A VARIANT OF THE HARDY-RAMANUJAN THEOREM - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

A VARIANT OF THE HARDY-RAMANUJAN THEOREM

Résumé

For each natural number n, we define ω * (n) to be the number of primes p such that p − 1 divides n. We show that in contrast to the Hardy-Ramanujan theorem which asserts that the number ω(n) of prime divisors of n has a normal order log log n, the function ω * (n) does not have a normal order. We conjecture that for some positive constant C, n≤x ω * (n) 2 ∼ Cx(log x). Another conjecture related to this function emerges, which seems to be of independent interest. More precisely, we conjecture that for some constant C > 0, as x → ∞, [p−1,q−1]≤x 1 [p − 1, q − 1] ∼ C log x, where the summation is over primes p, q ≤ x such that the least common multiple [p − 1, q − 1] is less than or equal to x.
Fichier principal
Vignette du fichier
variant-HRJ.pdf (298.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03251106 , version 1 (06-06-2021)
hal-03251106 , version 2 (20-12-2021)

Identifiants

  • HAL Id : hal-03251106 , version 1

Citer

M. Ram Murty, V Kumar Murty. A VARIANT OF THE HARDY-RAMANUJAN THEOREM. 2021. ⟨hal-03251106v1⟩
80 Consultations
585 Téléchargements

Partager

More