Article Dans Une Revue Atmosphere Année : 2021

WeatherEye-Proposal of an Algorithm Able to Classify Weather Conditions from Traffic Camera Images

Résumé

In road environments, real-time knowledge of local weather conditions is an essential prerequisite for addressing the twin challenges of enhancing road safety and avoiding congestions. Currently, the main means of quantifying weather conditions along a road network requires the installation of meteorological stations. Such stations are costly and must be maintained; however, large numbers of cameras are already installed on the roadside. A new artificial intelligence method that uses road traffic cameras and a convolution neural network to detect weather conditions has, therefore, been proposed. It addresses a clearly defined set of constraints relating to the ability to operate in real-time and to classify the full spectrum of meteorological conditions and order them according to their intensity. The method can differentiate between five weather conditions such as normal (no precipitation), heavy rain, light rain, heavy fog and light fog. The deep-learning method’s training and testing phases were conducted using a new database called the Cerema-AWH (Adverse Weather Highway) database. After several optimisation steps, the proposed method obtained an accuracy of 0.99 for classification.
Fichier principal
Vignette du fichier
atmosphere-12-00717.pdf (2.13 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03254389 , version 1 (09-06-2021)

Licence

Identifiants

Citer

Khouloud Dahmane, Pierre Duthon, Frédéric Bernardin, Michèle Colomb, Frédéric Chausse, et al.. WeatherEye-Proposal of an Algorithm Able to Classify Weather Conditions from Traffic Camera Images. Atmosphere, 2021, 12 (6), pp.717. ⟨10.3390/atmos12060717⟩. ⟨hal-03254389⟩
142 Consultations
132 Téléchargements

Altmetric

Partager

More