
HAL Id: hal-03251106
https://hal.science/hal-03251106v1

Preprint submitted on 6 Jun 2021 (v1), last revised 20 Dec 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A VARIANT OF THE HARDY-RAMANUJAN
THEOREM

M. Ram Murty, V Kumar Murty

To cite this version:
M. Ram Murty, V Kumar Murty. A VARIANT OF THE HARDY-RAMANUJAN THEOREM. 2021.
�hal-03251106v1�

https://hal.science/hal-03251106v1
https://hal.archives-ouvertes.fr


A VARIANT OF THE HARDY-RAMANUJAN THEOREM

M. RAM MURTY AND V. KUMAR MURTY

Dedicated to the memory of Srinivasa Ramanujan

Abstract. For each natural number n, we define ω∗(n) to be the number of primes p
such that p− 1 divides n. We show that in contrast to the Hardy-Ramanujan theorem
which asserts that the number ω(n) of prime divisors of n has a normal order log logn,
the function ω∗(n) does not have a normal order. We conjecture that for some positive
constant C, ∑

n≤x

ω∗(n)2 ∼ Cx(log x).

Another conjecture related to this function emerges, which seems to be of independent
interest. More precisely, we conjecture that for some constant C > 0, as x→∞,∑

[p−1,q−1]≤x

1

[p− 1, q − 1]
∼ C log x,

where the summation is over primes p, q ≤ x such that the least common multiple
[p− 1, q − 1] is less than or equal to x.

1. Introduction

Let ω(n) be the number of distinct prime divisors of n. In 1917, Hardy and Ramanujan
[5] showed that ω(n) has normal order log log n. They proved that for any ε > 0, the
number of n ≤ x such that

|ω(n)− log log n| > (log log n)
1
2
+ε

is o(x) as x→∞. In this article, we study the function ω∗(n) which counts the number of
primes p for which p− 1 divides n. This function appears in numerous places, including
in questions related to primality testing. For instance, in 1899, Korselt showed that
n|an− a for every a if and only if (p− 1)|(n− 1) for every prime p divisor of n. In 1910,
R.D. Carmichael noted that n = 561 = 3 · 11 · 17 satisfies this condition and thus gives
a concrete counterexample of Fermat’s little theorem. One might at first suspect that it
would behave similarly to ω(n) but in fact it seems to be rather different. In particular,
we show here that it does not have a normal order.

Theorem 1.1. The average order of ω∗(n) is log logn while the average order of ω∗(n)2

is at least C(log log n)3 for a suitabe constant C. More precisely, we have

(1)
∑
n≤x

ω∗(n) = x(log log x) +Bx+ O(x/ log x),
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while

(2)
∑
n≤x

ω∗(n)2 ≥ Cx(log log x)3,

for a suitable constant C > 0.

Prachar [12] proved (1) in 1955. His paper may have been the impetus for his joint
paper with Erdös [3] that appeared in the same journal, where they show using Brun’s
sieve that the number of pairs of primes p, q such that the least common multiple [p −
1, q − 1] is less than x is O(x log log x).

Since ω∗(n) is really the number of divisors d of n such that d + 1 is prime, and by
the prime number theorem, the probability that d+ 1 is prime is 1/ log(d+ 1), heuristic
considerations would suggest that

ω∗(n) �
∑
d|n

1

log(d+ 1)
� d(n)

log n
,

where d(n) is the number of divisors of n. This heuristic is certainly consistent with our
result on the average order of ω∗(n). If this heuristic were true (at least on average), we
may conjecture that for some constant C > 0,

(3)
∑
n≤x

ω∗(n)2 = Cx log x+ O(x),

since (see for example, page 62 of [7]),∑
n≤x

d(n)2 =
x

π2
(log x)3 + O(x log2 x).

In fact, Ramanujan discovered the more precise asymptotic formula [14]:∑
n≤x

d(n)2 =
x

π2
(log x)3 +

(
12γ − 3

π2
− 36

π4
ζ ′(2)

)
x(log x)2 +Ax log x+Bx+ O(x3/5+ε),

for certain “complicated constants” A,B and any ε > 0. He remarks in a footnote that
if we assume the Riemann hypothesis, the error can be improved to O(x1/2+ε).

In [12], Prachar shows that

(4)
∑
n≤x

ω∗(n)2 = O(x log2 x),

using Brun’s sieve. This does not preclude the possibility that (3) still holds.
Indeed, we will improve Prachar’s theorem and progress towards conjecture (3) through
the following theorem.

Theorem 1.2. ∑
n≤x

ω∗(n)2 = O(x log x).
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In the paper alluded to above, Prachar [12] shows assuming the generalized Riemann
hypothesis for Dirichlet L-functions, that for infinitely many n,

ω∗(n) > exp

(
(log
√

2− ε) log n

log logn

)
.

Unconditonally, he shows that for some constant c > 0,

ω∗(n) > exp

(
c log n

(log log n)2

)
,

for infinitely many n. However, by a slight re-arrangement of Prachar’s proof and a minor
modification, Adleman, Rumely and Pomerance (see Proposition 10 in [1]) showed that
for some constant c > 0,

ω∗(n) > exp

(
c log n

log log n

)
,

for infinitely many squarefree n without any hypothesis. By contrast, Ramanujan [13]
showed in his celebrated paper “Highly composite numbers” that for all n ≥ 2,

ω(n) ≤ log n

log log n
+ O

(
log n

(log log n)2

)
.

From this medley of results, we therefore see that the behaviour of ω∗(n) is drastically
different from ω(n).

2. preliminary lemmas

We record here several results that will be used in proving our main results.

Lemma 2.1. Let d be a natural number. Let p(d, a) be the smallest prime ≡ a (mod d).
Then ∑

p≤x
p≡a mod d

1

p
=

1

φ(d)
log log x +

1

p(d, a)
+ O

(
log d

φ(d)

)
uniformly for d ≤ x. In particular,∑

p≤x
p≡1 mod d

1

p
=

1

φ(d)
log log x + O

(
log d

φ(d)

)
This is due to Norton and appears in [10] as Lemma 6.3. The form we have stated

appears also in [11] where it is a remark after Theorem 1. The second statement of the
lemma follows on noting that p(d, 1) ≥ d. Weaker versions of this theorem were used
earlier by Erdös [2] and Murty-Murty [8], [9].

Lemma 2.2. The number of pairs of primes p, q such that the lcm [p− 1, q − 1] ≤ x is
O(x).

This is essentially due to Erdös and Prachar [3] and what they actually prove using
Brun’s sieve is the estimate O(x log log x). However, in a footnote to their paper, they
remark that the number of solutions is O(x). As we need this result, and the exposition
in [3] is far from satisfactory, we give a short proof in the next section. Strangely, this
paper appears only the authorship of Erdös in Mathematical Reviews.
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Lemma 2.3 (The Brun-Titchmarsh inequality). Let d be a natural number and let
(a, d) = 1. Let π(x, d, a) be the number of primes p ≤ x with p ≡ 1 (mod d). Then

π(x, d, a) ≤ 2x

φ(d) log(x/d)
, d < x.

This form of the Brun-Titchmarsh inequality is due to Montgomery and Vaughan [6]
and represents a culmination of a series of results beginning with Brun, then Titchmarsh,
and a host of other mathematicians who saw the need for such an inequality in many
problems of analytic number theory. The following establishes an estimate that goes
beyond the range of Lemma 2.1.

Lemma 2.4. For x > d, ∑
p≤x

p≡a(mod d)

1

p
� 1

p(d, a)
+

log log(x/d)

φ(d)
.

In particular, if a = 1, we have ∑
p≤x

p≡a(mod d)

1

p
� log log x

φ(d)
.

Proof. This is an application of partial summation and the Brun-Titchmarsh inequality
(Lemma 2.3). We see that∑

2d<p≤x
p≡a(mod d)

1

p
� π(x, d, a)

x
+

∫ x

2d

π(t, d, a)

t2
dt.

By Lemma 2.3, the integral is

�
∫ x

2d

dt

φ(d)t(log t− log d)
.

After a change of variable and integration, and including the (possible) primes p ≤ 2d
with p ≡ a(mod d), the result follows. �

Lemma 2.5. Let a, b be coprime natural numbers. The number of primes n ≤ x such
that both an+ 1 and bn+ 1 are prime is

� x

(log x)2

∏
p|ab(a−b)

(
1 +

1

p

)
,

where the implied constant is absolute.

Proof. This is a consequence of Brun’s sieve, the details of which can be found in [4]. In
particular, we apply Theorem 2.3 in [4] to our context. �

Lemma 2.6. For any natural number d, and a ≥ 1, we have∑
d≤n≤x,n≡a(mod d)

1

n
� log(x/d)

d
.
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Proof. We have ∑
d≤n≤x,n≡a(mod d)

1

n
≤
∑
t≤x/d

1

dt+ a
≤
∑
t≤x/d

1

dt
� log(x/d)

d
,

by elementary calculus. �

Lemma 2.7. ∑
a,b≤x1/4,(a,b)=1

1

ab

∏
p|ab(a−b)

(
1 +

1

p

)
� (log x)2.

Proof. Noting that ∏
p|n

(
1 +

1

p

)
=
∑
d|n

µ2(d)

d
,

we have that our sum is bounded by∑
d≤x3/4

µ2(d)

d

∑
a,b≤x1/2,d|ab(a−b)

1

ab
.

By the Chinese remainder theorem, we see that d|ab(a − b) means that for each prime
divisor p of ab(a−b), we must have a ≡ 0 or b ≡ 0 or a ≡ b (mod p). Thus, for each prime
p, there are at most 2p pairs (a, b) (mod p) for which p|ab(a − b). Modulo d, there are

at most 2ω(d)d such pairs. We partition the inner sum over each of these residue classes
(mod d) and by symmetry, we may suppose split the sum into two parts: a < b. Splitting

this sum into b ≤ d and b > d, we see the first sum is at most log(2ω(d)d) � log d and
the total contribution to our sum in question is

�
∑

d≤x3/4

µ2(d) log d

d
� (log x)2.

For the second part, we apply Lemma 2.6 and see that the inner sum is at most

2ω(d)d

(
log x

d

)2

� 2ω(d)(log x)2

d

and inserting this into our sum, we find the final contribution is � (log x)2 because the
series

∞∑
d=1

µ2(d)2ω(d)

d2

converges. This completes the proof. �

3. The Erdös-Prachar theorem revisited

We give below, in a clear and concise way, a proof of the theorem of Erdös and Prachar
recorded in Lemma 2.2. We want to count the number of primes pairs p, q such that
[p − 1, q − 1] ≤ x. For each d ≤ x, let us first count the number Nd of prime pairs p, q
such that the gcd (p−1, q−1) = d and [p−1, q−1] ≤ x. This is bounded by the number
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of prime pairs p, q such that p ≡ q ≡ 1 (mod d) and (p − 1)(q − 1) ≤ dx. Without any

loss of generality, we may suppose p ≤ q so that p ≤ 2
√
dx. Thus,

Nd ≤ 2
∑

p≤2
√
dx

p≡1(mod d)

π(2dx/p, d, 1).

We want to apply the Brun-Titchmarsh inequality but to do so, must ensure p is not
too close to x. This motivates the consideration of two cases: d ≤ x3/4 and d > x3/4. In
the first case, we see that p ≤ 2

√
dx implies p ≤ x7/8. Thus, by the Brun-Titchmarsh

inequality (Lemma 2.3),

(5) Nd �
∑

p≤
√
dx

p≡1(mod d)

x

p

d

φ(d) log x

Noting that
√
dx > d, we get by Lemma 2.4,

Nd �
dx log log x

φ(d)2 log x
.

Summing this over d ≤ x3/4 and using the elementary estimate∑
d<z

d

φ(d)2
� log z,

we get in the first case, a final estimate of O(x log log x).

In the second case, x ≥ d > x3/4. We proceed to estimate Nd. We write p − 1 = ad
and q − 1 = bd with (a, b) = 1 and observe that as x ≥ [p − 1, q − 1] = abd, we have

ab ≤ x/d which implies ab ≤ x1/4. By Lemma 2.5, the number of d ≤ x/ab such that
both ad+ 1 and bd+ 1 are prime is

� x

ab(log x)2

∏
p|ab(a−b)

(
1 +

1

p

)
.

We sum this over a, b ≤ x1/4 and apply Lemma 2.7 to deduce the result that the estimate
for this range of d is O(x).

This is, in essence, what is contained in the core of the paper [3]. In a footnote, the
authors state that the result can be improved to O(x) using a result of Titchmarsh. As
no details are given, we present them now. By our account above, we need to refine the
estimate for the first case, when d < x3/4. Looking at (5), the sum to estimate is

(6)
x

log x

∑
p≤x

Ap
p

where

Ap =
∑

d|p−1,d<x3/4

d

φ(d)
.
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Now by the Brun-Titchmarsh inequality,

(7)
∑
p≤x

Ap =
∑

d<x3/4

d

φ(d)
π(x, d, 1)�

∑
d<x3/4

d

φ(d)2
x

log x
� x

log x

∑
d<x3/4

d

φ(d)2
� x,

where in the last step, we applied the elementary estimate∑
d<x

d

φ(d)2
� log x.

With (7), in hand, we now apply dyadic subdivision to the sum appearing in (6):

∑
p≤x

Ap
p
�

log x∑
k=1

∑
2k≤p<2k+1

Ap
p
�

log x∑
k=1

1

2k

 ∑
p<2k+1

Ap

� log x,

which completes the proof.

4. Proof of Theorem 1.1

The average order is easily seen to be∑
n≤x

ω∗(n) =
∑
p≤x

[
x

p− 1

]
= x(log log x) +Bx+ O(x/ log x)

using Mertens theorem. As mentioned earlier, this was also observed by Prachar [12].

On the other hand, we have

∑
n≤x

ω∗(n)2 =
∑
n≤x

 ∑
(p−1)|n

1

2

=
∑
p,q≤x

[
x

[p− 1, q − 1]

]
where [p − 1, q − 1] denotes the least common multiple of p − 1 and q − 1 and the sum
is over primes p, q ≤ x. Using Lemma 2.2, we have∑

n≤x
ω∗(n)2 =

∑
p,q≤x

[
x

[p− 1, q − 1]

]
=
∑
p,q≤x

x

[p− 1, q − 1]
+ O(x).

Separating the terms with p = q and p 6= q, and using the relation

[p− 1, q − 1] = (p− 1)(q − 1)/(p− 1, q − 1)

between the least common multiple and the greatest common divisor, we deduce that∑
n≤x

ω∗(n)2 =
∑
p,q≤x
p6=q

x

(p− 1)(q − 1)
(p− 1, q − 1) + O(x).

Allowing for p = q in the sum and estimating the error, we see that

(8)
∑
n≤x

ω∗(n)2 =
∑
p,q≤x

x

(p− 1)(q − 1)
(p− 1, q − 1) + O(x).

Now,

(9) (p− 1, q − 1) =
∑

d|(p−1),d|(q−1)

φ(d).
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Inserting (9) into (8), we get

(10)
∑
n≤x

ω∗(n)2 = x
∑
d≤x

φ(d)

 ∑
p≤x

p≡1 mod d

1

p− 1


2

+ O(x).

We get a lower bound if we restrict our sum to d ≤ z with z to be chosen suitably later.
We apply Lemma 2.1 to get∑

n≤x
ω∗(n)2 ≥ x

∑
d≤z

φ(d)

{
1

φ(d)
log log x + O

(
log d

φ(d)

)}2

+ O(x log log x).

Simplifying, we see that the right hand side is

x(log log x)2
∑
d≤z

1

φ(d)
+ O

x(log log x)
∑
d≤z

log d

φ(d)

 + O

x∑
d≤z

(log d)2

φ(d)

 .

By elementary number theory, we have the following:∑
d≤z

1

φ(d)
= A log z + O(1)

∑
d≤z

log d

φ(d)
= O((log z)2)

and ∑
d≤z

(log d)2

φ(d)
= O((log z)3).

We choose z = (log x)c. Thus, our final inequality is∑
n≤x

ω∗(n)2 ≥ Acx(log log x)3 + O(c2x(log log x)3)

and this gives upon choosing c sufficiently small,∑
n≤x

ω∗(n)2 � x(log log x)3.

This completes the proof.

5. Proof of Theorem 1.2

We have shown ∑
n≤x

ω∗(n)2 =
∑

[p−1,q−1]≤x

x

[p− 1, q − 1]
+ O(x).

Letting St be the number of solutions of primes p, q with [p − 1, q − 1] = t, our sum
becomes

x
∑
n≤x

ω∗(n)2 =

x∑
t=1

St
t
.
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We make a dyadic subdivision,

x

log x∑
k=1

1

2k

∑
2k≤t<2k+1

St.

By Lemma 2.2, the inner sum is O(2k) and so the total sum is
(
x log x). This completes

the proof.

6. Concluding remarks

The method clearly extends to the study of the cognate function which counts the
number of primes p such that p− a divides n for a fixed value of n. Certainly, the lower
bound estimate recorded in Theorem 1.1 is immediate in this case also. For the upper
bound estimate, one would need the analog of the Erdös-Prachar theorem. Here again,
the method extends with little difficulty and we have an analogous theorem in this case
as well.

It is interesting to note that if we used Lemma 2.4 in (10), we would have obtained a
weaker estimate of O(x(log x)(log log x)2) in Theorem 1.2.

We have shown above that∑
n≤x

ω∗(n)2 =
∑

[p−1,q−1]≤x

x

[p− 1, q − 1]
+ O(x).

Thus, conjecture (3) reduces to the problem of finding an asymptotic formula for the
sum on the right hand side. In other words, (3) reduces to the alluring conjecture that
for some constant C > 0, as x→∞,∑

[p−1,q−1]≤x

1

[p− 1, q − 1]
∼ C log x,

where the summation is over primes p, q ≤ x. We also find it amusing that had the
authors of [3] cleaned up their paper, they would have seen some sixty-five years earlier,
our Theorem 1.2 which improves upon Prachar’s 1955 theorem in [12]!
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[12] K. Prachar, Über die Anahl der Teiler einer natürlichen Zahl, welche die From p − 1 haben,
Monatsh. Math, 59 (1955), 91-97.

[13] S. Ramanujan, Highly composite numbers, Proceedings of the London Math. Society, 14 (2),
(1915), 347-409.

[14] S. Ramanujan, Some formulae in the analtyic theory of numbers, Messenger of Mathematics, 45
(1916), 81-84.

Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario,
Canada, K7L 3N6

E-mail address: murty@queensu.ca

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada, M5S
2E4

E-mail address: murty@math.toronto.edu


