation (9) with
initial value f0.

Let us define f̃ as:

∀t,∀x, f̃t(x) = f0(x) +

∫ t

0

Tk,γ̂
(
∇γ̂Lα̂(fs)

)
(x) ds, (41)

where the r.h.s. only depends on f and is thus well-defined. By remarking that f̃ is equal to f on supp γ̂ and
that, for every s,

Tk,γ̂
(
∇γ̂Lα̂

(
f̃s

))
= Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

∣∣∣
supp γ̂

))
= Tk,γ̂

(
∇γ̂Lα̂(fs)

)
, (42)

we see that f̃ is solution to Equation (9). Moreover, from Assumption 2, we know that, for any z ∈ Ω,∫
k(z, x)

2
dΩ(x) is finite and, from Assumption 1, that

∥∥k(z, ·)
∥∥2

L2(γ̂)
is a finite sum of terms k(z, xi)

2 which

shows that
∫ ∥∥k(z, ·)

∥∥2

L2(γ̂)
dΩ(z) is finite, again from Assumption 2. We can then say that f̃s ∈ L2(Ω) for any s

by using the above with Equation (A) taken for g = 0.

Finally, suppose h is a solution to Equation (9) with initial value f0. We know that h|supp γ̂ coincides with

f and thus with f̃
∣∣∣
supp γ̂

in L2(γ̂) as we already proved uniqueness in the latter space. Thus, we have that∥∥∥∥hs|supp γ̂ − f̃s

∣∣∣
supp γ̂

∥∥∥∥
L2(γ̂)

= 0 for any s. Now, we have:

∀z ∈ Ω,∀s,

∣∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(hs)

)
− Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

)))
(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Tk,γ̂(∇γ̂Lα̂(hs|supp γ̂

))
− Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

∣∣∣
supp γ̂

))(z)

∣∣∣∣∣∣ ≤ 0,

(43)
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by Equation (A). This shows that ∂t
(
f̃ − h

)
= 0 and, given that h0 = f̃0 = f0, we have h = f̃ which concludes

the proof.

There only remains to prove for Theorem 1 the inversion between the integral over time and the integral operator.
We first prove an intermediate lemma and then conclude with the proof of the inversion.

Lemma 3. Under Assumptions 1 to 3,
∫ T

0

(∥∥a′∥∥
L2((fs)]α̂) +

∥∥b′∥∥
L2((fs)]β̂)

)
ds is finite for any T > 0.

Proof. Let T > 0. We have, by Assumption 3 and the triangular inequality:

∀x,
∣∣∣a′(f(x)

)∣∣∣ ≤ K1

∣∣f(x)
∣∣+M1, (44)

where M1 =
∣∣a′(0)

∣∣. We can then write, using Lemma 2 and the inequality from Equation (39):

∀s ≤ T,
∥∥a′∥∥

L2((fs)]α̂) ≤ K1

√
2‖fs‖L2(γ̂) +M1

≤ K1

√
2

(
‖f0‖L2(γ̂)e

KT +
M

K

(
eKT − 1

))
+M1,

(45)

the latter being constant in s and thus integrable on [0, T ]. We can then bound
∥∥b′∥∥

L2((fs)]β̂) similarly, which
concludes the proof.

Proposition 6. Under Assumptions 1 to 3, the following integral inversion holds:

ft = f0 +

∫ t

0

Tkf ,γ̂
(
∇γ̂Lα̂,β̂(fs)

)
ds = f0 + Tkf ,γ̂

(∫ t

0

∇γ̂Lα̂,β̂(fs) ds

)
. (46)

Proof. By definition, a straightforward computation gives, for any function h ∈ L2(γ̂):〈
∇γ̂Lα̂(f), h

〉
L2(γ̂)

= dLα̂(f)[h] =

∫
a′fhdα̂−

∫
b′fhdβ̂. (47)

We can then write: ∥∥∥∇γ̂Lα̂(ft)
∥∥∥2

L2(γ̂)
=
〈
∇γ̂Lα̂(ft),∇γ̂Lα̂(ft)

〉
L2(γ̂)

=

∫
a′ft∇

γ̂Lα̂(ft) dα̂−
∫
b′ft∇

γ̂Lα̂(ft) dβ̂,

(48)

so that, with the Cauchy-Schwarz inequality and Lemma 2:∥∥∥∇γ̂Lα̂(ft)
∥∥∥2

L2(γ̂)
≤
∫ ∣∣∣a′ft∣∣∣∣∣∣∇γ̂Lα̂(ft)

∣∣∣dα̂+

∫ ∣∣∣b′ft∣∣∣∣∣∣∇γ̂Lα̂(ft)
∣∣∣dβ̂

≤
∥∥∥a′ft∥∥∥

L2(α̂)

∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(α̂)

+
∥∥∥b′ft∥∥∥

L2(β̂)

∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(β̂)

≤
√

2
∥∥∥∇γ̂Lα̂(ft)

∥∥∥
L2(γ̂)

[∥∥∥a′ft∥∥∥
L2(α̂)

+
∥∥∥b′ft∥∥∥

L2(β̂)

]
,

(49)

which then gives us: ∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(γ̂)

≤
√

2

[∥∥a′∥∥
L2((ft)]α̂) +

∥∥b′∥∥
L2((ft)]β̂)

]
. (50)

By the Cauchy-Schwarz inequality and Equation (50), we then have for all z:∫ t

0

∫
x

∣∣∣k(z, x)∇γ̂Lα̂(fs)(x)
∣∣∣ dγ̂(x) ds ≤

∫ t

0

∥∥k(z, ·)
∥∥
L2(γ̂)

∥∥∥∇γ̂Lα̂(fs)
∥∥∥
L2(γ̂)

ds

≤
√

2
∥∥k(z, ·)

∥∥
L2(γ̂)

∫ t

0

[∥∥a′∥∥
L2((fs)]α̂) +

∥∥b′∥∥
L2((fs)]β̂)

]
ds.

(51)
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The latter being finite by Lemma 3, we can now use Fubini’s theorem to conclude that:∫ t

0

Tkf ,γ̂
(
∇γ̂Lα̂(fs)

)
ds =

∫ t

0

∫
x

k(·, x)∇γ̂Lα̂(fs)(x) dγ̂(x) ds

=

∫
x

k(·, x)

[∫ t

0

∇γ̂Lα̂(fs)(x) ds

]
dγ̂(x)

= Tkf ,γ̂

(∫ t

0

∇γ̂Lα̂(fs)(x) ds

)
.

(52)

A.3 Differentiability of Neural Tangent Kernels

Neural Tangent Kernels and the initialization of infinite-width functions being closely related to Gaussian Processes
(GP), we first prove the following lemma showing the regularity of samples of a GP from the regularity of the
corresponding kernel.

Lemma 4. Let A:Rn × Rn → R be a symmetric kernel. Let V an open set such that A is C∞ on V × V . Then
the Gaussian Process induced by the kernel A has a.s. C∞ sample paths on V .

Proof. Because A is C∞ on V ×V , we know, from Theorem 2.2.2 of Adler (1981) for example, that the corresponding
GP f is mean-square smooth on V . If we take α a k-th order multi-index, we also know, again from Adler (1981),
that ∂αf is also a GP with covariance kernel ∂αA. As A is C∞, ∂αA then is differentiable and ∂αf has partial
derivatives which are mean-square continuous. Then, by the Corollary 5.3.12 of Scheuerer (2009), we can say that
∂αf has continuous sample paths a.s. which means that ∂αf ∈ Ck(V ). This proves the lemma.

We then tackle the differentiability of a key kernel in the theory of infinite-width neural networks (Jacot et al.,
2018).

Lemma 5. Let A:Rn × Rn → R be a symmetric positive semi-definite kernel and φ:R→ R. Define:

∀x, y ∈ Rn, B(x, y) = Ef∼GP(0,A)

[
φ
(
f(x)

)
φ
(
f(y)

)]
. (53)

We also suppose φ is an activation function as in Assumption 4.

Then:

• If 0 6∈ D and A is C∞ everywhere, then B is C∞ everywhere.

• If 0 ∈ D, then for every open set V of points (x, y) such that A(x, x) > 0 and A(y, y) > 0, if A is C∞ on V ,
then B is C∞ on V . Moreover, for any y0 ∈ Rn, B(·, y0) is C∞ on any open set V1 such that A is smooth on
V1 × V1 and A(x, x) > 0 for x ∈ V1.

Proof. We have:

∀x, y ∈ Rn, B(x, y) = Ef∼GP(0,A)

[(
1f(x) 6∈D + 1f(x)∈D

)
φ
(
f(x)

)
φ
(
f(y)

)]
. (54)

Let us now study, putting Σ
(x,y)
A =

(
A(x, x) A(x, y)
A(x, y) A(y, y)

)
:

Ef∼GP(0,A)

[
1f(x)∈Dφ

(
f(x)

)
φ
(
f(y)

)]
= E

(z,z′)∼N
(

0,Σ
(x,y)
A

)[1z∈Dφ(z)φ
(
z′
)]
. (55)

As z is sampled from a Gaussian distribution with zero mean, even if it is degenerate, the only Lebesgue-negligible
set which can have a non null probability for z to be in, is {0}.



J.-Y. Franceschi, E. de Bézenac, I. Ayed, M. Chen, S. Lamprier, P. Gallinari

First Case: 0 6∈ D. In this case, because D is of null Lebesgue measure, we have P[z ∈ D] = 0 which means
that the last expected value, which is the integral of a function a.s. null, is also of value 0. In other words, we
have:

∀x, y,B(x, y) = Ef∼GP(0,A)

[
1f(x)6∈Dφ

(
f(x)

)
φ
(
f(y)

)]
. (56)

Moreover, by the same reasoning as above applied to y, we also have:

∀x, y,B(x, y) = Ef∼GP(0,A)

[
1f(x)6∈D1f(y)6∈Dφ

(
f(x)

)
φ
(
f(y)

)]
. (57)

Let us consider an open, bounded, set V = V1 × V2 of Rn × Rn where V1 and V2 are also open, with compact
closures which we denote clV1 and clV2. Let (x0, y0) ∈ V . Let us now consider a sample path f of the GP of
kernel A. Lemma 4 then tells us that we can take f to be C∞ in V1 and V2 with probability one. Let us also
denote V ′1 = V1 ∩ f−1

(
Rn \D

)
, resp. V ′2 = V2 ∩ f−1

(
Rn \D

)
, which are open as D is closed and contain x0, resp.

y0, with probability 1 by the arguments above. In other words, φ ◦ f is C∞ on V ′1 and V ′2 .

Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn such that
∑
i αi ≤ l and

∑
i βi ≤ k for given k, l.

Using the usual notations for multi-indexed partial derivatives, via a multivariate Faà di Bruno formula (Leipnik
& Pearce, 2007), we can write the derivative ∂α(φ ◦ f) at x ∈ V ′1 as a weighted sum of terms of the form:

φ(j)
(
f(x)

)
g1(x) · · · gN (x), (58)

where the gis are partial derivatives of f at x. As A is C∞ everywhere, each of the gis is thus a GP with a C∞
covariance function. We can also write for all x ∈ V ′1 :∣∣∣φ(j)

(
f(x)

)
g1(x) · · · gN (x)

∣∣∣ ≤ sup
z∈clV ′1

∣∣∣φ(j)
(
f(z)

)
g1(z) · · · gN (z)

∣∣∣
≤ sup
z0∈clV ′1

∣∣∣φ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV ′1

∣∣g1(z1)
∣∣ · · · sup

zN∈clV ′1

∣∣gN (zN )
∣∣. (59)

For each i, because the covariance function of gi is smooth over clV ′1 , which is compact as a closed subset of the
compact clV1, its variance admits a maximum in clV ′1 and we take σ2

i the double of its value. We then know
from Adler (1990), that there is an Mi such that:

∀n,Ef∼GP(0,A)

[
sup

zi∈clV ′1

∣∣gi(zi)∣∣]n ≤Mn
i E|Yi|

n
, (60)

where Yi is a Gaussian distribution which variance is σ2
i , the r.h.s. thus being finite.

Now, by using Cauchy-Schwarz, we have that:

E

[
sup

z0∈clV ′1

∣∣∣φ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV ′1

∣∣g1(z1)
∣∣ · · · sup

zN∈clV ′1

∣∣gN (zN )
∣∣]

≤

√√√√E

[
sup

z∈clV ′1

∣∣∣φ(j)
(
f(z)

)∣∣∣2]
√√√√E

[
sup

z1∈clV ′1

∣∣g1(z1)
∣∣2 · · · sup

zN∈clV ′1

∣∣gN (zN )
∣∣2]. (61)

We also have, by Assumption 4 from Appendix A.1, that:

sup
z∈clV ′1

∣∣∣φ(j)
(
f(z)

)∣∣∣2 ≤ sup
z∈clV ′1

(
λ1

∣∣f(z)
∣∣+ λ2)

)2

, (62)

which is shown to be integrable over f by the same arguments as for the gis. By iterated applications of the
Cauchy-Schwarz inequality and using the previous arguments, we can then show that

sup
z0∈clV ′1

∣∣∣φ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV ′1

∣∣g1(z1)
∣∣ · · · sup

zN∈clV ′1

∣∣gN (zN )
∣∣ (63)

is integrable over f .
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The same reasoning applies to ∂β(φ ◦ f) and we can then write, by a standard corollary of the dominated
convergence theorem:

∂α,βB(x, y)
∣∣
(x0,y0)

= Ef∼GP(0,A)

[
∂α (φ ◦ f)

∣∣
x0
∂β (φ ◦ f)

∣∣
y0

]
, (64)

which shows that B is C∞ on (x0, y0). This in turn means that B is C∞ on V .

Second Case: 0 ∈ D. In this case, taking (x0, y0) such that A(x0, x0)A(y0, y0) > 0, supposing A is
C∞ on a neighbourhood of (x0, y0) such that A(x, x)A(y, y) > 0 on the neighbourhood, we have that
P
[
f(x) ∈ D or f(y) ∈ D

]
= 0 for any such (x, y) in this neighbourhood. We can then prove that B is C∞

on that same neighbourhood with the same reasoning as above. Moreover, taking now any y0 ∈ Rn, we have that
B(·, y0) is smooth for any open set V1 such that A is smooth on V1 × V1 and such that A(x, x) > 0 for x ∈ V1 as
the probability of a sample path being in D at any x ∈ V1 is zero.

From this, we can prove the results skimmed in Section 3.3.

Proposition 7 (Proposition 2). Let k be the NTK of an architecture such as in Assumption 4. Then k is smooth
on every (x, y) such that x 6= 0 and y 6= 0. Additionally, k(·, y) is smooth over Ω \ {0} for any y. Moreover, if we
suppose the architecture verifies Assumption 5, then k is smooth everywhere.

Proof. We define the following kernel:

ΣφL(x, y) = E
f∼GP

(
0,ΣφL−1

)[φ(f(x)
)
φ
(
f(y)

)]
+ β2, (65)

with:
Σφ0 (x, y) = x>y + β2. (66)

According to the definitions of Jacot et al. (2018), Arora et al. (2019) and Huang et al. (2020), the smoothness
of the kernel, for an architecture of depth L is guaranteed whenever the kernels ΣφL and Σφ

′

L , where φ, resp. φ′,
denote in this proof the activation function, resp. its derivative, are smooth. Note that, in the case of residual
networks, there is a slight adaptation of the formula defining ΣL which does not change its regularity.

Under Assumption 5, if there are non-null bias terms, we have that ΣφL(x, x) ≥ β2 > 0 for every x and φ ∈
{
σ, σ′

}
so that, by a recursion using Lemma 5 and as Σφ0 is clearly smooth, we have the smoothness of ΣL. The same is
true if the activation is smooth on 0.

Now, under Assumption 4, let us consider (x, y) such that x 6= 0 and y 6= 0. Then Σφ
0 (x, x) ≥ x>x > 0

and Σφ
1 (x, x) ≥ E

z∼N
(

0,Σφ0 (x,x)
)[φ(z)

2
]
> 0. We can continue this reasoning by recursion, thus proving that

Σφ
L(x, x) > 0. We similarly prove the same result for φ′. As both statements also hold for y, we can then use

Lemma 5 to obtain the desired result.

Theorem 4 (Theorem 2). Let ft be a solution to Equation (9) under Assumptions 1 and 3 by Theorem 1, with k
the NTK of a neural network and f0 an initialization of the latter.

Then, under Assumption 4, ft is smooth on any point x 6= 0. Under Assumption 5, ft is smooth everywhere.

Proof. We observe that Tk,γ̂(g) has a regularity which only depends on the regularity of k(·, x) for x ∈ supp γ̂: if
k(·, x) is smooth in a certain neighbourhood V for every such x, we can bound ∂αk(·, x) on V for every x and
any multi-index α and then use dominated convergence to prove that Tk,γ̂(g)(·) is smooth on V . The theorem
then follows from the previous results and the fact that f0 has the same regularity as ΣφL defined in the proof of
the last proposition, which is the same as k, as well as the fact that ft − f0 = Tk,γ̂

(∫ t
0
∇γ̂Lα̂(fs) ds

)
.

A.4 Dynamics of the Generated Distribution

We derive in this proposition the differential equation governing the dynamics of the generated distribution.
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Proposition 8 (Proposition 3). Under Assumptions 4 and 5, Equation (5) is well-posed. Let us consider its
continuous-time version with discriminators trained on discrete distributions as described above:

∂`θ` = −Ez∼pz

[
∇θg`(z)>∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

]
. (67)

This yields, with kg` the NTK of the generator g`:

∂`α` = −∇ ·

α`Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

). (68)

Proof. Assumptions 4 and 5 ensure, via Proposition 2 and Theorem 2 that the trained discriminator is differentiable
everywhere at all times, whatever the state of the generator. Therefore, Equation (5) is well-posed.

By following Mroueh et al. (2019, Equation (5))’s reasoning on a similar equation, Equation (67) yields the
following generator dynamics for all inputs z ∈ Rd:

∂`g`(z) = −Ez′∼pz

[
∇θ`g`(z)

>∇θ`g`
(
z′
)
∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z′)

]
. (69)

We recognize the NTK kg` of the generator as:

kg`
(
z, z′

)
, ∇θ`g`(z)

>∇θ`g`
(
z′
)
. (70)

From this, we obtain the dynamics of the generator:

∂`g` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (71)

In other words, the particles transported through g` have trajectories X` which are solutions of the ODE:

dX`

d`
= v`(X`), (72)

where:

v` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (73)

Then, because by definition α` = (g`)]pz is the induced transported density, following Ambrosio & Crippa (2014),
whenever the ODE above is well-defined and has unique solutions (which is necessarily the case for any trained
g), α` verifies the continuity equation with the velocity field v`. This yields the desired result.

A.5 Optimality in Concave Setting

We derive an optimality result for concave bounded loss functions of the discriminator and positive definite
kernels.

A.5.1 Assumptions

We first assume that the NTK is positive definite over the training dataset.
Assumption 6. k is positive definite over γ̂.

This positive definite property equates for finite datasets to the invertibility of the mapping

Tk,γ̂
∣∣
supp γ̂

:L2(γ̂)→ L2(γ̂)

h 7→ Tk,γ̂(h)
∣∣
supp γ̂

, (74)

that can be seen as a multiplication by the invertible Gram matrix of k over γ̂. We further discuss this hypothesis
in Appendix B.5.

We also assume the following properties on the discriminator loss function.
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Assumption 7. Lα̂ is concave and bounded from above, and its supremum is reached on a unique point y? in
L2(γ̂).

Moreover, we need for the sake of the proof a uniform continuity assumption on the solution to Equation (9).
Assumption 8. t 7→ ft|supp γ̂ is uniformly continuous over R+.

Note that these assumptions are verified in the case of LSGAN, which is the typical application of the optimality
results that we prove in the following.

A.5.2 Optimality Result

Proposition 9 (Asymptotic optimality). Under Assumptions 1 to 3 and 6 to 8, ft converges pointwise when
t→∞, and:

Lα̂(ft) −−−→
t→∞

Lα̂(y?), f∞ = f0 + Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
y? − f0|supp γ̂

))
, f∞|supp γ̂ = y?, (75)

where we recall that:
y? = arg max

y∈L2(γ̂)

Lα̂(y). (76)

This result ensures that, for concave losses such as LSGAN, the optimum for Lα̂ in L2(Ω) is reached for infinite
training times by neural network training in the infinite-width regime when the NTK of the discriminator is
positive definite. However, this also provides the expression of the optimal network outside supp γ̂ thanks to the
smoothing of γ̂.

In order to prove this proposition, we need the following intermediate results: the first one about the functional
gradient of Lα̂ on the solution ft; the second one about a direct application of positive definite kernels showing
that one can retrieve f ∈ Hγ̂k over all Ω from its restriction to supp γ̂.
Lemma 6. Under Assumptions 1 to 3 and 6 to 8, ∇γ̂Lα̂(ft)→ 0 when t→∞. Since supp γ̂ is finite, this limit
can be interpreted pointwise.

Proof. Assumptions 1 to 3 ensure the existence and uniqueness of ft, by Theorem 1.

t 7→ f̂t , ft|supp γ̂ and Lα̂ being differentiable, t 7→ Lα̂(ft) is differentiable, and:

∂tLα̂(ft) =
〈
∇γ̂Lα̂(ft), ∂tf̂t

〉
L2(γ̂)

=

〈
∇γ̂Lα̂(ft), Tk,γ̂

(
∇γ̂Lα̂(ft)

)〉
L2(γ̂)

, (77)

using Equation (9). This equates to:

∂tLα̂(ft) =

∥∥∥∥Tk,γ̂(∇γ̂Lα̂(ft)
)∥∥∥∥2

Hγ̂k

≥ 0, (78)

where ‖·‖Hγ̂k is the semi-norm associated to the RKHS Hγ̂k . Note that this semi-norm is dependent on the
restriction of its input to supp γ̂ only. Therefore, t 7→ Lα̂(ft) is increasing. Since Lα̂ is bounded from above,
t 7→ Lα̂(ft) admits a limit when t→∞.

We now aim at proving from the latter fact that ∂tLα̂(ft)→ 0 when t→∞. We notice that ‖·‖2Hγ̂k is uniformly
continuous over L2(γ̂) since supp γ̂ is finite, ∇γ̂Lα̂ is uniformly continuous over L2(γ̂) since a′ and b′ are Lipschitz-
continuous, Tk,γ̂

∣∣
supp γ̂

is uniformly continuous as it amounts to a finite matrix multiplication, and Assumption 8
gives that t 7→ ft|supp γ̂ is uniformly continuous over R+. Therefore, their composition t 7→ ∂tLα̂(ft) (from
Equation (78)) is uniformly continuous over R+. Using Barbălat’s Lemma (Farkas & Wegner, 2016), we conclude
that ∂tLα̂(ft)→ 0 when t→∞.

Furthermore, k is positive definite over γ̂ by Assumption 6, so ‖·‖Hγ̂k is actually a norm. Therefore, since supp γ̂

is finite, the following pointwise convergence holds:

∇γ̂Lα̂(ft) −−−→
t→∞

0. (79)
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Lemma 7. Under Assumptions 1, 2 and 6, for all f ∈ Hγ̂k , the following holds:

f = Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
f |supp γ̂

))
(80)

Proof. Since k is positive definite by Assumption 6, then Tk,γ̂
∣∣
supp γ̂

from Equation (74) is invertible. Let f ∈ Hγ̂k .
Then, by definition of the RKHS in Definition 2, there exists h ∈ L2(γ̂) such that f = Tk,γ̂(h). In particular,
f |supp γ̂ = Tk,γ̂

∣∣
supp γ̂

(h), hence h = Tk,γ̂
∣∣−1

supp γ̂

(
f |supp γ̂

)
.

We can now prove the desired proposition.

Proof of Proposition 9. Let us first show that ft converges to the optimum y? in L2(γ̂). By applying Lemma 6,
we know that ∇γ̂Lα̂(ft) → 0 when t → ∞. Given that the supremum of the differentiable concave function
Lα̂:L2(γ̂) → R is achieved at a unique point y? ∈ L2(γ̂) with finite supp γ̂, then the latter convergence result
implies that f̂t , ft|supp γ̂ converges pointwise to y? when t→∞.

Given this convergence in L2(γ̂), we can deduce convergence on the whole domain Ω by noticing that ft−f0 ∈ Hγ̂k ,
from Corollary 1. Thus, using Lemma 7:

ft − f0 = Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
(ft − f0)

∣∣
supp γ̂

))
. (81)

Again, since supp γ̂ is finite, and Tk,γ̂
∣∣−1

supp γ̂
can be expressed as a matrix multiplication, the fact that ft converges

to y? over supp γ̂ implies that:

Tk,γ̂
∣∣−1

supp γ̂

(
(ft − f0)

∣∣
supp γ̂

)
−−−→
t→∞

Tk,γ̂
∣∣−1

supp γ̂

(
y? − f0|supp γ̂

)
. (82)

Finally, using the definition of the integral operator in Definition 2, the latter convergence implies the following
desired pointwise convergence:

ft −−−→
t→∞

f0 + Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
y? − f0|supp γ̂

))
. (83)

We showed at the beginning of this proof that ft converges to the optimum y? in L2(γ̂), so Lα̂(ft)→ Lα̂(y?) by
continuity of Lα̂ as claimed in the proposition.

A.6 Case Studies of Discriminator Dynamics

We study in the remaining of this section the expression of the discriminators in the case of the IPM loss and
LSGAN, as described in Section 4, and of the original GAN formulation.

A.6.1 Preliminaries

We first need to introduce some definitions.

The presented solutions to Equation (9) leverage a notion of functions of linear operators, similarly to functions
of matrices (Higham, 2008). We define such functions in the simplified case of non-negative symmetric compact
operators with a finite number of eigenvalues, such as Tk,γ̂ .
Definition 3. Let A:L2(γ̂)→ L2(Ω) be a non-negative symmetric compact linear operator with a finite number
of eigenvalues, for which the spectral theorem guarantees the existence of an countable othornormal basis of
eigenfunctions with non-negative eigenvalues. If ϕ:R+ → R, we define ϕ(A) as the linear operator with the same
eigenspaces as A, with their respective eigenvalues mapped by ϕ; in other words, if λ is an eigenvalue of A, then
ϕ(A) admits the eigenvalue ϕ(λ) with the same eigenspace.
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In the case where A is a matrix, this amounts to diagonalizing A and transforming its diagonalization elementwise
using ϕ. Note that Tk,γ̂ has a finite number of eigenvalues since it is generated by a finite linear combination of
linear operators (see Definition 2).

We also need to defined the following Radon–Nikodym derivatives with inputs in supp γ̂:

ρ =
d
(
β̂ − α̂

)
d
(
β̂ + α̂

) , ρ1 =
dα̂

dγ̂
, ρ2 =

dβ̂

dγ̂
, (84)

knowing that

ρ =
1

2
(ρ2 − ρ1), ρ1 + ρ2 = 2. (85)

These functions help us to compute the functional gradient of Lα̂, as follows.
Lemma 8. Under Assumption 3:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = ρ1 ·

(
a′ ◦ f

)
− ρ2 ·

(
b′ ◦ f

)
. (86)

Proof. We have from Equation (2):

Lα̂(f) = Ex∼α̂
[
af (x)

]
− Ey∼β̂

[
bf (y)

]
=
〈
ρ1, af

〉
L2(γ̂)

−
〈
ρ2, bf

〉
L2(γ̂)

, (87)

hence by composition:
∇γ̂Lα̂(f) = ρ1 ·

(
a′ ◦ f

)
− ρ2 ·

(
b′ ◦ f

)
= ρ1a

′
f − ρ2b

′
f . (88)

A.6.2 LSGAN

Proposition 5. Under Assumptions 1 and 2, the solutions of Equation (9) for a = −(id + 1)
2 and b = −(id− 1)

2

are the functions defined for all t ∈ R+ as:

ft = exp
(
−4tTk,γ̂

)
(f0 − ρ) + ρ = f0 + ϕt

(
Tk,γ̂

)
(f0 − ρ), (89)

where
ϕt:x 7→ e−4tx − 1. (90)

Proof. Assumptions 1 and 2 are already assumed and Assumption 3 holds for the given a and b in LSGAN. Thus,
Theorem 1 applies, and there exists a unique solution t 7→ ft to Equation (9) over R+ in L2(Ω) for a given initial
condition f0. Therefore, there remains to prove that, for a given initial condition f0,

g: t 7→ gt = f0 + ϕt
(
Tk,γ̂

)
(f0 − ρ) (91)

is a solution to Equation (9) with g0 = f0 and gt ∈ L2(Ω) for all t ∈ R+.

Let us first express the gradient of Lα̂. We have from Lemma 8, with af = −(f + 1)
2 and bf = −(f − 1)

2:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −2ρ1(f + 1)− 2ρ2(f − 1) = 4ρ− 4f. (92)

So Equation (9) equates to:
∂tft = 4Tk,γ̂(ρ− ft). (93)

Now let us prove that gt is a solution to Equation (93). We have:

∂tgt = −4
(
Tk,γ̂ ◦ exp

(
−4tTk,γ̂

))
(f0 − ρ) = −4

(
Tk,γ̂ ◦ exp

(
−4tTk,γ̂

))
(f0 − ρ). (94)

Restricted to supp γ̂, we can write from Equation (91):

gt = f0 +

(
exp
(
−4tTk,γ̂

∣∣
supp γ̂

)
− idL2(γ̂)

)
(f0 − ρ), (95)
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and plugging this in Equation (94):
∂tgt = −4Tk,γ̂(gt − ρ), (96)

where we retrieve the differential equation of Equation (93). Therefore, gt is a solution to Equation (93).

It is clear that g0 = f0. Moreover, Tk,γ̂ being decomposable in a finite orthonormal basis of elements of operators
over L2(Ω), its exponential has values in L2(Ω) as well, making gt belong to L2(Ω) for all t. With this, the proof
is complete.

A.6.3 IPMs

Proposition 4. Under Assumptions 1 and 2, the solutions of Equation (9) for a = b = id are the functions of
the form ft = f0 + tf∗α̂, where f

∗
α̂ is the unnormalized MMD witness function, yielding:

f∗α̂ = Ex∼α̂
[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

]
, Lα̂(ft) = Lα̂(f0) + t ·MMD2

k

(
α̂, β̂

)
. (97)

Proof. Assumptions 1 and 2 are already assumed and Assumption 3 holds for the given a and b of the IPM loss.
Thus, Theorem 1 applies, and there exists a unique solution t 7→ ft to Equation (9) over R+ in L2(Ω) for a given
initial condition f0. Therefore, in order to find the solution of Equation (9), there remains to prove that, for a
given initial condition f0,

g: t 7→ gt = f0 + tf∗α̂ (98)

is a solution to Equation (9) with g0 = f0 and gt ∈ L2(Ω) for all t ∈ R+.

Let us first express the gradient of Lα̂. We have from Lemma 8, with af = bf = f :

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −2ρ. (99)

So Equation (9) equates to:

∂tft = −2Tk,γ̂(ρ) = 2

∫
x

k(·, x)ρ(x) dγ̂(x) =

∫
x

k(·, x) dα̂(x)−
∫
y

k(·, y) dβ̂(y), (100)

by definition of ρ (see Equation (84)), yielding:

∂tft = f∗α̂. (101)

Clearly, t 7→ gt = f0 + tf∗α̂ is a solution of the latter equation, g0 = f0 and gt ∈ L2(Ω) given that supp γ̂ is finite
and k ∈ L2

(
Ω2
)
by assumption. The set of solutions for the IPM loss is thus characterized.

Finally, let us compute Lα̂(ft). By linearity of Lα̂ for a = b = id:

Lα̂(ft) = Lα̂(f0) + t · Lα̂(f∗α̂) = Lα̂(f0) + t · Lα̂
(
Tk,γ̂(−2ρ)

)
. (102)

But, from Equation (87), Lα̂(f) = 〈−2ρ, f〉L2(γ̂), hence:

Lα̂(ft) = Lα̂(f0) + t ·
〈
−2ρ, Tk,γ̂(−2ρ)

〉
L2(γ̂)

= Lα̂(f0) + t ·
∥∥Tk,γ̂(−2ρ)

∥∥2

Hγ̂k
. (103)

By noticing that Tk,γ̂(−2ρ) = f∗α̂ and that
∥∥f∗α̂∥∥Hγ̂k = MMDk

(
α̂, β̂

)
since f∗α̂ is the unnormalized MMD witness

function, the expression of Lα̂(ft) in the proposition is obtained.

A.6.4 Vanilla GAN

Unfortunately, finding the solutions to Equation (9) in the case of the original GAN formulation, i.e. a = log(1− σ)
and b = − log σ, remains to the extent of our knowledge an open problem. We provide in the remaining of this
section some leads that might prove useful for more advanced analyses.

Let us first determine the expression of Equation (9) for vanilla GAN.
Lemma 9. For a = log(1− σ) and b = − log σ, Equation (9) equates to:

∂tft = Tk,γ̂
(
ρ2 − 2σ(f)

)
. (104)
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Proof. We have from Lemma 8, with af = bf = f :

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −ρ1

σ′(f)

1− σ(f)
+ ρ2

σ′(f)

σ(f)
. (105)

By noticing that σ′(f) = σ(f)
(
1− σ(f)

)
, we obtain:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −ρ1σ(f) + ρ2

(
1− σ(f)

)
= ρ2 − 2σ(f). (106)

By plugging the latter expression in Equation (9), the desired result is achieved.

Note that Assumption 3 holds for these choices of a and b. Therefore, under Assumptions 1 and 2, there exists a
unique solution to Equation (104) in R+ → L2(Ω) with a given initialization f0.

Let us first study Equation (104) in the simplified case of a one-dimensional ordinary differential equation.

Proposition 10. Let r ∈ {0, 2} and λ ∈ R. The set of differentiable solutions over R to this ordinary differential
equation:

∂tyt = λ
(
r − 2σ(yt)

)
(107)

is the following set:

S =

{
y: t 7→ (1− r)

(
W
(

e2λt+C
)
− 2λt− C

) ∣∣∣∣∣ C ∈ R

}
, (108)

where W the is principal branch of the Lambert W function (Corless et al., 1996).

Proof. The theorem of Cauchy-Lipschitz ensures that there exists a unique global solution to Equation (107)
for a given initial condition y0 ∈ R. Therefore, we only need to show that all elements of S are solutions of
Equation (107) and that they can cover any initial condition.

Let us first prove that y: t 7→ (1− r)
(
W
(
e2λt+C

)
− 2λt− C

)
is a solution of Equation (107). Let us express the

derivative of y:
1

1− r
∂tyt = 2λ

(
e2λt+CW ′

(
e2λt+C

)
− 1

)
. (109)

W ′(z) = W (z)

z(1+W (z))
, so:

1

1− r
∂tyt = 2λ

(
W
(
e2λt+C

)
1 +W

(
e2λt+C

) − 1

)
= − 2λ

1 +W
(
e2λt+C

) . (110)

Moreover, W (z) = ze−W (z), and with r − 1 ∈ {1,−1}:

1

1− r
∂tyt = − 2λ

1 + e2λt+Ce−W(e2λt+C)
= − 2λ

1 + e(r−1)yt
. (111)

Finally, we notice that, since r ∈ {0, 2}:

λ
(
r − 2σ(yt)

)
= − 2λ(1− r)

1 + e(r−1)yt
. (112)

Therefore:
∂tyt = λ

(
r − 2σ(yt)

)
(113)

and yt is a solution to Equation (107).

Since y0 = (1− r)
(
W
(
eC
)
− C

)
and z 7→W (ez)− z can be proven to be bijective over R, the elements of S can

cover any initial condition. With this, the result is proved.
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Suppose that f0 = 0 in Equation (104) and that ρ2 has values in {0, 2} – i.e. α̂ and β̂ have disjoint supports
(which is the typical case for distributions with finite support). From Proposition 10, a candidate solution would
be:

ft = ϕt(x)(ρ2 − 1) = −ϕt(x)(ρ), (114)

where
ϕt:x 7→W

(
e2tx+1

)
− 2tx− 1, (115)

since the initial condition y0 = 0 gives the constant value C = 1 in Equation (108). Note that the Lambert W
function of a symmetric linear operator is well-defined, all the more so as we choose the principal branch of the
Lambert function in our case; see the work of Corless et al. (2007) for more details. Note also that the estimation
of W (ez) is actually numerically stable using approximations from Iacono & Boyd (2017).

However, Equation (114) cannot be a solution of Equation (104). Indeed, one can prove by following essentially
the same reasoning as the proof of Proposition 10 that:

∂tft = 2

(
Tk,γ̂ ◦

(
ψt
(
Tk,γ̂

))−1
)

(ρ2 − 1), (116)

with
ψt:x 7→ 1 +W

(
e2tx+1

)
> 0. (117)

However, this does not allow us to obtain Equation (104) since in the latter the sigmoid is taken coordinate-wise,
where the exponential in Equation (116) acts on matrices.

Nonetheless, for t small enough, ft as defined in Equation (116) should approximate the solution of Equation (104),
since sigmoid is approximately linear around 0 and ft ≈ 0 when t is small enough. We find in practice that for
reasonable values of t, e.g. t ≤ 5, the approximate solution of Equation (116) is actually close to the numerical
solution of Equation (104) obtained using an ODE solver. Thus, we provide here an candidate approximate
expression for the discriminator in the setting of the original GAN formulation – i.e., for binary classifiers. We
leave for future work a more in-depth study of this case.

B DISCUSSIONS AND REMARKS

We develop in this section some remarks and explanations on the topics that are broached in the main paper.

B.1 From Finite to Infinite-Width Networks

The constancy of the neural tangent kernel during training when the width of the network becomes increasingly
large is broadly applicable. As summarized by Liu et al. (2020), typical neural networks with the building blocks
of multilayer perceptrons and convolutional neural networks comply with this property, as long as they end with
a linear layer and they do not have any bottleneck – indeed, this constancy needs the minimum internal width to
grow unbounded (Arora et al., 2019). This includes, for example, residual convolutional neural networks (He
et al., 2016). The requirement of a final linear activation can be circumvented by transferring this activation into
the loss function, as we did for the original GAN formulation in Section 2. This makes our framework encompass
a wide range of discriminator architectures.

Indeed, many building blocks of state-of-the-art discriminators can be studied in this infinite-width regime
with a constant NTK, as highlighted by the exhaustiveness of the Neural Tangents library (Novak et al., 2020).
Assumptions about the used activation functions are mild and include many standard activations such as ReLU,
sigmoid and tanh. Beyond fully connected linear layers and convolutions, NTK constancy also affect typical
operations such as self-attention (Hron et al., 2020), layer normalization and batch normalization (Yang, 2020).
This variety of networks affected by the constancy of the NTK supports the generality of our approach, as it
includes powerful discriminator architectures such as BigGAN (Brock et al., 2019).

We highlight that the NTK of the discriminator remains constant throughout the whole GAN optimization
process, and not only under a fixed generator. Indeed, if it remains constant in-between generator updates, then
it also remains constant when the generator changes. This is because, for a finite training time, the constancy of
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the NTK solely depends on the network architecture and initialization, regardless of the training loss which may
change in the course of training without affecting the NTK.

There are nevertheless some limits to the NTK approximation, as we are not aware of works studying the
application of the infinite-width regime to some operations such as spectral normalization, and networks in the
regime of a constant NTK cannot perform feature learning as they are equivalent to kernel methods (Geiger et al.,
2020; Yang & Hu, 2021). However, this framework remains general and constitutes the most advanced attempt at
theoretically modeling the discriminator’s architecture in GANs.

B.2 Loss of the Generator and its Gradient

We highlight in this section the importance of taking into account discriminator gradients in the optimization of
the generator. Let us focus on an example similar to the one of Arjovsky et al. (2017, Example 1) and choose as
β a single Dirac centered at 0 and as αg = αθ single Dirac centered at xθ = θ (the generator parameters being
the coordinates of the generated point). Let us focus for the sake of simplicity on the case of LSGAN since it is a
recurring example in this work, but a similar reasoning can be done for other GAN instances.

In the theoretical min-max formulation of GANs considered by Arjovsky et al. (2017), the generator is trained to
minimize the following quantity:

Cf?αθ (αθ) , Ex∼αθ
[
cf?αθ

(x)
]

= f?αθ (xθ)
2
, (118)

where:
f?αθ = arg max

f∈L2( 1
2αθ+ 1

2β)

{
Lαθ (f) , Ex∼αθ

[
af (x)

]
− Ey∼β

[
bf (y)

]}
= arg min
f∈L2( 1

2αθ+ 1
2β)

{(
f?αθ (xθ) + 1

)2

+
(
f?αθ (0)− 1

)2
}
.

(119)

Consequently, f?αθ (0) = 1 and f?αθ (xθ) = −1 when xθ 6= 0, thus in this case:

Cf?αθ (αθ) = 1. (120)

This constancy of the generator loss would make it impossible to be learned by gradient descent, as pointed out
by Arjovsky et al. (2017).

However, the setting does not correspond to the actual optimization process used in practice and represented by
Equation (3). We do have ∇θCf?αθ (αθ) = 0 when xθ 6= 0, but the generator never uses this gradient in standard
GAN optimization. Indeed, this gradient takes into account the dependency of the optimal discriminator f?αθ in
the generator parameters, since the optimal discriminator depends on the generated distribution. Yet, in practice
and with few exceptions such as Unrolled GANs (Metz et al., 2017) and as done in Equation (3), this dependency
is ignored when computing the gradient of the generator, because of the alternating optimization setting – where
the discriminator is trained in-between generator’s updates. Therefore, despite being constant on the training
data, this loss can yield non-zero gradients to the generator. However, this requires the gradient of f?αθ to be
defined, which is the issue addressed in Section 2.2.

B.3 Differentiability of the Bias-Free ReLU Kernel

Theorem 2 contradicts the results of Bietti & Mairal (2019) on the regularity of the NTK of a bias-free ReLU
MLP with one hidden layer, which can be expressed as follows (up to a constant scaling the matrix multiplication
in linear layers):

k(x, y) = ‖x‖‖y‖κ
(
〈x, y〉
‖x‖‖y‖

)
, (121)

where
κ: [0, 1]→ R

u 7→ 2

π
u(π − arccosu) +

1

π

√
1− u2

. (122)
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More particularly, Bietti & Mairal (2019, Proposition 3) claim that k(·, y) is not Lipschitz on y for all y in the
unit sphere. By following their proof, it amounts to prove that k(·, y) is not Lipschitz on y for all y in any
centered sphere. This would imply that k is not differentiable for all inputs (x, y), which contradicts our result.
We highlight that this also contradicts empirical evidence, as we did observe the Lipschitzness of such NTK in
practice using the Neural Tangents library (Novak et al., 2020).

We believe that the mistake in the proof of Bietti & Mairal (2019) lies in the confusion between functions κ and
k0:x, y 7→ κ

(
〈x,y〉
‖x‖‖y‖

)
, which have different geometries. Their proof relies on the fact that κ is indeed non-Lipschitz

in the neighborhood of u = 1. However, this does not imply that k0:x, y 7→ κ
(
〈x,y〉
‖x‖‖y‖

)
is not Lipschitz, or not

derivable. We can prove that it is actually at least locally Lipschitz.

Indeed, let us compute the following derivative for x 6= y ∈ Rn, x 6= 0 and y 6= 0:

∂k0(x, y)

∂x
=
y‖x‖ − x

‖x‖ 〈x, y〉

‖x‖2‖y‖
κ′(u) =

1

‖x‖‖y‖

(
y − 〈x, y〉 x

‖x‖2

)
κ′(u), (123)

where u = 〈x,y〉
‖x‖‖y‖ and:

π · κ′(u) =
u√

1− u2
+ 2(π − arccosu). (124)

Note that κ′(u) ∼u→1−
πu√
1−u2

∼u→1−
π√

2
√

1−u . Therefore:

π√
2
· ∂k0(x, y)

∂x
∼x→y

1

‖y‖2

(
y − 〈x, y〉 x

‖x‖2

) √
‖x‖‖y‖√

‖x‖‖y‖ − 〈x, y〉

∼x→y
‖x‖2y − 〈x, y〉x

‖y‖3
√
‖x‖‖y‖ − 〈x, y〉

∼x→y
‖y‖2 − 〈x, y〉

‖y‖3
√
‖y‖2 − 〈x, y〉

y −−−→
x→y

0,

(125)

which proves that k0 is actually Lipschitz around points (y, y), as well as differentiable, and confirms our result.

B.4 Integral Operator and Instance Noise

Instance noise (Sønderby et al., 2017) consists in adding random Gaussian noise to the input and target samples.
This amounts to convolving the data distributions with a Gaussian density, which will have the effect of smoothing
the discriminator. In the following, for the case of IPM losses, we link instance noise with our framework, showing
that smoothing of the data distributions already occurs via the NTK kernel, stemming from the fact that the
discriminator is a neural network trained with gradient descent.

More specifically, it can be shown that if k is an RBF kernel, the optimal discriminators in both case are the
same. This is based on the fact that the density of a convolution of an empirical measure µ̂ = 1

N

∑
i δxi , where δz

is the Dirac distribution centered on z, and a Gaussian density k̃ with associated RBF kernel k can be written as
k̃ ∗ µ̂ = 1

N

∑
i k(xi, ·).

Let us consider the following regularized discriminator optimization problem in L2(R) smoothed from L2(Ω) with
instance noise, i.e. convolving α̂ and β̂ with k̃.

sup
f∈L2(R)

{
Lk̃α̂(f) , Ex∼k̃∗α̂

[
f(x)

]
− Ey∼k̃∗β̂

[
f(y)

]
− λ‖f‖2L2

}
(126)

The optimum f IN can be found by taking the gradient:

∇f
(
Lk̃α̂
(
f IN
)
− λ
∥∥∥f IN

∥∥∥2

L2

)
= 0 ⇔ f IN =

1

2λ

(
k̃ ∗ α̂− k̃ ∗ β̂

)
. (127)
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If we now study the resolution of the optimization problem in Hγ̂k as in Section 4.1 with f0 = 0, we find the
following discriminator:

ft = t
(
Ex∼α̂

[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

])
= t
(
k̃ ∗ α̂− k̃ ∗ β̂

)
. (128)

Therefore, we have that f IN ∝ ft, i.e. instance noise and regularization by neural networks obtain the same
smoothed solution.

This analysis was done using the example of an RBF kernel, but it also holds for stationary kernels, i.e.
k(x, y) = k̃(x− y), which can be used to convolve measures. We remind that this is relevant, given that NTKs
are stationary over spheres (Jacot et al., 2018; Yang & Salman, 2019), around where data can be concentrated in
high dimensions.

B.5 Positive Definite NTKs

Optimality results in the theory of NTKs usually rely on the assumption that the considered NTK k is positive
definite over the training dataset γ̂ (Jacot et al., 2018; Zhang et al., 2020). This property offers several theoretical
advantages.

Indeed, this gives sufficient representational power to its RKHS to include the optimal solution over γ̂. Moreover,
this positive definite property equates for finite datasets to the invertibility of the mapping

Tk,γ̂
∣∣
supp γ̂

:L2(γ̂)→ L2(γ̂)

h 7→ Tk,γ̂(h)
∣∣
supp γ̂

, (129)

that can be seen as a multiplication by the invertible Gram matrix of k over γ̂. From this, one can retrieve the
expression of f ∈ Hγ̂k from its restriction f |supp γ̂ to supp γ̂ in the following way:

f = Tk,γ̂ ◦ Tk,γ̂
∣∣−1

supp γ̂

(
f |supp γ̂

)
, (130)

as shown in Lemma 7. Finally, as shown by Jacot et al. (2018) and in Appendix A.5, this makes the discriminator
loss function strictly increase during training.

One may wonder whether this assumption is reasonable for NTKs. Jacot et al. (2018) proved that it indeed
holds for NTKs of non-shallow MLPs with non-polynomial activations if data is supported on the unit sphere,
supported by the fact that the NTK is stationary over the unit sphere. Others, such as Fan & Wang (2020),
have observed positive definiteness of the NTK subject to specific asumptions on the networks and data. We are
not aware of more general results of this kind. However, one may conjecture that, at least for specific kind of
networks, NTKs are positive definite for any training data.

Indeed, besides global convergence results (Allen-Zhu et al., 2019), prior work indicate that MLPs are universal
approximators (Hornik et al., 1989; Leshno et al., 1993). This property can be linked in our context to universal
kernels (Steinwart, 2001), which are guaranteed to be positive definite over any training data (Sriperumbudur
et al., 2011). Universality is linked to the density of the kernel RKHS in the space of continuous functions. In the
case of NTKs, previously cited approximation properties can be interpreted as signs of expressive RKHSs, and
thus support the hypothesis of universal NTKs. Furthermore, beyond positive definiteness, universal kernels are
also characteristic (Sriperumbudur et al., 2011), which is interesting when they are used to compute MMDs, as we
do in Section 4.1. Note that for the standard case of ReLU MLPs, Ji et al. (2020) showed universal approximation
results in the infinite-width regime, and works such as the one of Chen & Xu (2021) observed that their RKHS is
close to the one of the Laplace kernel, which is positive definite.

Bias-Free ReLU NTKs are not Characteristic. As already noted by Leshno et al. (1993), the presence
of bias is important when it comes to representational power of MLPs. We can retrieve this observation in our
framework. In the case of a ReLU shallow network with one hidden layer and without bias, Bietti & Mairal (2019)
determine its associated NTK as follows (up to a constant scaling the matrix multiplication in linear layers):

k(x, y) = ‖x‖‖y‖κ
(
〈x, y〉
‖x‖‖y‖

)
, (131)
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Table 1: Sinkhorn divergence (Feydy et al., 2019, lower is better, similar to W2) averaged over three runs
between the final generated distribution and the target dataset for the 8 Gaussians problem.

Loss RBF kernel ReLU ReLU (no bias) Sigmoid

IPM (inf.) (2.60± 0.06) · 10−2 (9.40± 2.71) · 10−7 (9.70± 1.88) · 10−2 (8.40± 0.02) · 10−2

IPM — (1.21± 0.14) · 10−1 (1.20± 0.60) · 100 (7.40± 1.30) · 10−1

LSGAN (inf.) (4.21± 0.10) · 10−1 (7.56± 0.45) · 10−2 (1.27± 0.01) · 101 (7.35± 0.11) · 100

LSGAN — (3.07± 0.68) · 100 (7.52± 0.01) · 100 (7.41± 0.54) · 100

Table 2: Sinkhorn divergence averaged over three runs between the final generated distribution and the target
dataset for the Density problem.

Loss RBF kernel ReLU ReLU (no bias) Sigmoid

IPM (inf.) (2.37± 0.32) · 10−3 (3.34± 0.49) · 10−9 (7.34± 0.34) · 10−2 (6.25± 0.31) · 10−3

IPM — (5.02± 1.19) · 10−3 (9.25± 0.30) · 10−2 (3.06± 0.57) · 10−2

LSGAN (inf.) (7.53± 0.59) · 10−3 (1.49± 0.11) · 10−3 (2.80± 0.03) · 10−1 (2.21± 0.01) · 10−1

LSGAN — (1.53± 1.08) · 10−2 (1.64± 0.19) · 10−1 (5.88± 0.80) · 10−2

with in particular k(x, 0) = 0 for all x ∈ Ω; suppose that 0 ∈ Ω. This expression of the kernel implies that k is
not positive definite for all datasets: take for example x = 0 and y ∈ Ω \ {0}; then the Gram matrix of k has a
null row, hence k is not strictly positive definite over {x, y}. Another consequence is that k is not characteristic.
Indeed, take probability distributions µ = δ y

2
and ν = 1

2

(
δx + δy

)
with δz being the Dirac distribution centered

on z ∈ Ω, and where x = 0 and y ∈ Ω \ {0}. Then:

Ez∼µk(z, ·) = k

(
1

2
y, ·
)

=
1

2
k(y, ·) =

1

2

(
k(y, ·) + k(x, ·)

)
= Ez∼νk(z, ·), (132)

i.e., kernel embeddings of µ and ν 6= µ are identical, making k not characteristic by definition.

B.6 Societal Impact

As our work is mainly theoretical and does not deal with real-world data, it does not have direct broader negative
impact on the society. However, the practical perspectives that it opens constitute an object of interrogation.
Indeed, the developments of performant generative models can be the source of harmful manipulation (Tolosana
et al., 2020) and reproduction of existing biases in databases (Jain et al., 2020), especially as GANs are still
misunderstood. While such negative effects should be considered, attempt such as ours at explaining generative
models might also lead to ways to mitigate potential harms by paving the way for more principled GAN models.

C GAN(TK)2 AND FURTHER EMPIRICAL ANALYSES

We present in this section additional experimental results that complement and explain some of the results already
exposed in Section 5. All these experiments were conducted using the proposed general toolkit GAN(TK)2.

We focus in this article on particular experiments for the sake of clarity and as an illustration of the potential
of analysis of our framework, but GAN(TK)2 is a general-purpose toolkit centered around the infinite-width of
the discriminator and could be leveraged for an even more extensive empirical analysis. We specifically focus on
the IPM and LSGAN losses for the discriminator since they are the two losses for which we know the analytic
behavior of the discriminator in the infinite-width limit, but other losses can be studied as well in GAN(TK)2.
We leave a large-scale empirical study of our framework, which is out of the scope of this paper, for future work.



A Neural Tangent Kernel Perspective of GANs

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

IPM, RBF IPM, ReLU (infinite) IPM, ReLU, no bias (infinite) IPM, Sigmoid (infinite)

−0.5 0.0 0.5 1.0
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Initialization

β̂
α̂

−0.5 0.0 0.5 1.0

IPM, ReLU (finite)

−0.5 0.0 0.5 1.0

IPM, ReLU, no bias (finite)

−0.5 0.0 0.5 1.0

IPM, Sigmoid (finite)

Figure 3: Generator (l) and target (×) samples for different methods applied to the Density problem. In the
background, cf? .
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Figure 4: Initial generator (l) and target (×) samples for the AB problem.

Table 3: Sinkhorn divergence averaged over three runs between the final generated distribution and the target
dataset for the AB problem.

Loss RBF kernel ReLU ReLU (no bias) Sigmoid

IPM (inf.) (4.65± 0.82) · 10−3 (2.64± 2.13) · 10−9 (6.11± 0.19) · 10−3 (5.69± 0.38) · 10−3

IPM — (2.75± 0.20) · 10−3 (3.65± 1.44) · 10−2 (1.25± 0.32) · 10−2

LSGAN (inf.) (1.13± 0.05) · 10−2 (8.63± 2.24) · 10−3 (1.02± 0.40) · 10−1 (1.40± 0.06) · 10−2

LSGAN — (1.32± 1.30) · 10−1 (2.57± 0.73) · 10−2 (8.78± 2.23) · 10−2
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(a) RBF kernel: blurry digits.

(b) ReLU: sharp digits.

(c) ReLU (no bias): mostly sharp digits with some artifacts and blurry images.

Figure 5: Uncurated samples from the results of the descent of a set of 1024 particules over a subset of 1024
elements of MNIST, starting from a standard Gaussian. Training is done using the IPM loss in the infinite-width
kernel setting.

C.1 Two-Dimensional Datasets

We provide in Table 1 numerical results corresponding to the experiments described in Section 5 on the 8 Gaussians
dataset.

We present additional experimental results on two other two-dimensional problems, Density and AB; see,
respectively, Figures 3 and 4. Numerical results are detailed in Tables 2 and 3. We globally retrieve the same
conclusions that we developed in Section 5 on these datasets with more complex shapes.

C.2 ReLU vs. Sigmoid Activations

We additionally introduce a new baseline for the 8 Gaussians, Density and AB problems, where we replace
the ReLU activation in the discriminator by a sigmoid-like activation σ̃, that we abbreviate to sigmoid in this
experimental study for readability purposes. We choose σ̃ instead of the actual sigmoid σ for computational
reasons, since σ̃, contrary to σ, allows for analytic computations of NTKs in the Neural Tangents library (Novak
et al., 2020). σ̃ is defined in the latter using the error function erf scaled in order to minimize a squared loss with
respect to σ over [−5, 5], with the following expression:

σ̃:x 7→ 1

2

(
erf

(
x

2.402 056 353 171 979 6

)
+ 1

)
. (133)

Results are given in Tables 1 to 3 and an illustration is available in Figure 3. We observe that the sigmoid baseline
is consistently outperformed by the RBF kernel and ReLU activation (with bias) for all regimes and losses. This
is in accordance with common experimental practice, where internal sigmoid activations are found less effective
than ReLU because of the potential activation saturation that they can induce.

We provide a qualitative explanation to this underperformance of sigmoid via our framework in Appendix C.4.

C.3 Qualitative MNIST Experiment

An experimental analysis of our framework on complex image datasets is out the scope of our study – we leave
it for future work. Nonetheless, we present an experiment on MNIST images (LeCun et al., 1998) in a similar
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setting as the experiments on two-dimensional point clouds of the previous sections. We make a point cloud α̂,
initialized to a standard Gaussian, move towards a subset of the MNIST dataset following the gradients of the
IPM loss in the infinite-width regime. Qualitative results are presented in Figure 5.

We notice, similarly to the two-dimensional datasets, that the ReLU network with bias outperforms its bias-free
counterpart and a standard RBF kernel in terms of sample quality. The difference between the RBF kernel
and ReLU NTK is even more flagrant in this complex high-dimensional setting, as the RBF kernel is unable to
produce accurate samples.

C.4 Visualizing the Gradient Field Induced by the Discriminator

We raise in Section 4 the open problem of studying the convergence of the generated distribution towards the
target distribution with respect to the gradients of the discriminator. We aim in this section at qualitatively
studying these gradients in a simplified case that could shed some light on the more general setting and explain
some of our experimental results. These gradient fields can plotted using the provided GAN(TK)2 toolkit.

C.4.1 Setting

Since we study gradients of the discriminator expressed in Equation (10), we assume that f0 = 0 – for instance,
using the anti-symmetrical initialization Zhang et al. (2020) – in order to ignore residual gradients from the
initialization.

By Theorem 1, for any loss and any training time, the discriminator can be expressed as f?α̂ = Tk,γ̂(h0), for some
h0 ∈ L2(γ̂). Thus, there exists h1 ∈ L2(γ̂) such that:

f?α̂ =
∑

x∈supp γ̂

h1(x)k(x, ·). (134)

Consequently,

∇f?α̂ =
∑

x∈supp γ̂

h1(x)∇k(x, ·), ∇cf?α̂ =
∑

x∈supp γ̂

h1(x)∇k(x, ·)c′
(
f?α̂(·)

)
. (135)

Dirac-GAN Setting. The latter linear combination of gradients indicates that, by examining gradients of cf?α̂
for pairs of (x, y) ∈ supp α̂× supp β̂, one could already develop potentially valid intuitions that can hold even
when multiple points are considered. This is especially the case for the IPM loss, as h0, h1 have a simple form:
h1(x) = 1 if x ∈ supp α̂ and h1(y) = −1 if y ∈ supp α̂ (assuming points from α̂ and β̂ are uniformly weighted);
moreover, note that c′

(
f?α̂(·)

)
= 1. Thus, we study here ∇cf?α̂ when α̂ and β̂ are only comprised of one point, i.e.

the setting of Dirac GAN (Mescheder et al., 2018), with α̂ = δx , α̂x and β̂ = δy.

Visualizing High-Dimensional Inputs. Unfortunately, the gradient field is difficult to visualize when the
samples live in a high-dimensional space. Interestingly, the NTK k(x, y) for any architecture starting with a fully
connected layer only depends on ‖x‖, ‖y‖ and 〈x, y〉 (Yang & Salman, 2019), and therefore all the information
of ∇cf?α̂ is contained in Span{x, y}. From this, we show in Figures 6 and 7 the gradient field ∇cf?α̂ in the
two-dimensional space Span{x, y} for different architectures and losses in the infinite-width regime described in
Section 5 and in this section. Figure 6 corresponds to two-dimensional x, y ∈ R2, and Figure 7 to high-dimensional
x, y ∈ R512. Note that in the plots, the gradient field is symmetric w.r.t. the horizontal axis and for this reason
we have restricted ourselves to the case where the second coordinate is positive.

Convergence of the Gradient Flow. In the last paragraph, we have seen that the gradient field in the
Dirac-GAN setting lives in the two-dimensional Span{x, y}, independently of the dimensionality of x, y. This
means that when training the generated distribution, as in Section 5, the position of the particle x always remains
in this two-dimensional space, and hence (non-)convergence in this setting can be easily checked by studying this
gradient field. This is what we do in the following, for different architectures and losses.

C.4.2 Qualitative Analysis of the Gradient Field

x is Far from y. When generated outputs are far away from the target, it is essential that their gradient has
a large enough magnitude in order to pull these points towards the target. The behavior of the gradients for
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Figure 6: Gradient field ∇cf?α̂x (x) received by a generated sample x ∈ R2 (i.e. α̂ = α̂x = δx) initialized to x0

with respect to its coordinates in Span{x0, y} where y, marked by a ×, is the target distribution (i.e. β̂ = δy),
with ‖y‖ = 1. Arrows correspond to the movement of x in Span{x0, y} following ∇cf?α̂x (x), for different losses
and networks; scales are specific for each pair of loss and network. The ideal case is the convergence of x along
this gradient field towards the target y. Note that in the chosen orthonormal coordinate system, without loss of
generality, y has coordinate (1, 0); moreover, the gradient field is symmetrical with respect to the horizontal axis.
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Figure 7: Same plot as Figure 6 but with underlying points x, y ∈ R512.
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distant points can be observed in the plots. For ReLU networks, for both losses, the gradients for distant points
seem to be well behaved and large enough. Note that in the IPM case, the magnitude of the gradients is even
larger when x is further away from y. This is not the case for the RBF kernel when the variance parameter is
too small, as the magnitude of the gradient becomes prohibitively small. We highlight that we selected a large
variance parameter in order to avoid such a behavior, but diminishing magnitudes can still be observed. Note
that choosing an overly large variance may also have a negative impact on the points that are closer to target.

x is Close to y. A particularity of the NTK of ReLU discriminators with bias that arises from this study
is that the gradients vanish more slowly when the generated x tends to the target y, compared to NTKs of
ReLU without bias and sigmoid networks, and to the RBF kernel. We hypothesize that this is also another
distinguishing feature that helps the generated distribution to converge more easily to the target distribution,
especially when they are not far apart. On the contrary, this gradient vanishes more rapidly for NTKs of ReLU
without bias and sigmoid networks, compared to the RBF kernel. This can explain the worse performance of such
NTKs compared to the RBF kernel in our experiments (see Tables 1 to 3). Note that this phenomenon is even
more pronounced in high-dimensional spaces such as in Figure 7.

x is Close to 0. Finally, we highlight gradient vanishing and instabilities around the origin for ReLU networks
without bias. This is related to its differentiability issues at the origin exposed in Section 3.3, and to its lack
of representational power discussed in Appendix B.5. This can also be retrieved on larger scale experiments of
Figures 2 and 3 where the origin is the source of instabilities in the descent.

Sigmoid Network. It is also possible to evaluate the properties of the discriminator’s gradient for architectures
that are not used in practice, such as networks with the sigmoid activation. Figures 2 and 3 provide a clear
explanation: as stated above, the magnitudes of the gradients become too small when x→ y, and heavily depend
on the direction from which x approaches y. Ideally, the induced gradient flow should be insensitive to the
direction in order for the convergence to be reliable and robust, which seems to be the case for ReLU networks.

D EXPERIMENTAL DETAILS

We detail in this section experimental parameters needed to reproduce our experiments.

D.1 GAN(TK)2 Specifications and Computing Resources

GAN(TK)2 is implemented in Python (tested on versions 3.8.1 and 3.9.2) and based on JAX (Bradbury et al.,
2018) for tensor computations and Neural Tangents (Novak et al., 2020) for NTKs. We refer to the code released
at https://github.com/emited/gantk2 for detailed specifications and instructions.

All experiments presented in this paper were run on Nvidia GPUs (Nvidia Titan RTX – 24GB of VRAM – with
CUDA 11.2 as well as Nvidia Titan V – 12GB – and Nvidia GeForce RTX 2080 Ti – 11 GB – with CUDA 10.2).
All two-dimensional experiments require only a few minutes of computations on a single GPU. Experiments on
MNIST were run using simultaneously four GPUs for parallel computations, for at most a couple of hours.

D.2 Datasets

8 Gaussians. The target distribution is composed of 8 Gaussians with their means being evenly distributed on
the centered sphere of radius 5, and each with a standard deviation of 0.5. The input fake distribution is drawn
at initialization from a standard normal distribution N (0, 1). We sample in our experiments 500 points from each
distribution at each run to build α̂ and β̂.

AB and Density. These two datasets are taken from the Geomloss library examples (Feydy et al., 2019)1
and are distributed under the MIT license. To sample a point from a distribution based on these greyscale
images files, we sample a pixel (considered to lie in [−1, 1]2) in the image from a distribution where each pixel

1They can be found at https://github.com/jeanfeydy/geomloss/tree/master/geomloss/examples/optimal_
transport/data: AB corresponds to files A.png (source) and B.png (target), and Density corresponds to files density_a.png
(source) and density_a.png (target).

https://github.com/emited/gantk2
https://github.com/jeanfeydy/geomloss/tree/master/geomloss/examples/optimal_transport/data
https://github.com/jeanfeydy/geomloss/tree/master/geomloss/examples/optimal_transport/data
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probability is proportional to the darkness of this pixel, and then apply a Gaussian noise centered at the chosen
pixel coordinates with a standard deviation equal to the inverse of the image size. We sample in our experiments
500 points from each distribution at each run to build α̂ and β̂.

MNIST. MNIST (LeCun et al., 1998) is a standard dataset containing white digits over a dark frame. We
preprocess each MNIST image by extending it from 28× 28 frames to 32× 32 frames (by padding it with black
pixels) and normalizing pixels in the [−1, 1] range. For our experiments, we consider a subset of 1024 elements of
MNIST, which are randomly sampled for each run.

D.3 Parameters

Sinkhorn Divergence. The Sinkhorn divergence is computed using the Geomloss library (Feydy et al., 2019),
with a blur parameter of 0.001 and a scaling of 0.95, making it close to the Wasserstein W2 distance.

RBF Kernel. The RBF kernel used in our experiments is the following:

k(x, y) = e
‖x−y‖2

2n , (136)

where n is the dimension of x and y, i.e. the dimension of the data.

Architecture. We used for the neural networks of our experiments the standard NTK paramaterization (Jacot
et al., 2018), with a scaling factor of 1 for matrix multiplications and, when bias in enabled, a multiplicative
constant of 1 for biases (except for sigmoid where this bias factor is lowered to 0.2 to avoid saturating the sigmoid).
All considered networks are composed of 3 hidden layers and end with a linear layer. In the finite-width case, the
width of these hidden layers is 128. We additionally use antisymmetric initialization (Zhang et al., 2020) when
using the IPM loss.

Discriminator Optimization. Discriminators in the finite-width regime are trained using full-batch gradient
descent without momentum, with one step per update to the distributions and the following learning rates ε:

• for the IPM loss: ε = 0.01;

• for the IPM loss with reset and LSGAN: ε = 0.1.

In the infinite-width limit, we use the analytic expression derived in Section 4 with training time τ = 1 (except for
MNIST where τ = 1000) and f0 = 0 (through the initialization of Zhang et al. (2020)) to avoid the computational
cost of accumulating discriminators’ analytic expressions accross the generator’s optimization steps.

Point Cloud Descent. The multiplicative constant η over the gradient applied to each datapoint for two-
dimensional problems is chosen as follows:

• for the IPM loss in the infinite-width regime: η = 1000;

• for the IPM loss in the finite-width regime: η = 100;

• for the IPM loss in the finite-width regime and discriminator reset: η = 1000;

• for LSGAN in the infinite-width regime: η = 1000;

• for LSGAN in the finite-width regime: η = 1.

We multiply η by 1000 when using sigmoid activations, because of the low magnitude of the gradients it provides.
We choose for MNIST η = 100.

Training is performed for the following number of iterations:

• for 8 Gaussians: 20 000;

• for Density and AB: 10 000;

• for MNIST: 50 000.
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